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The extended nonlinear model has been applied to construct neutron
star matter equation of state. In the case of neutron star matter with non-
zero strangeness the extension of the vector meson sector by the inclusion
of nonlinear mixed terms results in the stiffening of the equation of state
and accordingly in the higher value of the maximum neutron star mass.

PACS numbers: 97.60.Jd, 26.60.Dd, 26.60Kp, 26.60.–c

1. Introduction

At the core of a neutron star the matter density ranges from a few times
the density of normal nuclear matter (ρ0) to about an order of a magni-
tude higher. At such densities exotic forms of matter such as hyperons are
expected to emerge. The appearance of these additional degrees of free-
dom and their impact on a neutron star structure have been the subject of
extensive studies [1–4].

The analysis of the role of strangeness in nuclear structure in the aspect
of multi-strange system is of great importance for both nuclear physics and
for astrophysics. In the latter case understanding the properties of hyperon
star is still a relevant item. In the core of a neutron star, in the very high
density environment, there is also the possibility for strange gravitational
phenomena [5].

Recent results of neutron star mass measurements with the most spec-
tacular and promising one, obtained for neutron star–white dwarf binary
system, with the Arecibo radio telescope, suggest that the maximum neu-
tron star mass is rather high [6]. According to original observations, the
mentioned above binary system, includes a neutron star with the largest
mass ever reported M(PSR J0751+1807) = 2.1± 0.2 M�(1σ) [7]. However,

∗ Presented at the XXXIII International Conference of Theoretical Physics, “Matter to
the Deepest”, Ustroń, Poland, September 11–16, 2009.

(3071)



3072 I. Bednarek

this result has been corrected down to the new value 1.26 M� with the esti-
mated errors 1.12–1.30 M�(1σ) and 0.98–1.53 M�(2σ) [8, 9]. This reversed
value of the mass has been obtained on the basis of the improved value of
the orbital decay and the detection of the Shapiro delay.

The most accurately measured neutron star masses come from observa-
tions of the radio binary pulsars. These reliably determined neutron star
masses are in the range 1.5–1.65 M�. The largest mass obtained recently
from the analysis of timing observations of the pulsar PSR J1903+0327 has
been estimated at the value of 1.7 ± 0.4 M�. This is the largest precisely
known neutron star mass. There are other reported results of measure-
ments of neutron star masses which indicate their high values. Among oth-
ers there are observations of pulsars in globular clusters: the pulsar PSR
B1516+02B located in the globular cluster M5 with estimated value of the
mass 1.96+0.09

−0.12 M�, pulsar PSR J1748-2021B in the globular cluster NGC
6440 with the median mass of 2.74 ± 0.21 M�. However, these results are
rather uncertain. Another examples of the high neutron star masses in-
clude compact star in the low mass X-ray binary (LMXB) 4U 1636-536
with the mass estimated at the value of 2.0 ± 0.1 M� [10] or the X-ray
source EXO 0748-676 which has been constrained by the detection of grav-
itational redshift of certain absorption lines. In the latest case the obtained
results combined with other observational data lead to individually esti-
mated mass and radius of the star at the value of M ≥ 2.10± 0.28 M� and
R ≥ 13.8± 1.8 km [11,12].

Besides the measurements of neutron star masses also the estimated value
of the radius of the isolated neutron star RX J1856.5-3754 [13] indicates its
high value of the mass. The analysis of thermal emission from the star
surface allows the determination of the ratio of the photospheric radius R∞
to the distance d. This result together with the assumed model of the
atmosphere support the large value of radius of the star R > 12 km.

Nuclear matter in neutron star interiors represents environments with
extremely high value of the isospin asymmetry fa which defines the neutron
excess in the system fa=(ρn−ρp)(ρn+ρp), ρn and ρp represent neutron and
proton densities, respectively. The sum ρn+ρp=ρb defines the baryon dens-
ity. The equation of state (EOS) of neutron-rich matter can be approximated
by the following parabolic formula ε(ρb, fa) = ε(ρb, 0) + S2(ρb)f2

a , where
ε(ρb, fa) is the energy per particle of asymmetric infinite nuclear matter.

The EOS includes the symmetric matter contribution which does not
depend on the isospin asymmetry ε(ρb, 0) and the symmetry energy term
S2(ρb). The last one totally determines the isospin dependence of the system.

The most important characteristics of a neuron star, namely its maxi-
mum mass and the typical neutron star radius are strictly connected with
the form of the equation of state involved, but as the maximum mass is
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controlled by stiffness of the EOS, the radius is determined by the density
dependence of the symmetry energy S2(ρb). The presented above results of
astrophysical observations which suggest high value of neutron star masses
should be compared with the data obtained from terrestrial nuclear experi-
ments [14].

