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We discuss some cosmological features of a hypothetical type of new
physics characterized by begin asymptotically free in the UV regime and
conformally invariant in the IR. We show that nucleosynthesis data gener-
ates non-trivial constrains this type of models.
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1. The basic idea

The “unparticle” proposal [1] is based on the assumption that there is
a type of New Physics (NP) with the peculiar properties of being asymp-
totically free in the Ultraviolet (UV) and conformally invariant in the In-
frared (IR). It is assumed that the NP interacts weakly with the Standard
Model (SM) through the exchange of a set of heavy mediators of mass MU .
Though not explicitly stated it is also tacitly assumed that the theory will
have an ultraviolet completion, whose details (aside form the existence of
the above-mentioned mediators) are left unspecified. The NP sector has
two relevant high-energy scales: MU and ΛU the scale at which confor-
mal invariance sets in. One must have MU > ΛU and we will also assume
ΛU > v = 246 GeV, the electroweak scale. The basic example for this type of
NP is provided by a model proposed by Banks and Zaks [2]. In the following
we will denote the UV phase of the NP as the Banks–Zaks (BZ) phase, and
the IR phase as the unparticle (U) phase.
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At energies below MU all mediator effects are virtual and generate ef-
fective interactions between the new physics and the Standard Model (SM)
sectors. The dominant interactions are assumed to be of the form

L(UV) = cBZM
−k
U OSMOBZ , (1)

where OSM is a local, gauge-invariant operator constructed out of the SM
fields and their derivatives and, similarly, OBZ denotes a local operator
constructed of the NP fields in the BZ phase. In the infrared these type
of effective interactions suffer from strong renormalization effects leading to
the replacement OBZ → ΛdBZ−dUU OU , where dBZ and dU denote the scaling
dimensions of the operators OBZ and OU , respectively. We then have

L(IR) = cUM
−k
U OSM

(
ΛdBZ−dUU OU

)
. (2)

The construction of the operator OU is in general a difficult task, and
requires detailed knowledge of the NP theory. However, for most calcula-
tions this is not needed since one is interested in operator correlators and
these are very strongly constrained by conformal invariance. If one consid-
ers the effects of a single operator OU then for the purposes of calculating
cross-sections and for the effects on standard cosmology one only needs the
following density of states,∫

d4xeiqx 〈[OU (x),OU (0)]〉 = AdU θ(q
2)(q2)dU−2

[
θ(q0) +

1
eβ|q0| − 1

]
, (3)

where An = (4π)3−2n/[2Γ (n)Γ (n−1)] and 〈· · ·〉 denotes the thermal average
at temperature 1/β, and where we assumed OU has bosonic character. For
collider applications one simply lets β →∞. Using this expression one can
determine the effects of this type of NP on various experimentally interesting
processes in terms of a few parameters (k, dU , MU and ΛU ). In the following
we will study some of the effects of this type of NP on standard cosmology

2. Thermodynamics

The conformal invariance requirement amounts to the assumption that
the NP beta function vanishes at g = g∗ 6= 0. In this case the β function
and g will behave qualitatively as in Fig. 1.

For such theories the trace of the energy-momentum tensor [3] obeys〈
θµµ
〉

= ρU − 3PU = (β/2g) 〈N [Fµνa Fa µν ]〉 = (β/2g)bT 4+δ (4)

(N denotes normal ordering). It follows that 〈θµµ〉 will vanish in the IR
(since it is ∝ β) and we expect ρU ' 3PU at low temperatures. The leading
corrections are produced by 〈N [Fµνa Fa µν ]〉, as indicated above, with δ the
anomalous dimension of this operator.
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Fig. 1. Renormalization group behavior of unparticle theories.

Using then standard thermodynamic relations we find

ρU = σT 4 +A(1 + 3/δ)T 4+δ ; PU = σT 4/3 + (A/δ)T 4+δ (5)

valid in the IR regime. In the UV limit, we will also have ρNP ∝ T 4 (up to
logarithmic corrections) since the theory is asymptotically free. Then

ρ =
3
π2
gNPT

4 ; gNP =
{
gBZ BZ phase
gU U phase , (6)

where gNP will be referred to as the number of Relativistic Degrees of Free-
dom (RDF). For BZ models we have gBZ ∼ 100, both for the original
example as well as others that have been studied using lattice Monte Carlo
methods [4]. In the IR regime the RDF can be obtained using the AdS/CFT
correspondence [5] which gives

gU = (π5/8)(LMPl)2∼> 100 (7)

since L, the AdS radius is > 2/MPl. It follows that for all available models
gNP∼> 100, and in the IR we expect this number to be even larger.

3. SM–NP interactions; equilibrium, freeze-out and thaw-in

In order to understand the NP effects on cosmic evolution it is impor-
tant to determine when and if this sector was in equilibrium with the SM
sector. The standard approach for investigating this makes heavy use of the
Boltzmann Equation (BE) [6], for our purposes the idea is to (i) calculate
ρ̇SM and ρ̇NP in terms of ϑ = TNP − TSM using the BE and then (ii) use
ρ ∝ T 4 to obtain an evolution equation of the form

ϑ̇+ 4Hϑ = −Γϑ (8)

together with an explicit and calculable expression for the reaction rate Γ .
H denotes the Hubble parameter, H2 = [(8π/(3M2

Pl)](ρSM + ρNP), where
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we assumed a flat universe with zero cosmological constant. We will assume
that the SM–NP interactions are of the form

Lint = εOSMONP . (9)

The BE approach [6] requires at intermediate steps the introduction of
the unparticle distribution function, which might pose conceptual problems.
This can be avoided by using instead the Kubo formalism [7], though it lacks
the intuitive appeal of the BE. Both formalisms yield identical expressions
for Γ (the momenta in the BE expression are defined in Fig. 2):

Γ =
π2

12T 4

(
1
gSM

+
1
gNP

)
I ,

IKubo = ε2<
β∫

0

ds

∞∫
0

dt

∫
d3x

×
〈
OSM(−is,x)ȮSM(t,0)

〉〈
ONP(−is,x)ȮNP(t,0)

〉
,

IBE = 1
2

∑∫
dΦNPdΦSMβ(ESM−E′SM)2e−βE |M|2 (2π)4δ(K−K ′) (10)

and one can show IBE = IKubo.

