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I begin this paper by describing some of the useful things that we have
learned about large-N gauge theories using lattice simulations. For example
that the theory is confining in that limit, that for many quantities SU(3) '
SU(∞), and that this includes the strongly coupled gluon plasma just above
Tc, thus providing some justification for the use of gauge-gravity duality
in analysing QCD at RHIC/LHC temperatures. I then turn, in a more
detailed discussion, to recent progress on the problem of what effective
string theory describes confining flux tubes. I describe lattice calculations
of the energy spectrum of closed loops of confining flux, and some dramatic
analytic progress in extending the ‘universal Luscher correction’ to terms
that are of higher order in 1/l2, where l is the length of the string. Both
approaches point increasingly to the Nambu–Goto free string theory as
being the appropriate starting point for describing string-like degrees of
freedom in SU(N) gauge theories.

PACS numbers: 11.15.–q, 11.15.–Pg, 11.15.Ha, 11.25.Pm

1. Introduction

Over the last ten years lattice simulations have helped us learn a great
deal about ’t Hooft’s large-N limit of gauge theories and QCD. This resur-
gence of interest on the lattice side [1,2] coincided (co-incidentally) with the
culmination of the ‘second superstring revolution’ in Maldacena’s AdS/CFT
correspondence [3] and the gauge-gravity dualities that have flowed from it.
These dualities between weakly coupled string theories and strongly cou-
pled gauge theories at large N , have led to a common interest in what is the
physics of large N gauge theories.
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At the same time, Maldacena’s work has provided a new and unexpected
twist to the very old question of what, if any, string theory describes the
strong interactions and hence gauge theories. A narrower version of this
question is to ask what effective string theory describes the dynamics of
confining flux tubes in gauge theories. Certainly at large N this latter ques-
tion, when applied to long flux tubes and to their low-lying excitations,
should become entirely well-defined. Any answer promises to provide es-
sential insights into what might be the answer to the first and much more
speculative question.

I begin this paper with some cursory remarks about the large N limit
(with which I assume you are all familiar) and I then give you an overview of
how one does lattice calculations, describing how one can obtain predictions
for interesting physical quantities, such as ratios of masses, in the continuum
gauge theory. In Section 3 I select a few topics about large N gauge theories
that have been addressed (and largely resolved) by lattice calculations in
recent years. Is SU(∞) linearly confining? Is SU(3) close to SU(∞)? Is
QCD close to QCD∞? How does the coupling run, and should we keep g2N
fixed for a smooth large-N limit? I finish this section by discussing how the
computational cost increases with N , and show that large-N calculations are
surprisingly inexpensive and accessible. I then devote Section 4 to discussing
large N gauge theories at finite temperature; in particular above but not too
far from the deconfining transition. This is of particular interest since it has
become the focus of a large AdS/CFT effort in recent years. Section 5 is
very brief and just lists some topics on which there has been interesting
work, but which I have no time to discuss in this paper. The remainder
of my paper is devoted to my second topic: what is the effective string
theory that describes confining flux tubes. Section 6 summarises the analytic
work that has accompanied and motivated (and been motivated by) the
large amount of numerical work on this question that has been carried out
over the last three decades. After some general background, and a detailed
description of both the Gaussian approximation and the Nambu–Goto free
string theory, I describe the dramatic progress that has been achieved in
the last five years (with some startling papers appearing even as I write
this paper). I finish the section with a potted and inadequate history of
numerical calculations during this period. I then move on to the numerical
calculations of the energy spectrum of closed flux tubes that I have been
involved in for the last 4 or 5 years. Section 7 discusses our calculations in
SU(N) gauge theories in 2 + 1 dimensions. We obtain very accurate energy
estimates for quite a large number of low-lying eigenmodes, and I display
how remarkably well Nambu–Goto describes these even when the flux tube
is so short that it is hardly longer than it is wide. In Section 8 I give a
brief preview of our unpublished work on SU(N) gauge theories in 3 + 1
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dimensions. Here there is an interesting distinction between the majority
of states, which adhere closely to a Nambu–Goto-like spectrum, much as in
D = 2 + 1, and a significant minority of states that behave quite differently.
I will finish, in Section 9, with some concluding remarks, although the bulk
of my conclusions are embedded, at appropriate points, in this paper.

2. Preliminaries

2.1. Large N

In D = 3 + 1 gauge theories one has a dimensionless coupling g2 and
one might hope to be able to use it as a general expansion parameter for
the theory. However because the scale invariance is anomalous, setting g2

to some particular value g2
0 means that we can only hope to use it as a use-

ful expansion parameter for physics close to the scale l0 where the running
coupling takes that value, i.e. where g2(l = l0) ' g2

0. In D = 2 + 1 gauge
theories g2 has dimensions of mass so that the dimensionless expansion pa-
rameter for physics on the scale l is g2l and one immediately sees that the
coupling cannot serve as a useful expansion parameter for the theory as a
whole.

Faced with this, ’t Hooft suggested, back in 1974 [4], that an alternative,
less obvious but more general expansion parameter might be provided by
1/N . That is to say one thinks of expanding SU(N) gauge theories in powers
of 1/N2 around SU(∞). Pictorially:

SU(N) = SU(∞) +O

(
1
N2

)
. (1)

That the expansion parameter is 1/N2, follows from ’t Hooft’s analysis of
all-order perturbation theory using his clever double-line notation for gluon
propagators and vertices, in which the gluon is represented by a fundamen-
tal line and its conjugate. (For simplicity I will here ignore the difference
between U(N) and SU(N).) It also follows that a smooth large-N limit can
only be achieved if one keeps g2N fixed. We can begin to see why this should
be so by considering a gluon loop insertion in the gluon propagator using
the double-line notation, as shown in Fig. 1. The two vertices give a factor
of g2 and the sum over the colour index in the closed loop gives a factor
of N . So such an insertion produces a factor of g2N in the amplitude. If
we want smooth physics as N → ∞, then at the very least we require that
the number of such insertions, in the dominant diagrams contributing to the
physics of interest, should be roughly fixed as we vary N . This requires that
we keep g2N fixed in that limit. One can readily generalise the argument to
all diagrams.
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Fig. 1. Gluon loop insertion using ’t Hooft’s double line notation.

This argument looks perturbative, but it is nonetheless convincing be-
cause in demanding a smooth limit, we are also demanding that SU(∞)
should be asymptotically free. If instead of keeping g2N fixed we vary
g2 ∝ 1/N1+ε with ε < 0 it is clear that at N = ∞ infinite order diagrams
will dominate at any scale where we attempt to apply perturbation theory,
i.e. there is no asymptotic freedom. If on the other hand we take ε > 0, one
would be driven to a free theory on any scale where one attempts to apply
perturbation theory. Neither result is what we want, so the only limit that
can work is to keep g2N fixed as N →∞. Note however that while we can
easily argue this condition to be necessary, there is no guarantee that it is
sufficient.

In the gauge theory the coupling runs, so a little care is needed in defining
what we mean by keeping g2N fixed. So first let us define the length scale
for the running coupling in units of say the mass gap, i.e. lmG. Then define
the ’t Hooft coupling λN = g2N for the SU(N) gauge theory. Then the
appropriate way to encode g2N = const. is simply as follows:

λN (lmG) −→ λ∞(lmG) (2)

i.e. the ’t Hooft coupling on a scale l is kept fixed where the scale l itself
is fixed in physical units, as we sweep through the various SU(N) gauge
theories.

The large-N expansion will only be useful if the theory we are expanding
about, SU(∞), is sufficiently simple. Although it is, in fact, not so simple
that we can solve it analytically, some things are very simple in a large-N
confining phase [5]. This essentially arises because the probability of any
quarks or gluons forming a colour singlet (rather than some other represen-
tation) goes to zero as the number of colours increases. This is the reason
that we have zero decay widths, zero mixing, a perfect OZI rule and no
colour singlet scattering in that limit.

Of course it would be nice to show that there is in fact a largeN confining
phase, and that a smooth physics limit does in fact exist. And we would
like to determine what precisely that physics is. And we would like to
check whether, for at least some reasonably wide class of important physical
quantities, we can say that SU(3) (and QCD) are indeed close to SU(∞) (and
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QCDN=∞). This is after all the reason many of us might be interested in the
large-N limit. At present these questions can only be addressed numerically.

Before moving on to these numerical calculations, let me emphasise that
there is no expectation that all the physics of SU(3) is close to that of
SU(∞). Indeed it is clear that this cannot be so and in that sense Eq. (1) is
misleading. Indeed it is entirely possible that other large-N limits may be
more appropriate for some physics. For example, in QCD we have 2 or 3 light
flavours, so Nf/N ∼ 1. It might appear plausible that the limit N → ∞
with Nf/N fixed might be more appropriate for some physical quantities [6].
(Or a limit with fermions in the bi-fundamental representation [7] which
has the virtue that some quantities become calculable at N = ∞ because
the theory effectively has some supersymmetry in that limit.) However it is
worth noting that the ’t Hooft limit has turned out to be phenomenologically
useful even in some cases where one would naively have not expected it to
be. A good example is the case of baryons, which consist of N →∞ quarks,
but where one has inferred a useful SU(6)-like symmetry to describe the
multiplet structure [8].

2.2. Lattice calculations [9]

We want to calculate correlation functions numerically. These can be
expressed as Feynman path integrals. Generically:

Z =
∫ ∏

x∈M4

dφ(x)eiS[φ] . (3)

After we explicitly integrate over any Grassmanian quark fields, the inte-
grand depends just on ordinary numbers (which may be grouped into SU(N)
matrices) so one can imagine doing the integral numerically.

To be able to do this we first need to get rid of the phase factor exp{iS}
since numerical integrations involving phase factors are notoriously ill con-
ditioned (the sign problem). This we achieve (in the cases of interest in this
paper) by going to Euclidean space-time, so that i

∫
dt → ∫

dt. (How that
affects what we can calculate will be addressed in a moment.) The next
problem is that we have an infinite number of integrations. For a numeri-
cal calculation this must be made finite: so the space-time volume must be
made finite and discrete. It is usually convenient to use a hypertorus and a
hypercubic lattice for these purposes. (Sometimes other choices are useful.)
So these two steps look like:∫ ∏

x∈M4

dφ(x)eiS[φ] →
∫ ∏

x∈R4

dφ(x)e−SE [φ] →
∫ ∏

n∈T 4

dφL(n)e−SL[φL] , (4)
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where a is the lattice spacing, we express the discrete space-time points as
x = na where n is a D-tuple of integers, and φL is a dimensionless lattice
field variable, with action SL, chosen so that

φL(x) a→0−→ a−dim(φ)φ(x) ,

SL
a→0−→ SE , (5)

where dim(φ) is the length dimension of the field φ. Obviously this schematic
outline of the continuum limit misses many essential details.

Two asides. Firstly, putting the theory in a finite box of size l can
be harmless if, as here, the theory has a finite mass gap, mG, because in
such a case we expect finite-size effects to be O(e−mGl) which can easily
be made very small by choosing l � 1/mG. Secondly, since the theory is
renormalisable, what we do at short distances, e.g. introducing a lattice cut-
off, can be simply absorbed into the renormalisation of parameters such as
the coupling, if we choose a� 1/Λ, where Λ is the typical dynamical energy
scale. Moreover since the theory is asymptotically free, we can analyse the
lattice spacing corrections in a perturbation expansion in the small coupling
g2(a).

The continuum degrees of freedom are the gauge potentials Aµ(x) which
belong to the SU(N) Lie algebra. They tell us how to compare colour at
infinitesimally neighbouring points. If we want to compare colour between
points with a finite separation, we use the path ordered exponential of the
gauge potential along some path c joining the points: P{exp{i ∫cAds}}.
This is an SU(N) group element which ‘lives on’ the particular path chosen.
So the natural gauge degrees of freedom on the lattice, where all points are a
finite distance apart, are group elements, Ul, that live on the links, l, of the
lattice. More specifically, if the link goes from the site x to the site x+ aµ̂,
we label this group element by Uµ(x). Under a gauge transformation V (x),
it is defined to transform as

Uµ(x) −→ V (x)Uµ(x)V †(x+ aµ̂) , (6)

as would the corresponding path ordered exponential in the continuum the-
ory. To the same link but taken in the reverse direction, i.e. x+ aµ̂ to x, we
assign U †µ(x). Thus if we go out along a link and then return by the same
link to the same point, the colour comparison matrix is the unit matrix, as
it should be.

We choose for our integration measure the standard Haar measure which
has the nice property that it invariant under left or right multiplication and
hence gauge invariant:

dUµ(x) = d{V (x)Uµ(x)V †(x+ aµ̂)}. (7)
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Now all we need is a gauge-invariant action. It is easy to see that the trace
of the product of link-matrices around any closed path c, Tr

∏
l∈c Ul, is

gauge invariant. (To any backward going link l we assign U †l .) Now, the
continuum action compares fields at (infinitesimally separated) neighbouring
points. We can compare neighbouring link matrices on a lattice by taking
their product. To be gauge-invariant this product should appear within a
product of matrices being taken around some closed path. The simplest and
most common choice is to use the path that is an elementary square on the
lattice, called a plaquette. So for the action we take

S =
∑
p

{
1− 1

N
ReTrUp

}
, (8)

where Up is the path-ordered product of link matrices around the plaquette p.
The

∑
p ensures that the action is translation and rotation invariant. Taking

the real part of the trace ensures that it has C = P = +. So our lattice
path integral is

Z =
∫ ∏

l

dUle
−βS , (9)

where β is any constant. It is the only free parameter in Z, so it is by
varying β that we will be able to vary the lattice spacing a. Since our
lattice theory has the important continuum symmetries (albeit a subgroup
for rotations and translations) we expect that in the continuum limit, barring
an unnatural choice of lattice action (and here I mean unnatural in the
technical sense as applied, for example, to a light Higgs scalar) we must
obtain the continuum action, i.e.∫ ∏

l

dUle
−βS a→0−→

∫ ∏
x,µ

dAµ(x)e−
4
g2

R
d4xTrFµνFµν (10)

(up to a possibly infinite constant). This tells us that in the continuum limit
β = c/g2. A more careful analysis tells us what c is:

β =
2N
g2
L(a)

, g2
L(a) a→0−→ g2(a) , (11)

where g2
L(a) is a running coupling on the scale a in (this particular) lattice

coupling scheme, and g2(a) is a running coupling in a(ny) continuum scheme.
(In this limit any difference between schemes is O(g4).) Since g2(a)→ 0 as
a→ 0 we know how to find the continuum limit; one simply takes β →∞.

