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We present a new scheme of a fully exclusive QCD NLO parton shower
for the initial state. The scheme is based on the collinear factorization, but
at the same time it provides fully exclusive events with four-momenta of
all emitted partons. We show a first working prototype of such a MC code
for the subset of graphs for the Non Singlet evolution and we show that on
the inclusive level it reproduces the standard MS DGLAP results.

PACS numbers: 12.38.–t, 12.38.Bx, 12.38.Cy

The LHC experiments will start collecting data in November this year
(2009). This moment will open a new era in the high precision QCD mea-
surements. In order to fully exploit these results, comparable in precision
QCD Monte Carlo (MC) event generator programs are necessary. However,
the current QCD MC programs are based on the improved Leading Order
(LO) evolution equations as the building blocks (as far as the differential
distributions are concerned; the overall, inclusive, normalization can easily
be corrected to higher order precision), cf. for example [1–3]1. The LO-level
precision may be not enough for the LHC, where, as a rule of thumb, one
needs at least NLO theoretical precision.

It is therefore justified to ask whether it is possible to develop a new,
genuine NLO, scheme for the QCD MC event generator? Such a scheme
would: provide more precise predictions of the perturbative QCD; allow for
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1 This should be contrasted with the inclusive, analytical, calculations which are rou-
tinely done at the NLO level, and in some cases even in the NNLO approximation [4].
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better treatment of the heavy quark mass thresholds; offer a new method of
transferring parton distributions from HERA to LHC energies; offer a better
control of parton luminosities and much more.

Such a new NLO MC event generator should be based on complete NLO
calculations both in resumed, evolution, part as well as in fixed-order, hard
matrix element, part. However, as we already mentioned, the MC parton
shower (PS) featuring complete NLO evolution does not exist yet!

In this presentation we will demonstrate that it is feasible to construct
such a NLO parton shower. We will describe prototype of such a MC for
the case of initial state radiation which we have developed recently within
the KRKmc project [5–8]2.

In a nutshell the KRKmc parton shower can be described as follows. It is
based on Feynman Diagrams and Lorentz-invariant phase space. It uses the
scheme of collinear factorization [12,13] and, therefore, it implements exactly
the NLO MS DGLAP evolution [14]. The key novelty of the KRKmc is the
fact that it provides fully unintegrated parton density functions (with com-
plete kinematical information about all the generated partons) with NLO
evolution done by MC itself, using new, exclusive NLO kernels.

In this presentation we will show first working prototype of such a NLO
parton shower. It is done for the case of Non Singlet evolution and limited
only to the C2

F part of the kernel.
These new exclusive kernels have been calculated using the same method-

ology as in the original calculation by Curci, Furmanski and Petronzio [14].
The main difference is that we had to perform the calculations for vari-
ous choices of the evolution time: in addition to the original choice of the
virtuality (q2) we used also transverse momentum (k⊥) and rapidity. The
exclusive (unintegrated) kernels have different form depending on the choice
of the evolution time (even though after integration and summation over all
Feynman graphs, the inclusive kernels are identical).

In Fig. 1 we show all the contributions to the Non Singlet LO and NLO
evolution kernels. As we mentioned earlier, in this work we restrict ourselves
to the C2

F part (two “bremsstrahlung-like” graphs) labeled with the dotted
blue line marked box. It is in a sense the most complicated part because
it involves the subtraction of the soft counter-term (labeled as 1−P in the
plot). The projection operator P plays the crucial role in the factorization
scheme. It extracts the collinear singularity by means of three consecutive
operations: spin projection, kinematical on-shell projection and pole-part
projection. The 1 − P part of the double bremsstrahlung graph (shown in
Fig. 1) is therefore a pure NLO correction.

2 Let us mention that there are some other projects aiming at constructing parton
showers beyond the LO as well, cf. eg. [9–11].
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Fig. 1. Contributions to the NLO Non Singlet evolution kernel. The C2
F part

labeled with the dotted blue line marked box.

Having reorganized the kernels, next we had to change the regularization
scheme. The dimensional regularization, used for the collinear singularities,
is not good for the MC as it would lead to very high parton multiplicities.
Instead, we introduced a geometrical cut-off ∆:

1
ε
⇒

Q2∫
0

dq2

q2

(
q2

Q2

)ε
⇒

Q2∫
∆2

dq2

q2
.

Note, that the above replacement is so simple because the collinear singu-
larity has the form dq2/q2 which can be factorized out of the rest of the
formula. Note also, that this change of regularization procedure has to be
done in such a way that it does not violate the MS scheme.

Next thing to be reorganized is the factorization procedure itself. The
reason for it is that the DGLAP equation mixes orders of perturbative ex-
pansion. The NLO DGLAP kernel, denoted as P , is in fact a sum of LO
and NLO pieces.

P = αPLO + α2PNLO .

Therefore, P k terms in the expansion of
∑
P k are a mixture of various orders

in α. In the actual MC we have to use the true expansion in αk instead.
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This is shown graphically in Fig. 2 for the case of k = 4 (expansion in α is
truncated at α4). The contributions which contain only the LO-labeled pink
boxes constitute the LO crude MC. The other pieces, in each of the curly
brackets separately, are introduced as the MC weights, to be applied on the
top of the LO term (from the same curly bracket!).
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Fig. 2. The expansion of P+P 2+P 3+P 4 in powers of coupling constants (truncated
at α4).

