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We report on a numerical implementation of the QED one-loop 5-point
functions. These functions contribute to the NLO corrections to the hard-
bremsstrahlung process e+e− → µ+µ−γ, which is an important background
process for accurate predictions in experiments at high luminosity meson
factories such as DAFNE and PEP-II. The calculation is implemented using
publicly available tools and incorporates several numerical and analytical
cross-checks. Numerical precision and stability is demonstrated by prelim-
inary test runs with KLOE and BarBar kinematical cuts.

PACS numbers: 12.20.Ds, 13.66.Jn

1. Introduction

The evaluation of 5-point function contributions is essential for accurate
predictions for some important QED processes. These functions contribute
to NLO corrections to µ+µ−γ production and NNLO corrections to Bhabha
scattering.
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Bhabha scattering is used as a reference process for luminosity measure-
ments at all electron–positron colliders. The full NNLO calculation would
be incomplete without contributions from radiative loop corrections. So far
only bremsstrahlung from external legs (lowest order) has been taken into
account [1] and implemented in [2–4].

The muon pair production with real photon emission (e+e− → µ+µ−γ)
is an important background and normalization reaction in the measurement
of the pion form-factor:

Rexp =
σ(e+e− → ππγ)
σ(e+e− → µ+µ−γ)

. (1)

It is necessary for precise determination of the anomalous magnetic moment
of the muon, (g − 2)µ, at high luminosity meson factories such as DAFNE
and PEP-II.

In this respect contributions from previously unconsidered QED 5-point
functions become important for accurate predictions in experiments like
BaBar and KLOE.

We have developed and tested a toolchain for the evaluation of QED
5-point functions contributions1. The methods of computation and the nu-
merical stability are discussed in the following sections.

2. Computation method

We have used the DIANA package [5,6] for the Feynman diagrams gen-
eration, which relies on QGRAF [7]. There are 50 one-loop diagrams con-
tributing to the process e+e− → µ+µ−γ. Four diagrams with 5-point loop
integrals are most difficult and time-consuming in numerical evaluation.

The DIANA output for loop and tree diagrams was further processed
analytically in FORM [8] to generate FORTRAN 77 output for the cross-
section. For a numerical evaluation of loop integrals we use LoopTools
[9, 10], which is based on the FF [11] package. LoopTools implements two
reduction schemes for pentagons: the Passarino–Veltman scheme [12] and
Denner/Dittmaier scheme [13, 14]. We decided to use the second scheme,
because it gives better precision for 5-point integrals.

We performed several analytical and numerical tests. The IR parts of
pentagons and boxes were calculated analytically with the Mellin–Barnes
method using AMBRE [15] and MB method [16]. These IR parts were used
to verify the correctness of the IR part of LoopTools results. It was done
by subtracting the analytical expression for the IR part from LoopTools
answer and checking that the resulting expression does not depend on the
regularization parameter.

1 See also a paper on the same subject by G. Ossola.
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We have also checked numerical values of 5-point integrals at selected sets
of phase-space points using analytical expansions provided by hexagon [17].
The numerical implementation of five and six point functions based on the
same ideas [18,19] as in hexagon is under development in our group and will
be used in the future for completely independent numerical cross-checks.

Additionally, for a crosscheck we compared our expressions with outputs
of FeynArts [20] and FormCalc [10, 21].

For the Monte Carlo simulation and the phase space integration the
generated FORTRAN 77 subroutines were linked with the PHOKHARA
[22,23] event generator.

3. Numerical tests

The most challenging and time consuming part of the computation is
the evaluation of the 5-point integrals. Contributions from boxes, triangles
and self-energies do not present any difficulties.

So we consider here only a subset of the full number of diagrams con-
tributing to the e+e− → µ+µ−γ process, which consists of gauge invariant
combinations of one pentagon and two corresponding boxes. There are four
such combinations, one of them is shown in Fig. 1.