Although the above has been for D = 3 + 1 dimensions, we can follow
the same steps in D = 2 + 1. In this case g2 has dimensions [m], so the
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dimensionless bare lattice coupling is ag2 and, not surprisingly, we find

β =
2N
ag2

a→0−→∞ : D = 2 + 1 , (12)

where this g2 becomes the g2 of the continuum theory when a→ 0.
Suppose we want to calculate the expectation value of some functional

Φ[U ] of the gauge fields. We generate a set of n gauge fields {U I}; I =
1, . . . , n distributed not just with the measure

∏
l dUl, but with the Boltz-

mann-like action factor included, i.e. as
∏
l dUl exp{−βS[U ]}. I will not

go into the details — there are standard heat bath, Metropolis and HMC
algorithms available. We thus obtain:

〈Φ〉 =
1
Z

∫ ∏
l

dUlΦ[U ]e−βS =
1
n

n∑
I=1

Φ
[
U I
]

+O

(
1√
n

)
, (13)

where the last term is the statistical error.
How, for example, should we calculate the mass gap? Recall the standard

decomposition of a Euclidean correlator of some operator φ(t) in terms of
the energy eigenstates:〈

φ†(t = ant)φ(0)
〉

=
〈
φ†e−Hantφ

〉
=
∑
t

|ci|2e−aEint

t→∞= |c0|2e−am0nt , (14)

where the lightest mass is m0 and its exponential falls slowest with t and
hence will dominate at large t, as shown. Note that the only states that can
contribute are those that have cj = 〈vac|φ†|j〉 6= 0, so we should match the
quantum numbers of the operator φ to those of the state we are interested
in. So typically we construct a φ with the desired JPC quantum numbers,
and if we are interested in masses we also make φ have ~p = 0. Note also
that because what we know is the value of nt, we will always obtain the
mass in lattice units, i.e. as am0, when we fit our numerical ‘data’ with an
exponential in nt.

So, having decided on a suitable operator φ, we calculate it as in Eq. (13)
with Φ = φ†(t)φ(0). This will produce an estimate of 〈φ†(t)φ(0)〉 with a
finite statistical error. To extract a value of am0, using Eq. (14) we clearly
need to have significant evidence for the exponential behaviour ∝ e−am0nt ,
over some range of nt, and this range needs to be at small enough nt that
the exponential is still clearly visible above the statistical errors. This is
obviously harder to achieve for larger m0, so the systematic error will be
larger for heavier states. However, even for the lighter states we need the
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(normalised) |c0|2 ' 1: our operator needs to be a good wavefunctional
for the state whose energy we are interested in, so that its correlator is
dominated by this state even at small nt.

Let us now have an explicit example of how to calculate the lightest 0++

glueball mass in the D = 3 + 1 SU(3) gauge theory. Our space-time is a
324 hypercubic lattice with periodic boundary conditions (i.e. a hypertorus).
We use a Monte Carlo to generate typical lattice gauge fields at β = 6/g2 =
6.515. Once we calculate the string tension we will find that this corresponds
to a
√
σ ' 0.101 i.e. a ' 0.05 fm if we use the conventional value of

√
σ ∼

0.5 fm. So the lattice spacing is very small and we are close to the continuum
limit.

As a first attempt, we shall try the simplest operator we can think of,
i.e. one that is based on the plaquette that appears in our lattice action:

φp(t) =
∑
~x

3∑
µ,ν=1

Re TrUµν(~x, t) , (15)

where Uµν(x) is the product of link-matrices around the boundary of an
elementary square p in the µν plane emanating out of the site x (in the
directions that have been chosen as positive). This operator clearly has, as
desired, ~p = 0 and JPC = 0++. However it also has a non-zero overlap onto
the vacuum, so we shall use the shifted operator φp(t) −→ φp(t)−〈φp〉 so as
to prevent the vacuum from appearing in the sum over energy eigenstates in
Eq. (14). The numerical result for the correlation function (based on about
100,000 Monte Carlo generated gauge fields) is shown in Fig. 2. This result
is clearly disappointing. Only for nt = 0, 1, 2 are the errors small enough for
C(nt) to be useful. And we cannot put a simple exponential through these
3 points, although we can do so trivially for the nt = 1, 2 points as shown in
Fig. 2. That is to say we have no evidence that the lightest state dominates
this correlation function and we are unable to extract a mass for the lightest
state.

The problem is that the plaquette is so local that it does not see the
structure of a wave-function and will therefore have a roughly equal overlap
onto all the eigenstates. Since the number of excited states increases rapidly
with decreasing a, the (normalised) overlap onto the groundstate will de-
crease rapidly. At the small value of a at which we are here working, this
overlap is presumably very small and we would have to go to quite large
t = ant to suppress the excited states and reveal the ground state. Looking
at the errors in Fig. 2, and taking into account that this is based on O(105)
lattice fields, this is clearly unrealistic. So what we need are operators that
are ‘smooth’ on a scale ∼ 1 fm and which will therefore have very little
overlap onto the ‘oscillating’ wavefunctions of excited states. Note that sim-
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Fig. 2. Glueball correlation function with a simple plaquette operator.

ple Wilson loops that are merely larger than the plaquette will in general
not be sufficient. We need Wilson loops that are densely packed within a
volume ∼ 1 fm (like a ‘ball of wool’). We can efficiently construct such op-
erators that are ‘smooth’ on physical length scales, by the iterative spatial
‘smearing’ [10] and ‘blocking’ [11] of the lattice gauge fields. (This essen-
tially consists of summing over several paths between two sites, projecting
the sum back into the group, and calling this a smeared link. And then
iterating the procedure.) We can then use these ‘blocked’ link matrices to
construct appropriate Wilson loops that will be summed as in Eq. (15) to
produce corresponding operators. Using different Wilson loops and different
iteration levels of the blocking will thus produce some set {φi; i = 1, . . . , n}
of operators of the desired quantum numbers. Linear combinations of these
operators form a vector space Vφ, and we can perform a variational calcula-
tion to obtain our best estimate of the ground state operator [12–14]:〈

ψ0
†(t0)ψ0(0)

〉
= max

φ∈Vφ
〈φ†(t0)φ(0)〉 = max

φ∈Vφ

〈
φ†e−Ht0φ

〉
, (16)

where t0 is some convenient value of t. Then ψ0 is our best variational
estimate for the true eigenfunctional of the ground state (with these quantum
numbers) and we can now use the correlator 〈ψ0

†(t)ψ0(0)〉 to obtain our best
estimate of the ground state mass. This generalises in an obvious way to
calculating excited state energies. One constructs from Vφ the vector space
orthogonal to ψ0, repeats the above within this reduced vector space, and
obtains ψ1 which is our best variational estimate for the true eigenfunctional
of the first excited state. And so on.

If we do this in our present example we get the ground state correlation
function shown in Fig. 3. This can be fitted with a single exponential (or
rather a cosh because of the periodicity in t) over a large range of nt values
where C(nt) is accurately determined. (We cannot include nt = 0 with a
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good χ2, and in fact the overlap factor is |c2
0| ' 0.97.) From the fit we obtain

an estimate of am0++ = 0.330(7) for the lightest scalar glueball mass. It
turns out that this is the lightest mass tout court — it is the mass gap of the
SU(3) gauge theory. The reassuring point is that we are able to calculate
masses numerically with errors that are at the percent level. This means
that we will be able to perform meaningful continuum extrapolations.

nt

C(nt)

1612840

1

0.1

0.01

0.001

Fig. 3. Glueball correlation function with best blocked operator and best cosh fit.

To obtain the continuum limit from masses that are in lattice units and
are distorted by the finite lattice cutoff, we take dimensionless mass ratios, to
get rid of lattice units, and then extrapolate with an O(a2) lattice correction,
which is what is appropriate for a pure-gauge plaquette action [15], e.g.

am(a)
a
√
σ(a)

=
m(a)√
σ(a)

=
m(0)√
σ(0)

+ c0a
2σ +O(a4) . (17)

Here we choose to use the square root of the string tension a2σ as one
of the masses, but we could just as well have chosen some other glueball
mass. (Aside: here c0 is in fact a power series in the bare coupling, but this
logarithmic variation with a is weak and can usually be ignored in current
calculations. This will not always be so.) To do such an extrapolation we
need to perform the mass calculations at several values of β. Doing so for
the lightest 0++ and 2++ glueball masses, we obtain the results displayed in
Fig. 4. I show there the linear O(a2) extrapolations to the continuum limit,
a2σ = 0. Clearly they are well-determined by these numerically determined
mass ratios. We obtain

m0++√
σ

= 3.47(4)− 5.52(75)a2σ (18)

for the mass gap, and m2++/
√
σ = 4.93(5) − 0.61(1.36)a2σ for the lightest

tensor. In the continuum limit we thus obtain

m0++ ' 3.5
√
σ ' 1.6 GeV. (19)
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This now quite old lattice prediction [16], has helped to motivate the now
popular phenomenological interpretation (e.g. [17]) of the three observed
JPC = 0++ flavour ‘singlet’ states, the f0(1350), f0(1500) and f0(1700), as
arising from the mixing of nearby uu+ dd, ss and glueball states.

a2σ

mG√
σ

0.160.120.080.040

7

6

5

4

3

2

1

0

Fig. 4. Scalar, •, and tensor, ◦, glueball masses with O(a2) extrapolations to the
continuum limit.

For our purposes here, the important point is that we are able to calculate
mass ratios in the continuum gauge theory at the percent level of accuracy.
This means that we should have the necessary accuracy to compare physical
mass ratios in different SU(N) gauge theories, and to extrapolate to N =∞.

3. Large N physics: some basic results from the lattice

If the large-N expansion is to be useful for understanding the strong
interactions, the SU(N → ∞) gauge theory needs to be confining at low
temperatures, T , and at least some of the physics needs to be very similar
to that of the SU(3) theory. This is what we will seek to establish in the
first part of this section. I shall then describe some recent calculations
that include quarks, and which begin to address the question whether the
mesonic spectrum of QCD is ‘close to’ QCDN=∞. Finally I will return to
the question of how one should take a smooth large-N limit: do our non-
perturbative calculations support the diagrammatic expectation that you
hold g2N fixed?

Our method is simple. We calculate physical mass ratios first for SU(2),
then for SU(3), then for SU(4), . . . , and continue for larger groups until we
have good evidence that our results are indeed converging to a large-N limit
with the expected leading O(1/N2) corrections. This method is pedestrian
but effective.

I shall finish with some remarks about how the cost of the calculations
grow with N . In fact the growth is unexpectedly modest in many situations
— which I hope will encourage some of you to get actively involved.
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3.1. Are large-N gauge theories linearly confining?

I will answer this question first by example and then, later on, more
quantitatively.

The example is taken from SU(6) inD = 3+1 [18]. We calculate the mass
of the lightest state in which one unit of fundamental flux closes upon itself
by winding once around a spatial torus. Suppose this torus is of length l.
Then if we have linear confinement the flux will organise itself into a flux
tube (of the same kind as would join two distant fundamental sources) and
the mass will grow linearly with l for large l, m(l) l→∞= σl. How you actually
do this and what operators you need to use, will be discussed in some detail
later on in this paper.

The results of this calculation are shown in Fig. 5. It is immediately
apparent from the plot that we do indeed have the (approximately) linear
increase with l that indicates linear confinement. So that you can judge
what is the length l in physical units, I have used the value of a

√
σ from

our fits to translate the lattice size l = aL into physical units using l
√
σ =

aL
√
σ = L× a√σ. Since we expect the intrinsic width of a flux tube to be

O(1/
√
σ) we can see that our largest values of l are indeed large compared

to the flux tube width and it is reasonable to infer that what we are seeing
is the onset of an asymptotic linear behaviour.

l
√

σ

am(l)

654321

1.5

1

0.5

0

Fig. 5. Ground state energy of a flux loop winding around a spatial torus of length l,
in SU(6) and D = 3 + 1.

The dashed line shown on the plot represents a linear piece modified by
the Luscher correction term

m(l) = σl − π

3l
. (20)

This O(1/l) correction is universal and the value used here corresponds to
the universality class of a simple bosonic string where the only massless
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modes are those of the transverse oscillations. We can see from Fig. 5 that
this correction captures the bulk of the observed deviation from linearity.
(One of course expects further corrections that are higher powers of 1/l.) So
we have good evidence not only that linear confinement persists at large N ,
but that it remains in the same universality class as has been established by
previous work for SU(2) and SU(3).

3.2. Is SU(3) close to SU(∞)?

In Fig. 3 we showed how to calculate a mass on the lattice, and in Fig. 4
how to obtain ratios of masses in the physical continuum limit of the theory.
That example was for SU(3) but one can do the same for other values of N .
In Fig. 6 I plot the resulting continuum ratios for N = 2, 3, 4, 6, 8 [19]. Since
the leading correction is expected to be O(1/N2), I plot the ratios against
1/N2. In such a plot the large-N extrapolation should be a simple straight
line for large enough N . In practice, within our errors, large enough N turns
out to mean N ≥ 3 (indeed, N ≥ 2 for the scalar glueball) as we see from the
linear fits on the plot. It is also evident that the coefficient of this 1/N2 term
is typically quite modest (compared to the N =∞ value of the ratio). Thus
this provides an example of the fact that for many basic physical quantities

SU(3) ' SU(∞) . (21)

1/N2

m√
σ

0.250.20.150.10.050

8

7

6

5

4

3

2

1

0

Fig. 6. Scalar, •, and tensor, ◦, glueball masses in various continuum SU(N) gauge
theories, with O(1/N2) extrapolations to N =∞ limit.

There is something else that we can infer from Fig. 6. We provided
evidence earlier on that linear confinement persists at large N . However it
could still be that it disappears as N → ∞ through σ vanishing in that
limit. What Fig. 6 demonstrates is that this is not the case. In units of
the physical glueball masses σ remains non-zero at N =∞. (Logically, one
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should first show a plot of the ratio of the scalar to tensor masses in order to
establish the existence of a smooth large N limit, but it is clear from Fig. 6
that this is the case.)

3.3. Is QCD3 close to QCD∞?

To establish the phenomenological relevance of the large-N limit we need
to consider mesons as well as glueballs. Once we have fields in the funda-
mental representation, like quarks, we have O(1/N) corrections. (A quark
self-energy loop in the gluon propagator will look just like Fig. 1 except
without the innermost closed loop and the accompanying factor of N from
the sum over colours.) Thus the fact that we see SU(3) ∼ SU(∞) in the pure
gauge theory, where the leading correction is O(1/N2), does not guarantee
that the meson spectrum will be so well-behaved. Whether it is needs to be
checked, and there have been three recent calculations that have begun to
do precisely that [20–22].