The reported results from the elliptic flow in the heavy ion collisions
are used to constrain the symmetric part of nuclear matter EOS. Basing
on the analysis of the flow data and the results from transport calculations
the values of pressure in the density range 2 < ρb/ρ0 < 4.6 have been es-
timated [14]. On the other hand, the density dependence of the symmetry
energy is still poorly known. Data from intermediate energy heavy ion reac-
tions, which include subthreshold kaon production, constrain the form of the
symmetry energy in the density range (2 < ρb/ρ0 < 3). The one-parameter
fit to the low-density behavior of the symmetry energy has been introduced,
where u = ρ/ρ0 and J is the symmetry energy coefficient equal to S2(ρ0).
This dependence also allows one to determine the transition density ρt be-
tween the crust and the core of a neutron star. The constraints on the value
of γt, for the transition density ρt, obtained from the intermediate-energy
heavy-ion collisions provides the range γt ∼ 0.69–1.05 [15–17].

In general, heavy ion experiments support the soft EOS, at moderate
densities. The considerable stiffening of the EOS is indispensable for higher
densities in order to reproduce the observed high value of neutron star
masses. Thus, the combined current astrophysical and heavy-ion constraints
lead to a very specific form of the EOS which in the case of non-strange nu-
clear matter is satisfactorily reproduced by many models. However, there
is a contradiction between the very high value of the observed neutron star
masses and the EOS of strangeness-rich nuclear matter. In general, the ap-
pearance of hyperons in neutron star interiors is connected with the substan-
tial softening of the EOS and this results in the low value of the maximum
mass.

2. The model

Vector densities, which are defined by the value of the vector meson
fields, are the decisive factors that contribute to the EOS of dense matter
in neutron star interiors. The construction of the extended vector meson
sector has been done by the inclusion the fourth-order self-interaction term
of the vector mesons. Different forms of the SU(3) invariants have been
included. This allows one to take into account divers nonlinear vector meson
interaction terms. This results in the appearance of various nonlinear vector
meson couplings, among which there are terms which relate the strange
and non-strange mesons. As a consequence strong connections between the
asymmetry and strangeness fraction of the model have emerged. For details
concerning the model considered see the paper [18].
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The Lagrangian function of the system consists of a baryonic part which
includes the full octet of baryons together with terms describing interaction
of baryons with scalar and vector mesons, and a mesonic part. The mesonic
part contains also additional interactions between mesons. The most general
form of the Lagrangian function can be written as follows

L =
∑
B

ψ̄Biγ
µDµψB −

∑
B

mB(σ, σ∗)ψBψB + LM , (1)

where baryon fields ΨTB = (ψN , ψΛ, ψΣ , ψΞ) are composed of the following
isomultiplets [1]:

ΨN =
(
ψp
ψn

)
, ΨΛ = ψΛ ,

ΨΣ =

 ψΣ+

ψΣ0

ψΣ−

 , ΨΞ =
(
ψΞ0

ψΞ−

)
,

Dµ is the covariant derivative of baryons which in terms of ωµ, ρaµ and φµ
fields is given by

Dµ = ∂µ + igωBωµ + igφBφµ + igρBI3Bτ
aρaµ . (2)

The meson part of the Lagrangian function

LM = 1
2∂µσ∂

µσ + 1
2∂µσ

∗∂µσ∗ − Ueff

(
σ, σ∗, ωµ, ρ

a
µ, φµ

)
−1

4ΩµνΩ
µν − 1

4R
a
µνR

aµν − 1
4ΦµνΦ

µν (3)

includes the field tensors Ωµν , Φµν and Raµν defined as Ωµν = ∂µων − ∂νωµ,
Φµν = ∂µφν−∂νφµ and Raµν = ∂µρ

a
ν−∂νρaµ. All meson interaction terms are

collected in the potential function which can be written as a sum of linear
and nonlinear parts, respectively

Ueff

(
σ, σ∗, ωµ, ρ

a
µ, φµ

)
= Ulin

(
σ, σ∗, ωµ, ρ

a
µ, φµ

)
+Unl

(
σ, σ∗, ωµ, ρ

a
µ, φµ

)
. (4)

The linear scalar and vector meson part of the potential takes the form

Ulin

(
σ, σ∗, ωµ, ρ

a
µ, φµ

)
= 1

2m
2
σσ

2 + 1
2m

2
σ∗σ
∗2 − 1

2m
2
ω (ωµωµ)