+ +

a b c

Fig. 1. Gauge invariant combination of a pentagon and two boxes.

The PHOKHARA kinematical settings for test runs are shown in Table I.

TABLE I

Kinematical cuts of KLOE and Babar experiments.

KLOE BaBar
ECMS 1.02 GeV 10.56 GeV
Q2 0.0447–1.06 GeV2 0.0447–50 GeV2

Emin,γ 0.02 GeV 3 GeV
θµ 50◦–130◦ 40◦–140◦
θγ 0◦–15◦ and 165◦–180◦ 20◦–138◦
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They correspond to configurations of KLOE and Babar experiments. ECMS

is the collision energy and Emin,γ is the minimal energy of the tagged photon.
The angles are measured between directions of the corresponding particle
and the e−-beam axis.

The gauge invariance test checks that invariant combinations of diagrams
cancel when amplitudes are contracted with external photon momenta in-
stead of polarization vectors.

In our case, such invariance test is presented among four and five point
loop integrals (e.g. Fig. 1). The test was carried out with two different work-
ing precisions: double and quadruple. The relative accuracy is defined as:

A = max

∑
i<
(
M i

loopM
†
tree

)
min<

(
M i

loopM
†
tree

) . (2)

Table II shows the accuracy as defined in 2 for 2.5×106 generated events.
It is clearly seen that using quadruple precision gives much better accuracy.

TABLE II

Gauge invariance test A as defined in 2 with KLOE and BaBar settings for different
working precisions.

A KLOE BaBar

Double precision 10−2 10−5

Quadruple precision 10−12 10−10

As it was pointed out in the previous section, the interference amplitudes
were prepared using different software sets. Thereafter both results were
cross-checked, this consisted as an additional check for gauge invariance and
normal numerical calculations.

We performed several Monte Carlo simulations to check the accuracy
and stability of the evaluation of 5-point functions. All plotted points were
histogramed using one of the subroutines which is encoded in PHOKHARA
and provides the calculation of Monte Carlo errors. All the values i.e. θµ,
θγ and Q2 were produced in 200 bins.

The contribution of the discussed gauge invariant combinations to the θµ
dependence with BaBar settings is shown in Fig. 2. The correction amounts
to about 0.5% of the tree-level result shown in Fig. 3. The antisymmetry of
the muon angular dependence is due to the asymmetric kinematical cut on
θγ (see Table I).
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Fig. 2. 5-point gauge invariant contribution to e+e− → µ+µ−γ at BaBar. The
dσ/dθµ− and dσ/dθµ+ are shown.
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Fig. 3. Tree-level contribution to e+e− → µ+µ−γ at BaBar. The dσ/dθµ− and
dσ/dθµ+ are shown.

The similar plot for KLOE in Fig. 4 is symmetric in accordance with the
cuts. The contribution is also about 0.5% of the LO result shown in Fig. 5.

Fig. 4. 5-point gauge invariant contribution to e+e− → µ+µ−γ at KLOE. The
dσ/dθµ− and dσ/dθµ+ are shown.
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Fig. 5. Tree-level contribution to e+e− → µ+µ−γ at KLOE. The dσ/dθµ− and
dσ/dθµ+ are shown.

4. Conclusions

We have developed a toolchain for 1-loop QED 5-point functions eval-
uation. The correctness of the answer is assured by a number of various
analytical and numerical tests. In the next step we plan to merge the toolkit
with the hard part of the considered processes.

We would like to thank H. Czyż, J. Gluza and T. Riemann for their
invaluable help in this project. We also thank M. Gunia for the preliminary
tests on the hard part. This work is supported in part by the Sonderfor-
schungsbereich/Transregio 9–03 of Deutsche Forschungsgemeinschaft “Com-
putergestützte Theoretische Teilchenphysik” and by the European Com-
munity’s Marie-Curie Research Training Network MRTN-CT-2006-035505
“HEPTOOLS”.
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