As N → ∞ quark loops are suppressed by a factor 1/N compared to
gluon loops, and so to leading order the vacuum of QCDN=∞ is the same
as that of the SU(N) gauge theory. (As long as the quarks are not precisely
massless, when subtle issues arise.) We can of course still ask what happens
to the spectrum of mesons at N =∞, by explicitly calculating their propa-
gators. When doing so we are calculating them in in what one would usually
call the relativistic valence quark approximation except that here it is not
an approximation, because the quark loops are not being neglected but are
dynamically suppressed. (And in addition the gluonic vacuum in which the
quarks propagate is the complete non-perturbative vacuum and not some
crude approximation thereof.)

This suggests an efficient way to proceed. (A straightforward calculation
of full QCDN with light quarks being too expensive.) At various finite N
one performs the meson spectrum calculation without vacuum quark loops
— what is called the ‘quenched approximation’ in the lattice community.
One then extrapolates the quenched results to N = ∞. Since we have no
quark loops the leading correction should be O(1/N2). The extrapolated
values are the correct values for QCDN=∞ since that theory is dynamically
quenched. We now compare the spectrum at N =∞ with the experimental
spectrum (or that of recent full lattice QCD calculations, which indeed agree
with experiment).

This looks like a win–win approach except for the fact that quenched
QCD at finite N is not unitary. However the pathologies are subtle and
appear primarily at small quark masses, so if one extrapolates to N =∞ at
fixed non-zero quark masses and only then to small quark masses, one should
be largely protected from them. Current calculations are not so pedantic,
but since they are probably not accurate enough to be sensitive to such
pathologies anyway, this does not really matter.
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In Fig. 7 I show some plots borrowed from [20]. On the left is a plot of
the ρ-meson mass against m2

π for N = 2, 3, 4, 6 and obtained at one value
of a
√
σ (chosen to be very similar for all the SU(N) groups). Such a linear

behaviour is what one expects if mρ(mq) = mρ(0) + cmq and m2
π ∝ mq

(spontaneous chiral symmetry breaking). We see that there is very little
variation with N . On the right is a plot of the chirally extrapolated mρ(0)
against 1/N2, which also shows little variation.
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Fig. 7. Left: the ρ mass against m2
π for various SU(N). Right: chiral extrapolation

of mρ for various N and an O(1/N2) extrapolation to N =∞.

So at this particular value of a, corresponding to a
√
σ = 0.209, one

obtains limN→∞mρ/
√
σ = 1.688(25). Now, fortunately there has been an-

other calculation [21], with exactly the same lattice action, but at a different
lattice spacing, a

√
σ = 0.335, obtaining limN→∞mρ/

√
σ = 1.627(10). This

allows us to make an O(a) continuum extrapolation. (Although with two
points it is of course not under good control.) This gives a value [20],

lim
N→∞,a→0

mρ√
σ

= 1.79(5) (22)

to be compared with the real world value of

mρ√
σ
' 770 MeV

440 MeV
' 1.75 . (23)

So the unambiguous conclusion from these two numerical studies [20, 21] is
that as far as the ρ-mass is concerned, QCD is indeed close to QCD∞.

Unfortunately things are not so clear-cut. There is a third and very
recent study [22] using very different methods that comes to a quite different
conclusion. These calculations are at much larger N , SU(17) and SU(19),
and on a small volume, using the fact that as N →∞ finite volume effects
vanish (for a broad class of observables). The propagators are calculated in
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the pure gauge theory with the same plaquette action, but with Neuberger
(overlap) rather than Wilson fermions, and hence have good chiral properties
at a 6= 0. Moreover, they are calculated in momentum rather than position
space. And the value of a

√
σ is very similar to that in [20]. However the

conclusion is very different:

mρ
N=19' 5.86Tc ' 3.5

√
σ ' 2mQCD

ρ , (24)

where Tc is the deconfining temperature. (Here I have translated the value
given in [22] into units of

√
σ using the known values of Tc/

√
σ [23] rather

than normalising to fπ as done in [22]. I prefer to set the scale this way
because we know that the mutual ratios of Tc,

√
σ and mG have modest

O(1/N2) corrections.) That is to say, QCD is far from QCD∞ for meson
masses.

This clear-cut discrepancy needs to be sorted out. Since the value of
a is the same, that only leaves the N -dependence. However, I think it is
completely implausible that there should be very large corrections between
N = 6 and N = 19 if the variation is already very weak for N ∈ [2, 6] (as
we have seen in Fig. 7). I would just remark that the calculations of [20,21]
are completely standard in lattice QCD and all the systematic errors are
supposedly well-understood. By contrast the calculations in [22] are novel
in several respects, being designed specifically to make very large N calcu-
lations possible. In particular the momentum space propagator is evaluated
for only a small number of small momenta p2 � m2

ρ, and one might therefore
wonder if there might not be a large excited state contribution that cannot
be readily resolved though a fit with more than one (Euclidean) pole term.

So for the moment we must hold our breath. However once this discrep-
ancy is understood, it will be very interesting to address any number of other
questions in QCD∞, where all particles are stable and well-defined and do
not mix. In particular it would be very nice to see the scalar nonet and scalar
glueball within one calculation. Also the tensor and pseudoscalar glueballs
and the nearby mesons with those quantum numbers. (These mesons will
presumably be radial excitations.) All this could serve as a very useful guide
for the corresponding phenomenology in real QCD.

3.4. g2 ∝ 1/N for a smooth large-N limit?

In the calculations I have been describing, at each N we calculate quan-
tities such as a

√
σ at a number of values of β = 2N/g2

L(a). Using this we
can compare how the bare coupling runs with its scale at different N and
we can check whether our non-perturbative results confirm the perturbative
expectation that g2 ∝ 1/N . This I will describe in this section.
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The bare coupling necessarily has lattice spacing corrections, and this
presents some minor complications. However there are now some very nice
lattice calculations of the running coupling in the continuum theory, which
I will also describe.

The same question can also be asked and answered in D = 2 + 1. Since
the analysis is much more direct there (because g2 has dimensions of mass),
I will begin with that case.

3.4.1. D = 2 + 1

Suppose we calculate a
√
σ at a number of values of β. Then we can

calculate the continuum value of
√
σ/g2 as follows [1]:

βa
√
σ(a) =

2N
ag2

a
√
σ(a) = 2N

√
σ(a)
g2

β→∞−→ 2N
√
σ

g2
. (25)

We can now examine how
√
σ/g2 varies with N . The statement that g2 ∝

1/N is equivalent, in this context, to saying that
√
σ

g2N

N→∞−→ const. (26)

In Fig. 8 I display the continuum values of
√
σ/g2N for N ∈ [2, 8] as calcu-

lated in [24]. It is clear from this plot that we have very strong numerical
evidence for Eq. (26) being correct.

N

√
σ

g2N

8642

0.24

0.2

0.16

0.12

Fig. 8. String tension in units of g2N for various continuum SU(N) gauge theories
in D = 2 + 1.
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The errors in Fig. 8 are so small (they are given by the vertical spread
of the horizontal error bars) that we can hope to say something about the
power of the leading correction to the asymptotic behaviour in Eq. (26).
Fitting with a correction ∝ 1/Nγ we find

√
σ

g2N
= c0 +

c1

Nγ
−→ γ = 2.01± 0.20 . (27)

So if we assume that γ has to be integer, we can conclude that the lead-
ing correction is indeed O(1/N2) as predicted by ’t Hooft’s diagrammatic
analysis.

So our numerical calculations of
√
σ/g2 in D = 2 + 1 SU(N) gauge the-

ories have confirmed that it is
√
σ/g2N that has a smooth limit as N →∞,

and that the way this limit is approached is with a O(1/N2) correction.
Thus our fully non-perturbative calculation confirms the conventional ex-
pectations based on ’t Hooft’s diagrammatic analysis.

3.4.2. D = 3 + 1: running bare coupling

Once again, we have a calculation of a
√
σ at a number of values of β, for

each value of N . However in D = 3 + 1 the bare coupling is dimensionless
so the analysis will be less direct than the above.

Recall that β = 2N/g2
L(a) gives us a definition of the running coupling

on the distance scale a, in what we can call the ‘lattice scheme’ L. It is more
useful to write it as g2

L(a
√
σ) so that the argument is expressed in physical

units in a way that is common for all N . Now it has been known for a long
time, in the lattice community, that g2

L is a ‘bad’ scheme in the sense that
higher order corrections are typically much larger than you would have with
something like the MS scheme. One of the earliest and simplest remedies
for this was Parisi’s mean-field improvement [25] (nowadays often known as
tadpole improvement [26]). This involves defining a new coupling, g2

I (a),

g2
I (a) =

g2
L(a)
up

=
2N
β

1
up
, (28)

where up ≡ 〈TrUp〉/N is the average plaquette. Since the plaquette is trivial
to calculate, this is a convenient improvement to apply.

Having calculated g2
I (a
√
σ) for various a

√
σ and for various N , we plot

the results for the product g2
IN in Fig. 9. We plot it against the corre-

sponding energy scale, µ = 1/a
√
σ so that it looks more like the plots of

the running coupling (against Q) that you will normally encounter. (An
earlier version of this kind of plot appeared in [27] with this version being
borrowed from [28].) This plot includes values for N = 2, 3, 4, 6, 8. Although
the points are perhaps hard to distinguish, it is clear that there is a common
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running ’t Hooft coupling, λ = g2N , for all these values of N to a very good
approximation. (One sees some dispersion at the coarsest lattice spacings
where we are around the crossover to lattice strong coupling, which becomes
a phase transition for N ≥ 5.)

The solid line is a fit that incorporates 3-loop continuum running and
O(a2) lattice spacing corrections [29]:

a
√
σ(a) = lattice correction× 3 loop continuum running

=
√
σ(0)
ΛI

(
1 + ca2σ

)
e−1/2β0g2

I

(
β1

β2
0

+
1

β0g2
I

)β1/2β2
0

e−β
I
2/2β

2
0g

2
I ,

(29)

where β0, β1 are the first two (and universal) coefficients of the β-function,
while βI2 is the third (scheme-dependent) coefficient. The fit shown is actu-
ally to the SU(3) running coupling, but on this plot it fits other N almost
as well. If we perform such fits separately at each N , extract a value of ΛI
in each case, and then convert it to ΛMS, we find that the latter can be well
fitted by [29]

ΛMS√
σ

= 0.503(2)(40) +
0.33(3)(3)

N2
. (30)

µ = 1
a
√

σ

g2
I (µ)N

121086420

6.5

5.5

4.5

3.5

Fig. 9. The running of the (improved) lattice ’t Hooft coupling for various N , from
SU(2) (green open circles) to SU(8) (red solid points).

So it is clear that the diagrammatic prediction g2 ∝ 1/N is confirmed
at the non-perturbative level in D = 3 + 1 as well as in D = 2 + 1 gauge
theories.
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3.4.3. D = 3 + 1: a running continuum coupling

The calculation in the previous section suffers both from the complication
of lattice spacing corrections, as in Eq. (29), and, more importantly, from a
really small range of energy scales, as we see in Fig 9. This is because with
this method we need to calculate the string tension at each value of a, and
this requires a lattice that grows as 1/a in lattice units to avoid large finite
volume corrections. So it is not practical to go to extremely small value of a.

Both of these issues are addressed in the step-scaling analysis developed
by the Alpha Collaboration [30]. I do not have the time to discuss this
very nice method, but will just remark that it is designed to allow a contin-
uum extrapolation of the running coupling, over a very large range of energy
scales. I have borrowed a plot of the SU(3) running coupling from [30] which
I display in Fig. 10. For comparison I show in Fig. 11 a quite recent com-
pilation of experimental determinations of the running coupling that I have
borrowed from [31]. As you can see, the lattice calculation (which includes
an extrapolation to the continuum limit) is more accurate than the experi-
mental one, and extends over a range of scales that is at least as large. We
see a very impressive comparison with 3-loop continuum running, beginning
at very high energies where we can have confidence in the applicability of
perturbation theory.

Fig. 10. Continuum running coupling in SU(3) in the SF scheme from [30].

However, my purpose here is not to dwell upon these calculations in any
detail, but to point out that there have recently [32] been calculations of this
kind in SU(4). I show the corresponding plot, borrowed from [32], in Fig. 12.
The range of energies is less impressive but is still non-trivial. Extracting the
Λ parameter from the fits, and converting to the standard MS scheme, and
using the results of earlier calculations for N = 2 and N = 3, one finds [32]

ΛMS√
σ

= 0.528(40) +
0.18(36)
N2

: N ≥ 3 . (31)
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Fig. 11. MS running coupling: compilation of experimental results from [31].
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Fig. 12. Continuum running coupling in SU(4) in the SF scheme from [32].

Since this is a straight-line fit to just 2 points, N = 3 and N = 4, it will
require further confirmation, but it is reassuring that it is consistent with
the result in Eq. (30), obtained from the quite different approach of fitting
the running of the bare lattice coupling.

3.5. How hard are large-N lattice calculations?

In the pure gauge theory, we are mostly calculating products of N ×N
matrices, and the computational cost of that clearly increases as ∝ N3. The
Monte Carlo update of the matrices proceeds by updating the SU(2) sub-
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groups (using standard Cabibbo–Marinari). This cost grows only as ∝ N2 if
one updates all the subgroups and so is relatively unimportant. The O(N3)
increase in cost can be partially reduced if one takes advantage of the fact
that one can often work on a small volume (as long as l > 1/Tc) at large N .
As an extreme example, the deconfining transition [23,33] can be calculated
with just about the same precision on 1035 lattices in SU(8) as on 6435
lattices in SU(3). Here the volume gain more than outweighs the N3 loss.
And for a dramatic example of this, at very large N , see the string tension
calculation in [34].

The above has to do with how the cost in generating a single lattice
field grows with N . However the more relevant question is what is the cost
of achieving a given error/signal ratio in the calculation of some physical
quantity like the mass gap.

Indeed, since we calculate masses from connected correlators of traced
operators, i.e. correlations between singlet fluctuations, and since we know
that all such fluctuations vanish as N →∞, one might wonder whether this
renders mass calculations impossible in that limit.

The answer is no: the errors on the fluctuations are themselves deter-
mined by higher order correlators, which generically vanish at the same rate
in the pure gauge theory. For example consider C(t) = 〈φ†(t)φ(0)〉, where
φ is a trace of some gauge field operator, and 〈φ〉 = 0 so that there is
only the disconnected piece to consider. Then in a numerical estimate of
C(t) its fluctuation squared is proportional to the higher order correlator
〈[φ†(t)φ(0) − C(t)]2〉. An analysis of this using the usual large N counting
rules, shows that both the average value of the correlator and the fluctua-
tion around that average disappear with the same power of N . That is to
say, as N → ∞ there are no extra hidden costs to extracting masses from
correlation functions.