Fig. 2. Definition of momenta involved in the BE calculation of Γ .

For the arguments below the detailed structure of Γ will not be needed
and the following order of magnitude estimate suffices:

Γ ' ε2λ(gSM + gNP)
(4π)nSM+nNP−1

T 2dSM+2dNP−7 , λ =
g′SM

gSM

g′NP

gNP
, (11)

where nSM, nNP are the number of SM and NP fields in Lint, and g′SM, g
′
NP

are the RDF involved in the interaction (in the unparticle phase we take
nNP = 2dU − 2, g′NP = dU ). It then follows that

Γ

H
∝ T 2dSM+2dNP−9 , (12)
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where the SM and NP sectors will be (de)coupled as long as Γ > H (Γ < H),
the transition temperature Tf is determined by the condition Γ = H. Note
that when dSM + dNP < 4.5, the sectors are coupled for T below Tf , what
we call a “thaw-in” scenario; in the complementary case dSM + dNP > 4.5
decoupling occurs for T < Tf (standard freeze-out scenario).

For the calculation we will use

Lint =

{
(φ†φ)

∑
Q Q̄Q/MU BZ

(φ†φ)OU
(
Λ3−dU
U /MU

)
U , (13)

where Q denotes a quark in the BZ phase of the NP sector and OU is the
unparticle operator corresponding to

∑
Q Q̄Q. For consistency we require

MU > Tf > ΛU in the BZ sector, and ΛU > Tf > v in the U sector (the
lower value of v is needed because below this scale the SM operator φ†φ is no
longer relevant). With these preliminaries one can determine the regions in
the MU–ΛU for which the SM and NP are coupled in each of the NP phases,
the results are presented in Fig. 3.

4. Unparticle effects in Big Bang Nucleosynthesis (BBN)

Let us first consider the case where SM and NP were in equilibrium
down to a temperature Tf > v, and decoupled thereafter. The relationship
between the NP and SM temperatures are thereafter determined by entropy
conservation [6], specifically,

(TfRf)3g?NP(Tf) = (TNPR)3g?NP(TNP) ,
(TfRf)3g?SM(Tf) = (TγR)3g?SM(Tγ) , (14)

where g?NP and g?SM stand for the NP and SM effective numbers of RDF
conventionally [6] adopted for the entropy density, Rf , (R) denote the scale
factor at T = Tf (Tγ), and Tγ , TNP denote the SM and NP temperatures at
the BBN epoch.

Using this we find

TNP = Tγ

[
gγ

gγ + ge

gγ + ge + gν
gSM(v)

]1/3

, (15)

where gγ = 2, ge = (7/8) × 4, gν = (7/8) × 3 × 2, gSM(v) = 106.75. The
NP contribution to the total energy density can be expressed in terms of an
additional number of sterile neutrinos ∆Nν defined by the expression

ρNP =
3
π2
gIRT

4
NP ≡

3
π2

7
4

(
4
11

)4/3

∆Nν T
4
γ . (16)
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Fig. 3. Regions in the ΛU–MU plane corresponding to various freeze-out and thaw-
in scenarios for dU = 3/2, 2, 3, 7/2. Dark grey: SM–NP decoupling in the
unparticle phase only; light gray: no SM–NP decoupling; in the white regions
TU-f < v (ΛU , MU are in TeV units). We assumed gSM = gBZ = gU = 100,
g′SM = 4, g′BZ = 50 and g′U = dU . BZ phase: nSM = nNP = 2, dSM = 2 and
dNP = 3; U phase: nSM = 2, nNP = 2(dU − 1), dSM = 2 and dNP = dU .

Then,

gIR =
7
4

[
gSM (v)

gγ + ge + gν

]4/3

∆Nν . (17)

Current data [8] provides the limits ∆Nν = 0± 0.3± 0.3, leading to

gIR < 20 (18)

at the 95% C.L. In the extreme case where the SM and NP remain in equilib-
rium at the BBN epoch this bound is considerably strengthened: gIR < 0.3.
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Viable unparticle models should exhibit conformal invariance with a
small number of RDF in the IR. We are unaware of any model with these
characteristics. In fact the AdS/CFT correspondence suggests this con-
straint is very strongly violated.

5. Comments

We have shown that strongly coupled NP can lead to Γ/H ∼ Tn with
n positive or negative, and that this results in a variety o freeze-out and
thaw-in scenarios. Current BBN data generates strong constraints on the
properties of the NP. Even for “normal” decoupling scenarios (n > 0) the
BBN constraint is significant leading to a bound gIR < 20 to be compared
to gIR > 100 for the available models.

Unparticle models also suffer from potential theoretical problems: the
coupling to the SM necessarily breaks conformal invariance, but the scale at
which this occurs lies below the BBN temperature for a range of dU , so our
conclusions still apply in this case.
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