Having reorganized the calculation of the Feynman diagrams, the regu-
larization scheme and the factorization procedure, the last thing to be re-
organized is the phase-space. Namely, we found it necessary to resign from
the ordering in the evolution time in the underlying LO crude MC. Instead
we used the Bose-symmetric form. The ordering is an approximate feature
of the LO matrix element and, therefore, it is not strict at the NLO level
and we have to explicitly sum over entire phase space. Let us illustrate it
on the case of triple emission. The fully differential formula corresponding
to the second line of Fig. 2 has the form

DL+N
3 (t, x) ∼ 1

3!

kmax∫
kmin

(
3∏
i=1

d3ki
2k0

i

)
δx0−x=α1+α2+α3ρ

L+N
3 (k3, k2, k1) ,

ρL+N
3 (k3, k2, k1) =

∑
π

(
ρL3 (kπ3 , kπ2 , kπ1) + ρN3a(kπ3 , kπ2 , kπ1)

+ρN3b(kπ3 , kπ2 , kπ1)
)
, (1)
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ρL3 (k3, k2, k1) = ρL(k3|x2) ρL(k2|x1) ρL(k1|x0) θ|k3|>|k2|>|k1| ,

ρN3a(k3, k2, k1) = ρL(k3|x2) bθN2 (k2, k1|x0) θ|k3|>|k2| ,

ρN3b(k3, k2, k1) = bθN2 (k3, k2|x1) ρL(k1|x0) θ|k3|>|k1| . (2)

The ρL (bθN2 ) corresponds to the LO (NLO) contribution, grey/pink (light
grey/blue) box, in Fig. 2. The overall distribution for triple emission, de-
noted as ρL+N

3 is a sum of three contributions: LO*LO*LO (ρL3 ), LO*NLO
(ρLN3a ) and NLO*LO (ρN3b). It is the ρ

N
3b one where the violation of strict or-

dering is seen in a most transparent way: there is no reason why |k2| should
be bigger than |k1|.

At this moment we are ready to construct the MC algorithm. As the
crude MC we use the LO distributions, like the ρL3 in Eq. (1). The LO
MC can be of the standard Markovian type or of the non-Markovian type
[8, 15], if the constraint on final x and parton type is needed. The NLO
corrections are then introduced in the form of weights. The three-emission
weight corresponding to the equation (1) looks as follows

w = 1 + wN3a + wN3b ,

wN3a =
bθN2 (k̃2, k̃1|x0)

ρL(k̃2|x1) ρL(k̃1|x0)
θt̃2>tM ,

wN3b =
bθN2 (k̃3, k̃2|x1)

ρL(k̃3|x2) ρL(k̃2|x1)
θt̃3>tM

+
bθN2 (k̃3, k̃1|x

π•b
1 )

ρL(k̃3|x2) ρL(k̃1|x0)
ρL(k̃2|x0)
ρL(k̃2|x1)

θt̃3>tM . (3)

We see explicitly the two terms due to the NLO*LO contribution ρN3b cor-
responding to the two kinematical regions: |k2| > |k1| and |k1| > |k2|. For
explanation of the rest of the notation in Eqs (1)–(3) we refer reader to
Refs [5, 6].

Let us close presentation of our new exclusive MC PS scheme with a more
technical remark: there is a fundamental difference between the standard
inclusive calculations and the MC PS calculation in the treatment of the
lower limit of the phase space integrals. In the analytical calculation of the
MS kernel the lower limit of the internal degree of freedom, integrated out
during the procedure of constructing the NLO kernel, is set to 0. On the
contrary, in the MC it is limited by some t0 for all partons. This mismatch
must lead to a discrepancies in the numerical results. In this work we decided
to resolve this conflict by “artificial” lowering of the t0 limit, below the actual
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start of the evolution, labeled as tM in Eq. (3), and by performing a LO pre-
evolution in this extended region. This way we maintain exact agreement
with the MS result. This set-up is illustrated in Fig. 3.

����� �
Fig. 3. The pre-evolution and “true” evolution ranges.

We have implemented the above scheme of the exclusive NLO evolution
in the MC program KRKmc. In Fig. 4 we compare its results with a standard
NLO DGLAP MC evolution. Both evolutions are implemented as weights
on the top of the same LO Markovian MC algorithm. Evolution ranges from
10 GeV to 1 TeV. LO pre-evolution starts at 1 GeV from δ(1−x) distribution.
The entry r = 1 (r = 2) corresponds to contribution from terms with one
(two) NLO “insertions”. Graphically, the r = 2 contribution comes from the
last term in the bottom line of Fig. 2 and the r = 1 one from six other terms
with one light grey/blue “NLO”-box.
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Fig. 4. Comparison of exclusive and standard DGLAP NLO evolutions.
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As one can see the agreement is very good, within the statistical errors.
This way we demonstrated for the first time ever that the QCD NLO parton
shower can be constructed (although for a limited set of Feynman diagrams)!

We are currently in the process of adding the rest of graphs from Fig. 1,
omitted in this work. This way the Non Singlet evolution will be completed.
Once also the singlet evolution is added, we will be ready to construct the
complete event generator for the Drell–Yan-type processes at LHC and/or
DIS at HERA.
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