To see what happens in practice, I show in Fig. 13 how the error to
signal ratio on C(t = 0) and C(t = a) varies as a function of N , when we
perform the same number of Monte Carlo sweeps, on the same size lattice,
and for the same lattice spacing [19]. The correlator is one used to calculate
a physical quantity, so we infer that the difficulty of calculating a mass does
not grow with N beyond the growing difficulty of generating the lattice fields
themselves.

Turning now to the inclusion of quarks fields in the fundamental repre-
sentation, the most expensive part of current calculations, even for SU(6)
and even in the quenched case, is the matrix times vector multiplication
(e.g. in propagators) and this is ∝ N2. This may in principle be partly
offset by smaller finite V corrections at larger N .



3272 M. Teper

0

0.005

0.01

0.015

0.02

1 2 3 4 5 6 7 8 9

error
signal

N

r r r r r

c
c

c c
c

Fig. 13. How the fluctuations on a physically relevant connected correlator, at
t = 0 (•) and t = 0 (◦), vary with N .

If one now looks at connected correlators (in the quenched case) and at
the higher order correlators that determine their fluctuations, one finds [20]
that the latter generically vanish not at the same rate, but as O(1/N) —
which translates into an effective improvement of ∝ N2 in statistics. This
gain of N2 will compensate the increase in cost of multiplying matrices by
vectors, so that increasing N leads to no increase in cost. In practice this
ideal is not achieved and the total cost of calculating a mass to a certain
accuracy grows roughly as ∝ N [20].

Let me emphasise here that all current calculations have been performed
on a small number of desktops or on a modest cluster. Large N calculations
are thus accessible to all of you!

4. Large N physics at high T

The finite T physics of QCD is very topical because of the dedicated ex-
perimental programme at RHIC and the upcoming experiments at the LHC
(where the ALICE detector is dedicated to this physics). The experiments
have confirmed earlier lattice indications that for quite a large range of T
above the deconfining temperature, Tc, the plasma is strongly interacting
and apparently out of reach of straightforward perturbative expansions.

At the same time, this has become a topical arena for gauge-gravity
duality calculations. Of course, such (top–down) approaches are typically
applicable to N = 4 SUSY, and various deformations thereof. And they
are only valid in the limit of N and g2 both large. None of this looks
very much like QCD or SU(3) gauge theory in the low-T confining phase.
However at finite T , the adjoint fermions in N = 4 SUSY acquire O(T )
Matsubara masses, from the anti-periodic fermionic boundary conditions in
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the Euclidean time (thermal) direction. Once SUSY is broken in this way,
the adjoint scalars are no longer protected from acquiring a mass, and will
also become massive. Thus the only remaining light fields are the gauge
fields — which begins to look like a gauge theory at T > Tc. Moreover,
since the real-world plasma appears to be strongly coupled, this begins to
look like an ideal area for applying gauge-gravity duality. Of course all the
AdS/CFT calculations are at large N so it is important to check if for the
relevant thermodynamic quantities, N = 3 is close to N =∞. This is what
I want to focus upon in this section.

Euclidean lattice calculations of thermal averages are straightforward.
One takes the Euclidean time torus to be of length lt = aLt, and imposes
(anti)periodic boundary conditions for (fermions) bosons. The path integral
is then just the partition function of the quantum field theory at a finite
temperature T = 1/lt, or aT = 1/Lt in lattice units:

Z =
∫ ∏

l

dUle
−βS =

∑
n

e−
En
T . (32)

Of course we should also make the spatial tori large enough, Li � Lt, so
that we are in the thermodynamic limit, where we have a well-defined notion
of temperature.

4.1. Deconfinement

What do we expect?
If the transition is first order (as indeed it is for N ≥ 3 in D = 3 + 1

and for N ≥ 4 in D = 2 + 1) it will occur at the value of T at which the
free energies of the confined and deconfined phases become equal, Fc = Fd.
Now, since the number of gluons is O(N2) we expect Fd ∝ N2. On the other
hand we might naively expect Fc ∝ N0, since there are only colour singlet
states in the confined phase. If so, it immediately follows that Tc → 0 as
N →∞.

From our numerical results we know that this does not in fact happen.
The reason is easy to see: in the confined phase there is a −O(N2) contri-
bution to Fc that comes from the vacuum energy density (the gluon con-
densate). So in the large N limit, the value of Tc is precisely determined by
the balance between this O(N2) vacuum contribution to Fc and the O(N2)
piece of Fd. If the plasma had turned out to be weakly coupled, we could
have easily calculated Fd and therefore obtained a direct relationship be-
tween Tc and the gluon condensate. That would have been very nice, but as
it happens the plasma is strongly coupled, and so we have no such relation
— but, on the other hand, this opens the door to AdS/CFT calculations.
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In Fig. 14 I show lattice calculations of Tc in units of the string tension
for N ∈ [2, 8] in D = 3 + 1. All the values shown are after extrapolation to
the continuum limit [23]. If we fit with an O(1/N2) correction we obtain

Tc√
σ

N≥2= 0.597(4) +
0.45(3)
N2

: D = 3 + 1 (33)

which thus provides a prediction ∀N . It is perhaps surprising that this simple
analytic form should fit all the way down to N = 2 where the transition has
changed from first to second order. Especially so, given that the errors
for SU(2) and SU(3) are very small, about 0.5%. We also note that the
coefficient of the correction is O(1) in natural units.

1/N2

Tc√
σ

0.30.250.20.150.10.050

1

0.8

0.6

0.4

0.2

0

Fig. 14. Deconfining temperature in units of the string tension, for continuum
SU(N) gauge theories in D = 3 + 1; with O(1/N2) extrapolation to N =∞.

It is interesting to see what happens in D = 2 + 1. The corresponding
results for Tc [35] are shown in Fig. 15. Now both N = 2 and N = 3 are
second order, but a fit with just the leading correction still works for all N ,
giving

Tc√
σ

N≥2= 0.903(3) +
0.88(5)
N2

: D = 2 + 1 , (34)

where again the size of the correction is modest in natural units.
Most but not all thermodynamic quantities associated with the decon-

fining transition show a modest variation with N [33, 36]. A striking coun-
terexample is provided by the interface tension, σcd, between the confining
and deconfining phases. Although this calculation is difficult, one roughly
finds [33].

σcd

T 3
c

N≥3= 0.0138(3)N2 − 0.104(3) : D = 3 + 1 . (35)
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Fig. 15. As in Fig. 14 but for D = 2 + 1.

Here the coefficient of the subleading term is very large compared to that
of the leading term. Because of this the value of σcd is anomalously small
for SU(3), and this is presumably the main reason why the phase transition
appears to be very weakly first order in this case.

4.2. A strongly coupled gluon plasma?

We now want to ask whether the gluon plasma continues to be strongly
coupled at large N . One of the measures of this is the pressure and its
deviation from the Stefan–Boltzmann value. I will focus on this here because
the lattice calculation is particularly simple. (I reproduce the argument given
in [37].)

The pressure is the (infinitesimal) work done when the volume increases
(infinitesimally). So it can be obtained from the change in the average energy
as we increase the volume, using Eq. (32),

p = T
∂

∂V
logZ(T, V ) =

T

V
logZ(T, V ) = −f , (36)

where the second equality assumes a sufficiently large and homogeneous
system, and f = F/V is the free energy density. To calculate the pressure
at temperature T = 1/aLt in a volume V = a3L3

s with lattice cut-off a(β),
it is convenient to express logZ in the integral form:

p(T ) =
T

V
logZ(T, V ) =

1
a4(β)L3

sLt

β∫
β0

dβ′
∂ logZ
∂β′

. (37)

There is in general an integration constant, but it will disappear when we
regularise the pressure in a moment. This integral form is useful because it



3276 M. Teper

is easy to see from Eqs. (32), (8) that

∂ logZ
∂β

= −〈S〉 = Np〈up〉 , (38)

where Np = 6LtL3
s is the total number of plaquettes and up ≡ Re TrUP /N .

So the pressure can be obtained by simply integrating the average pla-
quette over β: a very simple calculation. This pressure has been defined
relative to that of the unphysical ‘empty’ vacuum and will therefore be ul-
traviolet divergent in the continuum limit. To remove this divergence we
need to define the pressure relative to that of a more physical system. We
shall follow convention and subtract from p(T ) its value at T = 0, calculated
with the same value of the cut-off a(β) (so that the UV divergences cancel).
Thus our pressure will be defined with respect to its T = 0 value. Doing so
we obtain from Eqs. (38), (37)

a4[p(T )− p(0)] = 6

β∫
β0

dβ′(〈up〉T − 〈up〉0) , (39)

where 〈up〉0 is calculated on some L4 lattice which is large enough for it to
be effectively at T = 0. We replace p(T )− p(0)→ p(T ), where from now on
it is understood that p(T ) is defined relative to its value at T = 0, and we
use T = (aLt)−1 to rewrite Eq. (39) as

p(T )
T 4

= 6L4
t

β∫
β0

dβ′(〈up〉T − 〈up〉0) . (40)

We remark that when our L3
sLt lattice is in the confining phase, then 〈up〉

is essentially independent of Lt and takes the same value as on a L4
s lattice.

This should become exact as N →∞ but is accurate enough even for SU(3).
Thus as long as we choose β0 in Eq. (40) such that a(β0)Lt > 1/Tc then the
integration constant, referred to earlier, will cancel.

We calculate the pressure using Eq. (40) on a volume that is large enough
to be effectively infinite. Since the plasma has a mass gap (the electric and
magnetic screening masses) this is easy to achieve. We then normalise it to
the Stefan–Boltzmann value (in an infinite volume). It has long been known
that this ratio is far below unity, even to quite high T , for SU(3). This is
now considered to be a reflection of the strong coupling nature of the gluon
plasma.
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A simple strategy is to perform similar calculations at larger N and see
whether this ratio continues to remain far from unity or not. This was first
done in [37] where it was shown that there is essentially no change in the
normalised value of p/T 4 as one increases N from N = 3 to N = 8, in
the range 1 ≤ T/Tc ≤ 2. Recently [38] there has been a more accurate
calculation extending over a larger range of T/Tc, and in Fig. 16 I show the
relevant plot (borrowed from [38]). We see that any variation is negligible:
the N =∞ plasma is just as strongly coupled as the N = 3 one.
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Fig. 16. Normalised pressure above Tc for various SU(N) gauge theories [38].

This is of course good news for the applicability of AdS/CFT to real
world experiments above Tc. (And you can see a comparison with one such
calculation in Fig. 16.) In addition, it restricts what dynamics we might
think is responsible for the strong coupling, if we make the plausible as-
sumption that this dynamics should be common to all SU(N) gauge the-
ories. For example, it excludes an important role for topology (since we
know that in the deconfined phase topological fluctuations vanish roughly
exponentially with N [36, 39]) or for any colour singlet hadrons that might
survive above Tc.

5. And if I had the time . . .

There are many other topics on which there has been significant progress,
and which I would have liked to describe to you if there had been time. Here
I will just list some of them:
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• space-time reduction
• large-N phase transitions
• topology at large N
• interlaced θ-vacua
• chiral symmetry breaking at large N
• topology and chiral symmetry breaking
• strong coupling
• full glueball spectrum and the Pomeron
• k-string tensions in D = 2 + 1 and D = 3 + 1
• Karabali–Nair Hamiltonian approach in D = 2 + 1: lattice tests.

6. Flux tubes as strings

6.1. General considerations

Suppose we place a static fundamental source in our SU(N) gauge theory
at ~x = (0, y, z), with a conjugate source at ~x = (r, y, z). Suppose our space-
time is a 4-torus, with the Euclidean time extent being τ , and that we are
in the confining phase. As usual we denote by Z the partition function of
the field theory on the given space-time. We also define a partition function
for the system with these sources by

Zss̄(r, τ) =
∫
dA l†(x = r, y, z)l(x = 0, y, z) exp{−S[A]} , (41)

where l(~x) is the traced, path-ordered exponential of the gauge potential
along a path that encircles the t-torus and is at ~x = (x, y, z). This is often
called a Wilson line, or a Polyakov loop, and, sometimes, a thermal line.
It is the phase factor that arises from the minimal coupling of the static
sources to the gauge fields, jµAµ = j0A0. In Section 7 we shall see how this
translates to the lattice, but for now we shall use a continuum language.

If r � 1/
√
σ there will be a flux tube between the sources which, as it

evolves in time, sweeps out a sheet bounded by the periodic sources. (I am
making some assumptions e.g. that the spatial torus is � r.) This sheet
clearly has the topology of a cylinder. The partition function can be written
as a sum over states

1
Z
Zss̄(r, τ) =

∑
n

e−En(r)τ , (42)

where En(r) is an energy eigenstate of two sources separated by r. (Note
that some of the En(r) may be degenerate.) This state is an (excited) flux
tube that begins and ends on a source and which evolves around the t-torus.
The artifice of static sources, means that the flux tube states have zero
transverse as well as zero longitudinal momentum.



Large N and Confining Flux Tubes as Strings — a View from the Lattice 3279

Now, there is another way to look at this set-up. We are in Euclidean
space time so we are free to think of any of our axes as being the time
direction, with its associated Hamiltonian defined on the space spanned by
the other three coordinates. Taking x as labelling the ‘time’, l is now a
Wilson line that winds around what is now a spatial torus of length τ .
What Zss̄(r, τ) represents, in this point of view, is a correlation function
whose intermediate states consist of flux tubes that wind around this same
‘spatial’ torus of length τ and propagate the distance r between the two
Wilson lines. The same partition function can therefore also be written as

1
Z
Zss̄(r, τ) =

∑
n,p

cn(p, τ)e−Ẽn(p,τ)r , (43)

where the Ẽn are the energy eigenstates of (excited) flux tubes that wind
around a spatial torus of length τ . (Again, some of the Ẽn may be degen-
erate.) The Ẽn and En are different because they have different boundary
conditions. (Sometimes, where the context removes any ambiguity, I will use
En in place of Ẽn.) Here I have made explicit that the winding flux tubes
have to be integrated over transverse momentum p since the operators l are
localised at y, z. The cn are the wave-function factors for the overlap of a
state |n, p〉 on the operator l: cn = |〈vac|l†|n, p〉|2. Lorentz invariance en-
ables us to do the integral over p [40, 41] but I will not pursue those details
here.

You may be wondering how one shows that a Polyakov loop correlator
only involves winding eigenstates (even though it is heuristically plausible).
I will give the argument in Section 7.1.