−1
2m

2
ρ(ρ

a
µρ

µa)− 1
2m

2
φ (φµφµ) , (5)

whereas its nonlinear part is given by

UV = 1
4c3(ρaµρ

µa)2 + 3
4c3(ρaµρ

µa)(φνφν) + 1
8c3(φµφν)2

+3
4c3(φµφµ)(ωνων) + 1

4(gρgω)2ΛV (φµφµ)2

+1
4c3(ωµωµ)2 − 1

2(gρgω)2ΛV (ρaµρ
µa)(φνφν)

+(gρgω)2ΛV (ρaµρ
µa)(ωνων)− 1

2(gρgω)2ΛV (φµφµ)(ωνων) . (6)
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Calculations performed in this paper are based on the standard TM1 pa-
rameter set [19]. The inclusion of the mixed nonlinear isoscalar–isovector
coupling ΛV provides the possibility of modifying the high density depen-
dence of the symmetry energy and requires the adjustment of the gρN cou-
pling constant to keep the same value of the symmetry energy at saturation.
Thus, in the isovector sector the parameters gρN and ΛV have been fitted
to reproduce the symmetry energy coefficient at the value J = 36.89 MeV.
The remaining ground state properties are left unchanged.

Vector mesons–hyperon coupling constants are taken from the quark
model. Whereas the scalar couplings gσB of the Λ, Σ and Ξ hyperons require
constraining in order to reproduce the estimated values of the potential felt
by a single Λ, Σ and Ξ in the saturated nuclear matter. The knowledge
about the hyperon–hyperon interaction is also indispensable. The coupling
of hyperons to the strange meson σ∗ has been limited by the estimated
value of hyperon potential depths in hyperon matter and this has direct
consequences for neutron star parameters. Recent experimental data [20]
indicate a much weaker strength of hyperon–hyperon (Y –Y ) interaction.
The strong Y –Y interaction is related to the value of the potential U (Λ)

Λ =
−20 MeV, whereas the weak one corresponds to U (Λ)

Λ = −5 MeV [20,21].

3. Results and discussion

The integration of the Tolman–Oppenheimer–Volkov (TOV) equations
with a specific equation of state leads to the mass-radius relation and allows
one to determine the value of the maximum mass which in a sense can give
a measure of the impact of particular nonlinear couplings between vector
mesons.

In Fig. 1 the equations of state obtained for different cases of nonlinear
potentials presented in this paper have been shown. Extreme, dashed curves
represent results obtained for the standard TM1 parameterization, for the
non-strange and strangeness rich matter, respectively. The case when the
matter includes only nucleons and leptons gives the stiffest EOS whereas the
directly opposed result namely the softest EOS can be obtained for the stan-
dard TM1 parameterization extended by the inclusion of hyperons. Other
equations of state presented in this figure aim to provide the analysis of
the influence of additional vector meson nonlinear interaction. The cases
ΛV = 0.008 and ΛV = 0.01 have been taken into account. The obtained
results indicate for the strong tendency for stiffening of the EOS for the
increasing value of the parameter ΛV . The inclusion of nonlinear vector
meson interactions has profound consequences for the structure of neutron
stars and this can be deduced from Fig. 2 where the mass-radius relations
for the obtained equations of state have been shown. Dotted curves depict
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Fig. 1. The EOS obtained for the nonlinear models. The EOSs for the nonlinear
models with different values of the parameter ΛV are included. All parameters that
enter the considered models are taken from [18].

Fig. 2. The mass-radius relations obtained for the chosen models.

the results calculated for non-strange matter. The mass-radius relation for
the FSU Gold parameter set has been given, for comparison. The maximum
mass increases with increasing value of the parameter ΛV , giving in the re-
sults neutron star models with masses exceeding 2 M� and with reduced
radii. Thus, one can expect that solutions with nonlinear vector meson cou-
plings lead to neutron star models with substantially greater density. The
mass-radius diagram includes the cases for non-strange and strange mat-
ter. Changing the value of the parameter ΛV solutions with substantially
reduced value of the transition density have been obtained [18]. This points
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to the conclusion that the crust-core boundary moves to lower density region
leading to the models with reduced value of the non-homogenous phase. It
has been shown that in the very nonlinear models the inclusion of hyperons
does not soften the EOS; on the contrary, it leads to its considerable stiffen-
ing. The consequences for neutron star parameters are straightforward and
appear as a considerable growth of neutron star masses. Thus one of the
inevitable conclusions is that in the case of nonlinear models the inclusion of
hyperons does not result in the lowering of a neutron star mass. This is of
special interest when considering reported astrophysical data which indicate
large neutron star masses.
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