The above two ways of writing the Polyakov loop correlator, either as
a sum over closed strings or as a sum over open strings, is a duality that
has been well-known since the early 80s, and has been used routinely in
numerical simulations. However the interesting thing for us about this open-
closed string duality is the relatively recent realisation [40] that it strongly
constrains the form of the effective string theory describing the dynamics of
long flux tubes.

So suppose that we have an effective string theory, governed by an ef-
fective action Seff , which reproduces the long distance physics of flux tubes.
Consider the string partition function over the r × τ cylinder considered
above. We will have

Zcyl(r, τ) =
∫

cyl=r×τ
dSe−Seff [S] =

1
Z
Zss̄(r, τ) , (44)

where we integrate over all surfaces S spanning the cylinder. From Eq. (44)
we infer that Zcyl(r, τ) can be written as a sum of open or closed strings as in
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Eq. (42) and Eq. (43). These are nothing but Laplace transforms, in r and
τ respectively of Zcyl(r, τ). So if we have a candidate string action, Seff [S],
we can perform these Laplace transforms and extract the open and closed
string spectra. Conversely, the particular form of the Laplace transforms in
Eqs. (42), (43) will constrain the permitted form of Seff [S] and this may in
turn constrain the possible form of the flux tube energy spectrum.

In the above we have specifically discussed the open-closed duality [40]
associated with a cylinder. One can usefully extend [42] such a discussion
to an r × τ torus and its associated closed–closed string duality. Now we
would have

Ztorus(r, τ) =
∫

T 2=r×τ

dSe−Seff [S] =
∑
n,p

e−Ẽn(p,τ)r =
∑
n,p

e−Ẽn(p,r)τ (45)

and a useful new constraint on Seff [S] [42]. It is clear that we have not
exhausted all the possibilities here and that other boundary conditions may
provide further useful constraints.

Some comments. (For a useful discussion, see [42].)
As is well-known, string theories are not well-defined outside their critical

dimension. However the resulting anomalies, which show up in different
ways depending on how one ‘gauge-fixes’ the diffeomorphism invariance in
one’s calculation, typically die off at long distances, e.g. [43], and when one
considers a long string [44]. Thus it can make sense, at least technically,
to consider a string path integral over a single large surface, in an effective
string theory approach outside the critical dimension [44]. This represents
the world sheet of a single long fluctuating string.

This effective string theory approach is therefore limited to describing
the dynamics of a single long fluctuating flux tube. This is an important
physical limitation. In reality, a sufficiently excited flux tube can decay
into a flux tube of lower energy and a glueball. In the string picture a
glueball is a contractible closed loop of string whose length is O(1/

√
σ) (for

light glueballs). There is no guarantee that an effective string theory can
consistently describe such extra small surfaces. One can partially circumvent
this by only considering low-lying string states which are too light to decay:

En(r)− E0(r)� mG . (46)

However even such states will be affected by mixing through virtual glueball
emission, which corresponds to small handles on our large surface — again
something that would be problematic for the string theory.

There is of course a limit in which mixings and decays do vanish, and that
is the N →∞ limit. So it is consistent to use Eq. (44) and Eqs. (42), (43) for
the SU(∞) theory. It is then plausible that as we move continuously away
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from that limit, to finite N , the corrections will be under control and small.
Indeed, we shall see that the low-lying flux tube spectrum has very little
N -dependence for N ≥ 3, and this increases our confidence in the potential
applicability of the effective string theory approach to SU(N) gauge theories
in general [42].

Let us consider a flux tube that winds around a spatial torus of length l.
The excited states of this flux tube are presumably obtained from the ground
state, E0(l), by exciting some of the modes living on the tube. If the excited
mode is massive we would expect

En(l) = E0(l) +O(
√
σ) . (47)

If the mode is massless, we would expect the extra energy to be given by its
momentum which, for bosons, is quantised to be p = kπ/l ; k = ±1, . . . on
such a periodic flux tube. (So to obtain an excited flux tube with zero net
longitudinal momentum, we will need more than one such excitation if, as
is usually the case, a k = 0 mode is not allowed.) So we expect

En(l) = E0(l) +O
(π
l

)
. (48)

So at large l, where π/l� √σ, the low-lying flux-tube spectrum is given by
the excitation of the massless modes.

The first step is therefore to focus on an effective string action that in-
cludes just these massless modes. In general we expect modes to be massless
for symmetry reasons. In the case of a flux tube there are D − 2 obvious
massless modes. These are the Goldstone modes that arise from the fact
that once we have specified the location of our flux tube, we have broken
spontaneously the translation invariance in the D − 2 directions transverse
to the flux tube. Of course it may be that there are other less obvious
massless modes. However it clearly makes sense to start with just these
Goldstone modes and to calculate from them properties of the low-lying
flux tube spectrum for long flux tubes. If these agree with what we find
through our direct lattice calculations of the spectrum, we can be confident
that we have identified correctly all the massless modes.

To proceed one needs to fix convenient coordinates to describe the surface
in the path integral. This is a ‘gauge-fixing’ of the diffeomorphism invari-
ance, and in so doing we risk making the constraints that follow from this
fundamental string symmetry less obvious. Here we follow [40,42,45] and do
not discuss the details of the important alternative approach [44]. Suppose
we are integrating over the surfaces of the cylinder discussed above. There
is a minimal surface which we can parameterise by x ∈ [0, r] and t ∈ [0, τ ].
Other surfaces are specified by a transverse displacement vector h(x, t) that
has two components in the (y, z) directions. This way of parameterising a
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surface is often called ‘static gauge’. (This is for D = 3 + 1; it has only one
component for D = 2 + 1.) We can now write the effective string action in
terms of this field h; schematically,

Seff [S] −→ Seff [h] (49)

and the integral over surfaces becomes an integral over h(x, t) at each value
of (x, t) ∈ [0, r]× [0, τ ]. Since the field h is an integration variable in (0,∞),
we can take it to be dimensionless. Moreover, since the action cannot depend
on the position of the flux tube (translation invariance), it cannot depend
on 〈h〉 but only on ∂αh where α = x, t. That is to say, schematically,

Seff [h] −→ Seff [∂h] (50)

and we can perform a derivative expansion of Seff in powers of derivatives
of h; (very) schematically

Seff = σrτ +

τ∫
0

dt

r∫
0

dx1
2∂h∂h+

∑
n=2

cn

τ∫
0

dt

r∫
0

dx(∂h)2n , (51)

where the derivatives are with respect to x and t and indices are appropri-
ately contracted. The coefficients cn have dimensions [length](2n−2) to keep
the terms dimensionless. So we can expect that for the long wavelength fluc-
tuations of a long string, such a higher order term will make a contribution
of O(1/(σl2)n−1) and so the importance of these terms is naturally ordered
by the number of derivatives. All this is entirely analogous to the familiar
way chiral Lagrangians depend on their Goldstone fields.

Three comments.

• The approach just described is typically designed to capture the phys-
ics on energy scales smaller than a dynamical mass scale. Here that
would be O(

√
σ). Just as the applicability of chiral Lagrangians is

typically bounded by the lowest resonances.
• Such an expansion is unlikely to be better than asymptotic, and so

might well have corrections that are perhaps like exp{−1/(∂h)2} that
will lead to corrections like exp{−cσl2} in the spectrum. More gener-
ally we need to be cautious about the uniformity of the various limits
being taken in any applications (e.g. large n, r, τ).
• Our chosen ‘static-gauge’ parameterisation does not work for general

surfaces. To describe a string with an ‘overhang’ or any kind of ‘back-
tracking’, the field h(x, t) would have to multivalued, which is some-
thing the standard treatments do not allow. That is to say, we exclude
such rough surfaces from the path integral. For a flux tube, its finite
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width provides a physical lower distance cutoff on such fluctuations:
any overhang that is within a distance . 1/

√
σ will in effect be a

fluctuation in the intrinsic width of the flux tube i.e. a massive mode
excitation. Any backtracking/overhang that is larger will increase the
length by ∆l > 1/

√
σ and hence the energy by ∆E ∼ σ∆l >

√
σ.

In both cases the associated excitation energies will be much greater
than the O(1/l) gap to the stringy modes, once l is large enough. Thus
this should not be a significant issue for the long wavelength massless
oscillations we have discussed above. But it needs to be addressed in
any analytic treatment that wishes to be more ambitious.

6.2. The Gaussian approximation

The first non-trivial term in our effective string action is the Gaussian
piece:

Seff = σrτ +

τ∫
0

dt

r∫
0

dx1
2∂αh∂αh . (52)

(For the cylinder there is a linear piece, ∝ τ , that comes from the boundary
of the cylinder, and represents a self-energy term for the source. We ignore
that in the following.) Being Gaussian, this can be calculated exactly, and
one obtains

Zcyl(r, τ) = e−σrτ |η(q)|−(D−2) : q = e−πτ/r (53)

in terms of the Dedekind eta function

η(q) = q
1
24

∞∏
n=1

(1− qn) . (54)

(See [40] whose notation I will borrow.) If we expand the product in Eq. (54)
we have a sum of powers of q, which, using q = e−πτ/r, becomes a sum
of exponentials in τ which is precisely of the form given in Eq. (42). So
matching this result with Eq. (42), we obtain

En(r) = σr +
π

r

{
n− 1

24
(D − 2)

}
(55)

for the energy levels. In addition, one also obtains predictions for the de-
generacies of these levels. This is the exact result, for a Gaussian Seff , for
the energy levels of strings with ends fixed to static sources. We note that
the excitation energies display an O(1/r) gap as expected from Eq. (48).
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The Dedekind eta function possesses a well-known modular invariance:

η(q) =
(

2r
τ

)1/2

η(q̃) ; q̃ = e−4πr/τ , (56)

and so using Eq. (54), but now for η(q̃), we can rewrite the expression for
Zcyl in Eq. (53) as a sum of exponentials in r rather than in τ . However this
is not precisely of the form shown in Eq. (43), because of the momentum
integrations (which can be shown [40, 41] to lead after integration to a sum
over Bessel functions rather than simple exponentials). Thus a Gaussian
Seff does not encode the open-closed string duality exactly and cannot be
considered as a candidate for an exact string description of strings on a
cylinder. However if we think of the Gaussian Seff as an approximation,
possessing higher order terms that we are not considering at this stage,
then at large enough τ , where the Bessel functions can be expanded as
exponentials to leading order, we can match with Eq. (43) to obtain the
closed string energies (for p = 0),

Ẽn(τ) = στ +
4π
τ

{
n− 1

24
(D − 2)

}
+O

(
1
τ2

)
(57)

together with an expression for the overlaps cn.
The O(1/r) correction to the leading linear term in E0(r) in Eq. (55)

is the famous Luscher correction [45] for a flux tube with ends fixed on
static sources. Physically it arises from the regularised sum of the zero-
point energies of all the quantised oscillators on the string. It depends only
on the long wavelength massless modes and so is universal: any bosonic
string theory in which the only massless modes are the transverse oscillations
will have precisely this leading correction. The same applies to the O(1/τ)
correction to the leading linear term in Ẽ0(r) in Eq. (57).

Although the above results for En(r) are obtained in the Gaussian ap-
proximation to Seff [h], this approximation becomes exact as r → ∞, and
these predictions for the leading O(1/r) correction are also exact and uni-
versal.

6.3. Nambu–Goto free string theory

There is only one string theory whose spectrum can be calculated in a
closed form (as far as I am aware). That, not surprisingly, is a free string
theory: Nambu–Goto in flat space time, e.g. [46].

Z =
∫
dSe−κA[S] , (58)
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where we integrate over all surfaces, with the action proportional to the
invariant area. This is not a priori a completely unrealistic effective string
theory: after all, we recall that flux tubes at N =∞ do indeed not interact.

The energy levels of this theory were originally calculated in [47] (and
were subsequently extended in various papers). Since our numerical calcu-
lations will focus on flux tubes that are closed around a spatial torus of
length l, this is the spectrum I will present here.

Consider a string winding once around the x-torus. (One can readily
extend this to strings winding ω times around a torus.) Perform the usual
Fourier decomposition of h(x). Upon quantisation the coefficients become
creation operators for ‘phonons’ with momenta ±2πk/l along the string and
energy 2πk/l (since the modes are massless). Note that the k = 0 mode is not
included since it corresponds to a shift to a different transverse position of the
whole string i.e. to another vacuum of the spontaneously broken symmetry.
We call positive momenta left-moving (L) and the negative ones right-moving
(R). Let nL(R)(k) be the number of left(right) moving phonons of momentum
2πk/l. Define the total energy (and momentum) of the left(right) moving
phonons as 2πNL(R)/l, then:

NL =
∑
k

∑
nL(k)

nL(k)k , NR =
∑
k

∑
nR(k)

nR(k)k . (59)

If p = 2πq/l is the total longitudinal momentum of the string then, since
the phonons provide that momentum, we must have

NL −NR = q . (60)

We can now write down the expression for the energy levels of the
Nambu–Goto string:

E2
NL,NR

(q, l) = (σl)2 + 8πσ
(
NL +NR

2
− D − 2

24

)
+
(

2πq
l

)2

, (61)

where the degeneracies corresponding to particular values of NL and NR will
depend on the number of ways these can be formed from the nL and nR in
Eq. (59). In discussing the states, we shall often write the left and right
moving phonon creation operators of (absolute) momentum 2πk/l as ak and
a−k respectively, and the unexcited string ground state as |0〉.

Let us specialise to q = 0, i.e. NL = NR = n, and make some general
comments.
• The energy En(l) can be expanded for large l in inverse powers of

1/σl2:

En(l) = σl

(
1 +

8π
σl2

(
n− D − 2

24

))1/2
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= σl +
4π
l

(
n− D − 2

24

)
+O

(
1
σl3

)
. (62)

We note that the first correction to the linear piece is exactly as in
Eq. (57). Since we claimed the latter was ‘universal’, this is as it
should be.
• The ground state energy becomes tachyonic at small l:

E2
0(l) = (σl)2 − πσ(D − 2)

3
< 0 : σl2 <

π(D − 2)
3

. (63)

One can regard it as the Hagedorn/deconfining transition in the
Nambu–Goto model, where strings condense in the vacuum.
• The expansion of the square root expression for the energy En, in

Eq. (62), only converges for σl2 > 8πn (ignoring the negligible D − 2
term). So the higher the excited state, the larger is the value of l before
such an expansion can be employed. This tells us that the formal
expansion of the action in powers of 1/l is not uniform in frequency
— it is, in fact, only formal. One would expect this to be the case for
any string action, effective or otherwise. So while the Nambu–Goto
action (the invariant area of the surface) can be expanded as described
above, this expansion is not uniform in energy.
• One can show (see Appendix C of [40]) that the Nambu–Goto model

satisfies open-closed duality exactly. This is in contrast to the Gaussian
string action. Thus, if this is our only constraint, the Nambu–Goto
model is a viable candidate for providing a string action that simulta-
neously describes flux tubes attached to static sources and their dual
description as winding flux tubes between Polyakov loop operators.

This has at least one important implication. When we use open-closed
(cylinder) string duality to constrain terms in the effective action that are
higher order in ∂h (as described earlier), these constraints will be satisfied by
the Nambu–Goto model. (This is also the case [48] for constraints obtained
from the closed–closed duality [42] associated with surfaces on a torus.) In
particular, where this allows us to completely fix the expansion coefficients
of En(l) up to some order in 1/l, these coefficients will have to be precisely
the same as those obtained by expanding the Nambu–Goto expression in
Eq. (62) and the corresponding expression for strings with fixed ends, to
that order.

6.4. Recent theoretical progress

The seminal work in analysing flux tubes in a string description in static
gauge [45] (as described above) and the later more general approach using
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conformal gauge [44] (not described here) led to an understanding of the
universality of the leading O(1/l) ‘Luscher correction’ to the linear growth
of the flux tube energy. Until recently there was, however, very little further
analytic progress along these lines.

The situation changed in 2004 when major progress took place indepen-
dently within both approaches.

1. In [40] it was shown that the open-closed duality (discussed above)
could be used to provide useful constraints on the higher order terms
in the expansion of the effective string action. In particular it was
shown that in D = 2 + 1 the next, O(1/l3), term is also universal and
the coefficient is precisely what you get by expanding the Nambu–Goto
square-root expression to that order. (As we commented above, the
latter has to be the case.) In D = 3 + 1 the coefficent is not fixed but
there is a relationship predicted between the coefficients of the two
terms in the effective action that contribute at that order.

2. In [49] (and later independently in [50]) the next order was calculated
within the Polchinski–Strominger framework, and the same conclusion
was reached as in [40] for D = 2 + 1, and a stronger conclusion in
D = 3 + 1, where the O(1/l3) term in the action was shown to be
universal (and equal to the value in the Nambu–Goto expansion).

This year there has been further, dramatic progress. In [42] the static
gauge approach was used and extended to include the constraints that arise
from closed–closed (torus) duality. This enabled [42] to show that the terms
up to O(1/l5) are universal, and of course equal to what you get in the
Nambu–Goto model. (There are some technical qualifications to this in D =
3+1 that I am omitting.) This work demonstrates how one can extend one’s
predictions for the effective string action, by finding new physical conditions
that it must satisfy. One may speculate that further progress could be
made by going beyond the cylinder and torus, to consider other boundary
conditions for the surfaces that one is integrating over, so as to create new,
more powerful constraints on Seff .

In addition the authors of [42]) calculated the effective string action
in some confining gauge theories with a gauge-gravity dual, and showed
explicitly that in these cases the coefficients up to O(1/l5) are indeed as
predicted by their general arguments.

Finally, as I have been writing this section, some papers have appeared
[51] extending the Polchinski–Strominger approach [44, 49] and also show-
ing that the terms up to O(1/l5) are universal. The most recent of these
papers [52] makes the dramatic claim that (with certain constraints) the
energy spectrum of any effective string theory is, to all orders, the same as
that of Nambu–Goto.
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While I have not had the time to digest the most recent papers, it is
clear that this is an exciting area in which a great deal of progress is being
made at this moment.

6.5. Lattice calculations — a potted history

Having spent quite a lot of time describing the analytic work, I do not
have the time to do more than point briefly to some of the numerical work
that has been carried out over this same period. This is particularly inappro-
priate because there has been a huge amount of this work, and its increasing
range, sophistication and precision has provided strong motivation for the
recent analytic work that I have been describing. I will just point to some
work in various directions, and leave it to you to follow their references and
citations to build a more detailed and balanced picture for yourselves.

In the early to mid 80s there was already a great deal of work testing
string model predictions with numerical lattice calculations, and with open-
closed string duality in mind, by for example the Copenhagen group, e.g.
[53]. Some of the earliest numerical work that produced reliable ground state
energies for closed strings and for the Luscher coefficient was in that same
period [54]. The development of blocking [11] and smearing algorithms [10]
in the mid-80s finally made the accurate calculation of energies and string
tensions routine.

The potential between static sources was, of course, a continual interest,
but the pioneering calculations for excited string states date to the early
90s, e.g. [55]. The interest here was both theoretical and phenomenological:
the excited string states could be used in a Schrodinger equation to get
predictions for the masses of hybrid mesons where some of the quantum
numbers are carried by excited glue. In the 90s there was a lot of progress
by the Torino group, e.g. [56] investigating numerically the match between
string theory predictions for Wilson loop expectation values and what one
obtains in various gauge and spin models. It is in this work that one first
sees a prolonged and serious focus on matching the Nambu–Goto model to
numerical results, a focus which became commonplace in later work. This
work has continued into the 00s with, for example, calculations in more
‘exotic’ theories [57].

In the late 90s and early 00s there was the first sequence of calcula-
tions [58] that was dedicated to calculating the full string spectrum (open
and closed) in SU(2) and SU(3) gauge theories. In the same period, power-
ful new Monte Carlo techniques were developed [59] that made possible the
numerical calculation of the Luscher coefficient with greater accuracy, thus
confirming the earlier work that had pointed to it being in the same univer-
sality class as the simplest bosonic string model. The last decade has also
seen, for the first time, reliable numerical calculations at large N [1, 18, 60],
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in some cases for a very large N indeed [34,61]. There have simultaneously
been a number of very accurate calculations of open strings, both of the
ground state (i.e. the heavy quark potential) [62] and with some work on
excited states [63] and work on sources in other representations than the
fundamental [64]. And since the mid-00s there has been the dedicated cal-
culation of the spectrum of closed flux tubes, in both D = 2 + 1 [24, 65–67]
and D = 3 + 1 [68] that I am going to devote the rest of my paper to.

Before moving on let me say a few comparative words about calculations
of Wilson loops, open strings (potentials) and closed strings (torelons). Ex-
pectations of Wilson loops are transforms of eigenspectra (although care
has to be taken with the self-energies associated with the boundaries) and
are an alternative way to test string models. With open strings there is a
transition between short-distance perturbative physics (the Coulomb poten-
tial) and long-distance confining physics that is potentially of great interest
(especially at large N) but which can introduce extra ambiguities in the ex-
traction of the flux tube spectrum, if that is what one is primarily interested
in. The spectrum of closed flux tubes, stabilised by closing them around a
spatial torus, is a particularly clean way to investigate the properties of flux
tubes, and that is why we have focused on that approach in the work below.

7. The spectrum of closed flux tubes: D = 2 + 1

In this section I will discuss the energy spectrum of closed flux tubes
in SU(N) gauge theories in 2 + 1 dimensions. The numerical results that
I shall show are all from [24, 65–67] or from unpublished work within that
collaboration.

I will not say much about D = 2 + 1 except to remind you that the
gauge coupling g2 has dimensions of mass, so the dimensionless expansion
parameter for physics on a scale l will be lg2. Thus the theory is free in
the UV and strongly coupled in the IF: much like D = 3 + 1 in other
words. (At least in this respect.) Lattice calculations [1] have shown that
the theory is linearly confining at low T , just like SU(N) gauge theories
in D = 3 + 1. Our understanding of the dynamics of confinement, and
our analytic control over the long-distance physics, is not much better in
2 + 1 than in 3 + 1 dimensions. In many ways, the fundamental dynamical
questions are similar in both dimensions and it is useful to pose them in
both contexts simultaneously, as I will be doing in this paper.

7.1. Quantum numbers and operators

Consider a confining flux tube, with the flux in the fundamental rep-
resentation. Let it wind once around the x-torus, which we take to be of
length l. There are a number of symmetries some of which are interesting
and some of which are not.
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• Let p be the longitudinal momentum of the flux tube. By periodicity
this is quantised, p = 2πq/l where q is an integer. (When we are on
a lattice we will express p and l in lattice units.) It is plausible that
the ground state, with energy E0(l), is invariant under longitudinal
translations, and so must have longitudinal momentum q = 0. To have
q 6= 0 a flux tube must have a deformation so that it is not invariant
under longitudinal translations. That is to say, it must be excited in
some non-trivial way. Thus E2(p) 6= E2

0 + p2 and the calculated value
of E(p) carries non-trivial dynamical information: p is an interesting
quantum number.
• By contrast if p⊥ is the transverse momentum, then we simply expect
E2(p) = E2

0 +p2
⊥, so p⊥ is not, for us, an interesting quantum number.

• Under charge conjugation, C, the direction of the flux is reversed. Thus
a flux tube has zero overlap onto its charge-conjugated homologue (see
below) and so linear combinations of definite C are trivially degenerate.
(Except for SU(2) where C is trivial.) Thus C is not interesting and
we shall consider flux tubes whose flux is in the +ve x direction.
• Consider the 2 dimensional parity operation (x, y) P→ (x,−y). It is

plausible that the absolute ground state, with energy E0(l), is invari-
ant under reflections, and so will have P = +, with the P = − linear
combination being null. Thus the lightest non-null P = − state in-
volves a flux-tube with a non-trivial deformation, and so P is certainly
an interesting quantum number. More specifically, in a string model
h(x) P→ −h(x) so that the its Fourier cefficients also satisfy ak

P→ −ak
and hence the parity of a string excitation is simply

P = (−1)number of phonons . (64)

So the lightest P = − state will have one excited phonon with k = 1.
• Suppose our (x, y) torus is symmetric. Consider rotations of the flux

tube by π/2, so that it winds instead around the y-torus, or by π so
that the flux is reversed. Both these flux tubes will have zero overlap
onto the original flux tube. Thus rotations are uninteresting. (In 2
space dimensions there are, of course, no rotations around the axis of
the flux tube.)

For the above reasons we choose to calculate the flux tube energy as
a function of its length l, its longitudinal momentum p = 2πq/l, and its
parity P .
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We now need some lattice operators whose correlators will give us the
desired spectrum. The most elementary such operator is the simple Polyakov
loop:

lp(ny, nt) = Tr

{
L∏

nx=1

Ux(nx, ny, nt)

}
, (65)

where l = La and we take a product of the link matrices in the x-direction
once around the x-torus.

That such a winding operator should couple to winding flux tubes is
heuristically plausible, but we can do a little better than that. Consider a
transformation

Ux(nx = L, ny, nt) −→ zUx(nx = L, ny, nt) , z ∈ ZN , ∀nx, ny , (66)

where all links in the x-direction at, say, the boundary nx = L are multiplied
by an element of the centre. This does not affect the value of any plaquette,
since a z will always be accompanied by a z? from the conjugate link at
the opposite side of the plaquette, which gives unity, and so the action is
not changed. And neither is the invariant Haar group measure. Thus the
weighting of this transformed field is identical to that of the original field.
Moreover, by a similar argument to that for the plaquette, the product of
link matrices around any contractible closed loop lC is invariant, since the
number of z and z? will be the same. However a non-contractible closed
loop like the Polyakov loop is not invariant: clearly lp → zlp. We therefore
see that

〈l†plC〉 = z〈l†plC〉 , ∀z ∈ ZN =⇒ 〈l†plC〉 = 0 . (67)

(This assumes that the center symmetry is not spontaneously broken.)
Eq. (67) is true for any winding loop lp and any closed contractible loop
lC. So the corresponding states are completely orthogonal. The contractible
loops clearly generate localised states like glueballs, while the winding loops
generate non-local winding states which include winding flux tubes. Note
that a similar argument to that in Eq. (67) tells us that lp and its charge
conjugation, l†p, are orthogonal, except in SU(2). In the continuum the field
transformation in Eq. (66) arises when we note that periodicity for adjoint
fields implies periodicity up to an element of the center etc.

The operator in Eq. (65) is localised in ny and so has p⊥ 6= 0. If we
sum over ny, to get lp(nt) =

∑
ny
lp(ny, nt) we get an operator with p⊥ = 0,

and from now on we assume this has been done. This operator is manifestly
invariant under longitudinal translations as well, so p = 0. It is also invariant
under parity P . So to have p 6= 0 or P 6= + we must introduce a deformation
in the operator in Eq. (65). Some examples are shown in Fig. 17 of P =
− operators. By translating such an operator by ∆x in the x direction,
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multiplying it by the phase factor exp{i2πq∆x/L}, and then adding all
such translations, one obtains an operator with longitudinal momentum p =
2πq/L. Doing so for the operator in Eq. (65) would have yielded a null
operator for p 6= 0, but for the operators in Fig. 17, that will clearly not be
the case.

Fig. 17. Examples of operators with non-trivial parity: P = −,−,+,+ starting
from the left.

In practice, to obtain good overlaps onto any states at all, one needs to
smear [10] and block [11] the ‘link matrices’ in operators such as those shown
in Fig. 17. And one also needs many operators in addition to those shown
here in order to have adequate overlaps onto a good number of excited states.
So, as described in more detail in [65], we typically have 150–200 operators
in each of our D = 2 + 1 calculations.

7.2. Ground state energy

In Fig. 18 I display how the energy, E0, of the lightest flux tube in the
q = 0, P = + sector of states, varies as a function of its length l. This is
a calculation in SU(5) and at a value of the bare inverse coupling, β = 80,
which corresponds to a lattice spacing in physical units of a ' 0.130/

√
σ.

(Of course the latter is something we only know after our calculation of the
string tension, a2σ.) This is a small value of a at which O(a2) lattice spacing
corrections are known to be negligible [1, 24]. It therefore makes sense to
present the values of E0 and l in physical units, as we have done in Fig. 18,
using the value of a

√
σ we obtain by fitting the L-dependence of aE0(L).

Also shown in Fig. 18 are the best fits with either a simple Luscher
correction, E0(l) = σl − π/6l, or with the full Nambu–Goto result, E0(l) =
σl(1 − π/3σl2)1/2. Fitting the lattice values of aE0(L) as a function of
L = l/a gives us a value for the string tension a2σ which we then use to
produce the rescaled coordinates plotted in Fig. 18. We see that although the
Luscher correction captures much of the deviation from linearity at small l,
Nambu–Goto clearly works even better. I also show the linear piece of the
fit, so that you can see the deviation from linearity more explicitly.
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Fig. 18. Ground state flux tube energy in SU(5) for lattice spacing a
√
σ ' 0.130.

Shown are fits with a Luscher correction (dashed line) and with Nambu–Goto (solid
line). The linear piece of such a fit, σl, is also shown (dots) for orientation.

As remarked earlier in the context of the glueball calculation in Sec-
tion 2.2, the numerical calculation gets less reliable as the energy becomes
large — and here that happens as l becomes large. That limits how far we
can go in l. To see what this means in practice, recall that we are look-
ing for an exponential decay of our correlation function at large enough t:
C(t = ant) ∝ e−aEnt . One way to see how well this is being determined is
to fit neighbouring values of t = ant with a simple exponential,

C(nt)
C(nt − 1)

= exp{−aEeff(nt)nt} . (68)

If aEeff(nt) is independent of nt within errors for nt ≥ n0, then we can fit the
data with a single exponential for nt ≥ n0. Clearly, the smaller the errors
on C(nt ≥ n0) the more reliable will be the estimate of the energy.

In Fig. 19 I plot the values of a aEeff(nt; l) corresponding to the various
values of l in Fig. 18. At the smallest values of nt the errors are invisible
on this plot, but it is clear that we have precise control of the asymptotic
exponential decay for all our values of l. It is also clear, however, that the
range of nt ≥ n0 where aEeff(nt; l) is determined with useful accuracy shrinks
rapidly as l ↑ and that if we were to attempt a calculation at significantly
larger l we would soon lose control of the asymptotic exponential decay.

Let us now turn to a more precise analysis of how well the fits shown in
Fig. 18 actually work. There are many ways to do this, and here we do the
following, in analogy with the effective energy plots just shown. We define
effective coefficients (and string tensions) by

E0(l) = σeff l − ceff
π(D − 2)

6l
(69)
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Fig. 19. Effective energies, as in Eq. (68), which lead to the energies plotted in
Fig. 18.

and

E0(l) = σeff l

(
1− ceff

π(D − 2)
3σeff l2

)1/2

(70)

for the two kind of fits. We determine a2σeff and ceff for each pair of values
l = li, li+1 where li ≤ li+1 ∀i. Plotting the result in Fig. 20 — the horizontal
‘error bars’ indicate the distance between the values of li

√
σ and li+1

√
σ —

we observe that we appear to have

ceff
l→∞−→ 1 (71)

in both cases. That is to say, the central charge corresponds to a bosonic
string theory where the only massless modes on the flux tube are the trans-
verse oscillations.
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Fig. 20. SU(5) effective central charge: from the Luscher (•) and Nambu–Goto (◦)
fits in Eq. (69) and Eq. (70), respectively.

You may be disturbed by the ‘peak’ in ceff around l
√
σ = 3. This is

a nice example of the kind of statistical fluctuation (here ∼ 2.5 standard
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deviations) which is large enough to cause some hesitation, while being small
enough to arise quite regularly in numerical calculations. To check that it is
indeed a statistical fluctuation, I show in Fig. 21 a similar calculation, but
this time in SU(4) and with greater statistical accuracy. There are other
examples that I could show as well.
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Fig. 21. As in Fig. 20 but for SU(4).

Since the Luscher correction is only the leading correction in an expan-
sion in powers of 1/σl2, it is entirely expected that ceff(l) should deviate
significantly from unity as l decreases. What is much more of a surprise is
that for the Nambu–Goto fit, ceff ' 1 for all values of l. That is to say,
the deviations from Nambu–Goto are very small at all our values of l, even
down to l

√
σ ∼ 1− 2 where the flux tube is about as wide as it is long and

where it no longer ‘looks’ anything like an ideal thin string.
One might imagine that any such free string-like behaviour will arise

only at large N , if it is to arise anywhere. It is therefore interesting to go to
the smallest possible N and see what happens there. So in Fig. 22 I show
the corresponding plot for SU(2). (These calculations are fast and it is easy
to achieve very high statistical accuracy.) We observe a very similar pattern
to what we have seen at larger N . It appears that the free bosonic string
theory provides a very good approximation for all N .
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Fig. 22. As in Fig. 20 but for SU(2).
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Now, the Nambu–Goto expression for E0(l) becomes tachyonic for l
√
σ <

π/3, as we see from Eq. (61). Given that we find such good agreement with
Nambu–Goto, one might ask what happens as we approach this stringy
‘Hagedorn’ transition. ForN > 3 the critical deconfining length lc

√
σ > π/3,

so we no longer have a flux tube when l is reduced to π/3 and the question
cannot be addressed. However for SU(2) we have a second order phase
transition at lc

√
σ ∼ 0.9. What we find there, as shown in Fig. 23, is what

one would expect: as we approach lc the energy dependence is governed by
the critical exponents appropriate to the universality class of the transition
(the D = 2 Ising model) and so vanishes linearly in (l − lc). As l increases
this linear behaviour matches smoothly onto the square root behaviour of
the Nambu–Goto prediction. As we see from Fig. 23 this happens before
the turn-over to the would-be stringy transition at l

√
σ = π/3.
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Fig. 23. Ground state energy of closed flux tube in SU(2), for the length l ap-
proaching the deconfining transition.

7.3. Excited state energies

In Nambu–Goto, the deviation of E0(l) from σl is, to lowest order in
1/l2, simply the (regularised) sum of the zero point energies arising from
the quantisation of all the oscillation modes of all possible wavelengths,
λn = l/n. The fact that the flux tube is well-described by this at small l
is surprising because one would not expect that the excitations of a short
fat flux tube are the same as those of a thin string. Clearly the next step
is to calculate explictly the low-lying energy spectrum and see how it varies
with l.

In Fig. 24 I show the low-lying spectrum we obtain in SU(3) at a lattice
spacing a

√
σ ' 0.174 and for zero longitudinal momentum, q = 0. The

ground state is well fitted by Nambu–Goto as shown. This fit determines a2σ
and so the predictions shown for the excited states are completely parameter-
free. We find that the first excited state of the flux tube has positive parity,
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P = +, just as in the Nambu–Goto model. Moreover, as one can see from
Fig. 24, it agrees well with the predicted Nambu–Goto energy, NL = NR = 1
in Eq. (61), for l

√
σ ≥ 2. At this value of l the flux tube is almost as wide

as it is long, so it is quite remarkable that the excitation energy should be
so close to what one obtains from a pair of left and right moving phonons,
of the longest possible wavelengths, on a thin string.

The next four states become degenerate for larger l and are already nearly
so for l

√
σ ' 3. We find that two have P = + and two have P = −. This de-

generacy pattern is precisely as predicted by the Nambu–Goto model, where
the states are a1a1a−1a−1|0〉, a2a−2|0〉, a2a−1a−1|0〉, a1a1a−2|0〉 in the no-
tation of Section 6.3. Moreover we see that the average energy of these four
states is very close to the Nambu–Goto prediction, even at quite small l.
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Fig. 24. Low-lying spectrum of p = 0 flux tubes in SU(3), with P = + (×) and
P = − (◦) states. Lines are Nambu–Goto predictions.

Of course, all this is at a particular finite lattice spacing. To see whether
these results survive the continuum limit, we repeat the calculations at a
lattice spacing a

√
σ ' 0.087, which is smaller by about a factor of two.

(We also increase all our lattice sizes, in lattice units, by a factor of 2 so
that the volume is the same in physical units.) In Fig. 25 I compare the
energies obtained with the coarser and finer lattice spacings. There is no
visible variation, and we can confidently assume that our results also hold
in the continuum limit of SU(3).

It is clearly interesting to see what happens as we go to larger N since
that is the limit in which the effective string description has the most com-
pelling motivation. In Fig. 26 I compare what one obtains in SU(6) and
SU(3) at a (nearly) common value of a

√
σ ∼ 0.17. There is clearly very

little N -dependence. So what we are finding is also representative of SU(∞)
in the continuum limit.
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Fig. 25. Spectrum from Fig. 24, ×, compared to spectrum for a→ a/2, •.
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Fig. 26. Spectrum from Fig. 24, ×, compared to SU(6) spectrum, •, at the same a.

We now turn to flux tubes that have a non-zero longitudinal momentum.
As we remarked earlier, a flux tube with q 6= 0 must possess a deformation
if it is not to be null state, so this will provide us with further information
about the excitation spectrum. Moreover, since the energy of the ground
state in any sector with given quantum numbers is usually the one that
has the smallest systematic errors in our variational calculation, this will
enable us to obtain the corresponding flux tube excitation energies with no
ambiguity.

In Figs. 27 and 28 I show the results for the lowest non-zero momenta,
q = 1 and q = 2. We see that the ground states in each case fall very
precisely onto the parameter-free Nambu–Goto prediction and they have
the same quantum numbers as in the Nambu–Goto spectrum, i.e. P = −
with q = 1 (corresponding to a1|0〉) and a pair of degenerate P = + and
P = − states with q = 2 (corresponding to a1a1|0〉 and a2|0〉). We also note
that the energies of the excited states are, in each case, very close to the
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Nambu–Goto prediction, although their large energies (especially for q = 2)
means that the systematic errors are likely to be significant.
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Fig. 27. Spectrum of closed flux tubes with p = 2π/l in SU(3). Nambu–Goto
predictions shown, including p = 0 ground state from which we extract a

√
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Fig. 28. As in Fig. 27 but for p = 4π/l.

7.4. Comparison with theory

The fact that the physical flux tube has an excitation spectrum so similar
to that of a free string theory is striking and, especially at small l, counter-
intuitive. However, as we described in Section 6.4, recent analytic studies
have shown that the effective string action, when expanded in powers of 1/l,
is the same as the Nambu–Goto action up to O(1/l5). It is natural to ask
whether what we have seen is no more than a reflection of these results.

To answer this question we show again the q = 0 SU(3) spectrum in
Fig. 29, but this time accompanied by the theoretical prediction to O(1/l)
[44, 45] that one obtains from the leading Gaussian approximation



3300 M. Teper

(the ‘Luscher correction’), the one toO(1/l3) obtained by Luscher andWeisz,
and by Drummond in 2004 [40,49,50] and finally the one to O(1/l5) obtained
this year by Aharony and collaborators [42]. (To decrypt the figure, use the
rule that the curves that are higher order in 1/l are closer to Nambu–Goto
at larger l.)
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Fig. 29. Spectrum as in Fig. 24 with full NG predictions (solid) and the derivative
expansion (dashed) to O(1/l), O(1/l3), and O(1/l5).

We see that for the ground state these theoretical predictions do indeed
approach the numerically determined energy as we include terms of higher
order in 1/l. However this is not the case for the excited states, where there
is no tendency to approach the data — at least for l

√
σ < 4 for the first

excited level and l
√
σ < 6 for the second excited level. Indeed the oscillating

behaviour of the fits as we add extra terms is instantly reminiscent of the
behaviour of a series outside its radius of convergence. That this is indeed
what must be happening is clear from the radius of convergence of the series
expansion of the Nambu–Goto expansion:

Ek(l) = σl

(
1 +

8π
σl2

(
k − D − 2

24

))1/2

k≥1' σl

(
1 +

8π
σl2

k

)1/2

= σl
∑
n

cn

(
8πk
σl2

)n
: l

√
σ &
√

8πk . (72)
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Thus the fact that we find near-NG behaviour for En(l) for l
√
σ <
√

8πn
is something that does not follow from the recent analytic developments. The
latter address the l→∞ limit where En(l)−E0(l)� √σ. By contrast, we
find that the close agreement persists down to values of l where, as we see
from Fig. 29, we have En(l)−E0(l) >

√
σ. Thus the analytic and numerical

results are largely complementary, although the fact that they both point
towards the relevance of Nambu–Goto is surely no co-incidence.

7.5. Where are the massive modes?

The confining flux tube has a finite width ∼ 1/
√
σ. This implies that

the full description of the flux tube requires massive degrees of freedom in
addition to the massless transverse oscillations encoded in the free bosonic
string theory. These should make their presence felt in the observed excita-
tion spectrum. For example, the excitations of such massive modes should
lead to extra excited states with an energy gap ∆E ∼ O(

√
σ). (At least

this should be so in the simplest case of weak coupling between the different
modes.)

This is a quite general expectation, whether one starts from a semi-
classical intuition where one thinks of the confining flux tube as some kind of
dual non-Abelian Nielsen–Olesen vortex, or whether one relies on a gauge-
gravity duality intuition, where the massive modes arise from the highly
non-trivial metric in the vicinity of the horizon where the string, hanging
deep into the AdS5 space, acquires its linear energy.

What is the scale of these massive modes? Obviously O(
√
σ), but can

we be more precise? Presumably this same scale appears in the spectrum
of glueballs — either in the mass of the lightest glueball, or in the typical
excitation energy of the lightest glueballs. Extracting the values of these
from [1] we can make a plausible estimate

∆E = E − E0 ' 2
√
σ − 4

√
σ . (73)

Returning to the spectrum shown in Fig. 24 we find no sign of such
an extra state at the smaller and intermediate values of l where we have
confidence in our identification of all the states with E . 8

√
σ as being

string-like. This raises two possibilities:
• the excitation energy of the massive modes is much larger than ex-

pected so that they effectively play no role in the spectrum at any
value of l;
• our basis of lattice operators, although apparently large, has in fact a

small overlap onto these massive excitations so that they do not appear
in the numerically determined spectrum.
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Both of these possibilities would have interesting consequences. The first
would imply that we might well be able to describe most of the physics of the
gauge theory within a simple bosonic string model, with other modes being
so massive as to be largely decoupled. The second would suggest that there
is very little mixing between these massive modes and the stringy modes,
since we know that our operator basis has a good overlap onto all the light
stringy modes. This again should lead to a simplification in the dynamical
description of the theory. My suspicion is that the second possibility is the
correct one and that with a suitably extended basis of operators we will find
some massive excitations with the expected energy gap shown in Eq. (73).

The above discussion suggests that it would be useful to look at other
kinds of flux tubes where we know that there exist extra massive modes.
This leads us smoothly onto the subject of k-strings.

7.6. k-strings

So far we have considered confining flux tubes carrying flux in the funda-
mental representation i.e. the kind of flux tube that forms between distant
sources that are in the fundamental representation. One can also choose to
consider sources in higher representations of SU(N), and the corresponding
confining tubes carrying this flux. There are however gluons in the vacuum
and they can screen the sources down to other representations. This means
that a flux tube will be unstable if it can be screened by gluons to a flux tube
with a smaller string tension. For example the adjoint flux tube can become
a state with no flux tube. (Each adjoint source being totally screened by
an adjoint gluon.) As N → ∞ any given unstable flux tube will become
stable, and even in SU(3) it appears to make sense to discuss the qualitative
properties of such flux tubes [20]. However, since what we want to obtain
are quite precise calculations of energy eigenstates, an unstable flux tube,
with a finite energy width, is clearly not ideal.

Fortunately some of these flux tubes are absolutely stable at larger but
finite N . A simple way to see this is to recall that because gluons are adjoint,
they do not feel the centre ZN . So if we have a source that transforms non-
trivially under the centre as

ψ −→ zkψ : z ∈ ZN (74)

this transformation cannot change under screening. So we can categorise
such sources by the value of k in Eq. (74). When such a source and its
conjugate are far apart, the flux tube between them is often referred to,
generically, as a k-string. If the distance is large enough it will be energeti-
cally favourable to screen the sources with gluons so that the resulting flux
tube is the one with the smallest string tension in the sector of given k: call
it σk. This flux tube is completely stable and when we speak of a k-string
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this is what we are usually referring to. (Which usage is being employed,
the generic or the specific, will usually be clear from the context.) We note
that σk=1 = σf = σ is just the fundamental string tension. The different
values of k for a given SU(N) group are constrained by

zN = 1 , zk = zN−k : z ∈ ZN (75)

which immediately implies that the non trivial values of k are k = 1, 2, . . . ,
[N/2]. Thus we have to go to at least SU(4) to find a new stable flux tube
of this kind.

We can think of a local source for a generic k string as a localised collec-
tion of k fundamental sources (heavy ‘quarks’) with any number of gluons.
So the simplest example of a k-string is simply k separate fundamental flux
tubes between the k fundamental sources and their conjugates. Since one
finds [60, 66] that σk < kσ, we can think of the ground-state k-string as a
bound state of the k fundamental flux tubes.

As N → ∞ we have σk → kσ and so the binding energy vanishes. As-
sociated with the binding there will presumably be some massive excitation
of the string. For example, if one imagines that the k = 2 binding is due
to the exchange of scalar glueballs between the two fundamental flux tubes,
then these would provide the scale for the massive excitation. Note that
even though the binding energy → 0 as N → ∞ this does not mean that
the mass scale also vanishes; the loss of binding may simply be because the
relevant coupling vanishes in this limit (as would be the case for our glueball
exchange example). Nonetheless, the fact that a k-string does not survive
at N =∞ does weaken the theoretical argument for a clean effective string
theory description of the kind discussed earlier in this paper. So, one way
or another, k > 1 flux tubes promise to provide an interesting contrast to
the fundamental k = 1 flux tubes that we have studied so far, and that is
our main motivation in this section.

So let us begin with the specific case of SU(4) which is the smallest
group with stable k = 2 flux tubes. It is known [60, 67] that σk=2 ' 1.35σf
which implies that the two fundamental flux tubes are quite strongly bound.
Associated with this binding must be some massive excitation, and we would
hope to see its presence clearly encoded in the spectrum of k = 2 flux tubes
that wind around a spatial torus.

In Fig. 30 I plot the value of the ground state energy, E0(l), divided by
its asymptotic linear component, lσk, versus the length in units of

√
σk. (For

purposes of comparison with earlier figures, note that
√
σk=2 ' 1.16

√
σ.) I

also show a fit with a Luscher correction and a fit with Nambu–Goto. While
both of these fits clearly capture a large part of the deviation from linearity,
and the latter does somewhat better than the former, the Nambu–Goto fit
now has significant corrections, in contrast to the case of a k = 1 flux tube.
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Fig. 30. Ground state energy of the k = 2 flux tube, E0(l), normalised by its linear
piece, plotted versus l. For SU(4) at β = 32. Fits with the Luscher correction
(dashed) and with full Nambu–Goto (solid) are shown.
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Fig. 31. The effective central charge for k = 2 (•) and k = 1 (◦) flux tubes.

An alternative way to see this is to do a fit with an effective central
charge, using Eq. (70). We plot the result in Fig. 31 together with the
results obtained for a fundamental flux tube for the same lattice. We see
that, while the corrections are very much larger for k = 2 than for k = 1,
we still appear to have ceff(l) → 1 as l → ∞, i.e. the k = 2 flux tube
also appears to belong to the universality class of the simple bosonic string
theory.

We now turn to the lightest states with q 6= 0. Our results for these
are shown in Fig. 32 and are obtained in SU(4) at β = 50 (so at a lattice
spacing that is about 2/3 of the one considered above). For comparison we
also show the q = 0 ground state which serves to fix the value of a2σk for
the q 6= 0 Nambu–Goto predictions. (Note we use a different normalisation
than before, both for E and for l.) In Nambu–Goto the q = 1 state has
one phonon and so has P = −, while for the q = 2 level there are two
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Fig. 32. Spectrum of lightest k=2 flux tubes with momenta q=0, 1, 2, in SU(4).

degenerate possibilities: two phonons each with unit momentum (P = +)
and one phonon with two units of momentum (P = −). We note that these
are precisely the quantum numbers of the states we find, whose energies are
displayed in Fig. 32. We also note that the observed energies are very close
to the Nambu–Goto predictions for all values of l — just as we saw for the
fundamental flux tube in Figs. 27, 28.

NG NL = 2, NR = 0

ground state q = 2, P = +

ground state q = 2, P = −
NG NL = 1, NR = 0

ground state q = 1, P = −
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Fig. 33. The q = 1, 2 excitation energies ∆E in Eq. (76) plotted versus l.

Of course some of the extra energy of the q 6= 0 states comes from the p2

contribution to E2(p) and that is not peculiar to the Nambu–Goto model.
So to better expose the level of (dis)agreement with the model in Eq. (61),
we form the combination

∆E =
1
πσk

(
E2
n(l)− E2

0(l)−
(

2πq
l

)2
)

NG= 4 (NL +NR) (76)

and plot the results in Fig. 33. We see quite striking evidence for the re-
markably early onset, in l, of agreement with this simple free string model.
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We turn now to the first few excited k = 2 states in the q = 0 and
P = + sector, which is the analogue of the P = + sector of the k = 1 plot in
Fig. 24. We plot the resulting energies in Fig. 34. We simultaneously show
the predictions of the Nambu–Goto model with, as usual, the ground state

NGNL = NR = 2

NG NL = NR = 1

Fit for NGNL = NR = 0

NGNL = NR = 0

2A q = 0, P = + spectrum
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Fig. 34. The low-lying spectrum of closed k = 2 flux tubes with q = 0 and P = +,
in SU(4).

fit providing the value of a2σk. The contrast with Fig. 24 is quite striking.
Here we have large deviations from the free string predictions, even for our
longest flux tubes. In particular, we observe that the first excited state is
roughly consistent with our expectation for a massive mode excitation of
the flux tube, as in Eq. (47). However it is also consistent with being a
stringy excitation, with large corrections, which is approaching the Nambu–
Goto predicton at very large l. One way to resolve this ambiguity is to
compare the wave-function of this first excited k = 2 excitation with that
of the first excited k = 1 excitation, since we are confident that the latter is
a massless stringy mode. This was done in [67] where we showed that the
wave-functions are in fact nearly identical. This makes it very likely that
what we are seeing here is not the excitation of some quite different massive
mode, but a conventional massless mode, albeit with large corrections to the
free string result.

We now briefly turn to the question of flux tubes that carry flux in
different representations of SU(N) for a given k. Our basis of k = 2 operators
contains two representations, the totally anti-symmetric, k = 2A, and the
totally symmetric, k = 2S. (If we had the foresight to use a larger basis, we
would have been able to discuss other representations!) When we perform
the variational calculation in this basis we find that the low-lying ground
and excited states fall either into the k = 2A or the k = 2S sectors with
very little mixing between the two sectors [66,67]. In particular the lightest
states with q = 0, 1, 2 are k = 2A. The energies of the corresponding
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k = 2S states are displayed in Fig. 35. These states are much heavier
and consequently our calculations suffer from much greater systematic (and
statistical) errors. Nonetheless it is clear that these states are also well-
described by the Nambu–Goto model, albeit with a considerably larger string
tension, σ2S . (Aside: the k = 2S q = 0 ground state would have been
lighter, for some l, than some of the excited states shown in Fig. 34, but to
avoid a messy plot I did not include it therein.) I do not show the q = 0
excited states of k = 2S flux tubes: these have very large deviations from
the Nambu–Goto predictions [67].

NG NL = 2, NR = 0

ground state q = 2, P = +

ground state q = 2, P = −
NG NL = 1, NR = 0

ground state q = 1, P = −
NG NL = NR = 0

ground state q = 0, P = +
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Fig. 35. Spectrum of lightest k = 2 flux tubes, with momenta q = 0, 1, 2, in the
totally symmetric representation, for SU(4).

While our above foray into non-fundamental flux tubes has not uncovered
any unambiguous signal for the excitation of massive modes, we have seen
that at least some excitations of k = 2 flux tubes have much larger deviations
from the Nambu–Goto predictions than the k = 1 fundamental flux tube.
However the overall picture is still one of a surprising level of agreement with
the free string theory, down to quite small l. When we consider flux in higher
representations the deviations become even larger. But what appears to be
the case is that such unstable,‘resonance’-like, flux tubes can be labelled by
the flux representation, to a good approximation, as can the corresponding
tower of string-like excitations.

8. The spectrum of closed flux tubes: D = 3 + 1

We are, of course, ultimately more interested in D = 3 + 1 than in
D = 2 + 1. So what do we find if we study the closed flux tube spectrum in
that case?
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One difference is that one loses confinement on a slightly longer length
scale: lc

√
σ =

√
σ/Tc ∼ 1.6 from Eq. (33). The large-l theoretical analysis

in Section 6 goes through, with some qualifications that I will not dwell
upon. And there are more quantum numbers, which is where I shall start.

The numerical results are all taken from [68]. We have performed calcu-
lations in SU(3) at two values of a. This enables us to confirm that what we
are seeing is, to a very good approximation, the physics of the continuum
theory. We also perform a calculation of the ground state in SU(6) and of
the excited state spectrum in SU(5) (at the coarser lattice spacing) which
allows us to confirm that there is very little N dependence. We will not dwell
on these points any further in the following brief overview of our current,
still incomplete results and analysis.

8.1. Quantum numbers and operators

There are now two transverse directions, and so we have rotations and
corresponding angular momenta around the ‘symmetry axis’ of the flux tube.
The massless ‘phonons’ living on the string now carry not only momentum
and energy but also unit angular momentum, with positive or negative he-
licity.

The quantum numbers of the flux tube can be conveniently encoded as
follows.
• There is the length l of the x-torus around which the flux tube winds.
• There is also the number of times, w, that the flux tube winds around this
torus, but we shall only consider w = 1 from now on.
• Then there is the momentum along the flux tube, p = 2πq/l. (Transverse
momentum is not interesting, for the same reason as in D = 2 + 1.)
• There is the projection of angular momentum onto the symmetry axis of
the flux tube, J = 0,±1,. . . .
• There is also a transverse parity, Pρ, in the plane that is transverse to the
axis, and which is analogous to the D = 2 + 1 parity. Under this parity
J → −J . Since we choose to use this parity to label our states, we must use
|J | rather than J as the spin label, and so when we refer to J , it is to be
understood as |J | from now on.
• For p = 0 there is a reflection symmetry x → −x which defines a cor-
responding parity we call Pr; it reverses the momenta of the individual
phonons.

To have a chance of a good overlap onto the ground state and some
excited states for each of these quantum numbers, we need a very large
basis of operators. If we imagine taking the O(200) deformations we used in
D = 2 + 1 and using them independently in the two transverse directions,
we have ∼ 40000 operators which is much too large in practice. So instead
we choose only ∼ 700 operators.
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In practice we find that our overlaps for the excited states are not nearly
as good as they were in D = 2 + 1, and our calculations have, inevitably,
larger statistical and systematic errors. Moreover, for some quantum num-
bers the ground states themselves appear to have too large a mass for us to
be able to extract an energy with any confidence. However even though the
spectrum we obtain is incomplete, it possesses, as we shall see, some striking
regularities.

8.2. Ground state energy

Our first calculation is in SU(3) at β = 6.0625, which corresponds to
a lattice spacing of a

√
σ ' 0.195. We focus on the absolute ground state,

with no phonon excitations, and with quantum numbers p = 0, J = 0, Pr =
+, Pρ = +.

We perform calculations for several values of l, starting close to the
critical value lc

√
σ ∼ 1.55. We then extract an effective central charge,

ceff(l) using Eqs. (69), (70). The resulting plot, in Fig. 36, can be compared
to the similar plot for D = 2+1 in, say, Fig. 21. At first sight they look very
similar. Just as in D = 2 + 1, we clearly have ceff → 1 as l→∞, so here too
the effective string theory is in the universality class of the bosonic string
theory where the only massless modes are the goldstone modes associated
with the spontaneous breaking of transverse translation symmetry. Moreover
we find ceff ' 1 ∀ l when using the Nambu–Goto expression in Eqs. (70),
showing that this expression captures most of the l-dependence. However,
looking more closely, it is clear that the deviations from unity while small
are nonetheless significantly larger in D = 3+1 than they were in D = 2+1.
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Fig. 36. Effective central charge: from Luscher (•) and Nambu–Goto (◦) using
Eqs. (69), (70).
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8.3. Excited state energies

We now turn to the lightest states with momenta q = 0, 1, 2. We show
our results for the ground states in these channels in Fig. 37, together with
the Nambu–Goto predictions. (These have been obtained in the SU(3) cal-
culation with the finer lattice spacing.) As usual the string tension comes
from the fit to the q = 0 ground state, so that the Nambu–Goto predictions
for q = 1, 2 are completely parameter-free.

l
√

σ

E√
σ

43.532.521.5

8

6

4

2

0

Fig. 37. Lightest states with momenta q = 0, 1, 2, and the Nambu–Goto predictions.

We observe that the states are in remarkable agreement with the Nambu–
Goto predictions. Moreover the quantum numbers are as expected from the
latter:

• The q = 0 ground state has no phonon excitations and so has J = 0,
Pρ = Pr = +.

• The q = 1 ground state has one phonon of minimum momentum. So
this has J = 1. On a cubic lattice, this state has an exact Pρ = ±
degeneracy, so we only calculate and show the Pρ = + state.

• The q = 2 ground states can be formed from two phonons of minimum
momentum each, or one phonon with double this momentum. (These
are all degenerate in the Nambu–Goto model.) The latter can have
unit positive or negative helicity, or equivalently, in our preferred basis,
J = 1 and Pρ = ±. In the former case each phonon has positive or
negative helicity, which means there are three states with J = 0,±2,
or, again in our preferred basis, J = 0 and J = 2, Pρ = ±. These are
precisely the quantum numbers of the nearly degenerate states shown
in Fig. 37. (There are four in our plot rather than five because we do
not show both of the exactly degenerate J = 1 states.)
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While the energies of the q = 2 ground states are nearly degenerate, there
is a visible splitting between them. While this may be real, we caution the
reader that for such massive states, for which some of our operator overlaps
are modest, it is possible that the systematic errors are comparable to these
splittings. Better calculations are needed.

We turn now to a comparison of the lightest and first excited levels in
the q = 0 sector. These are shown in Fig. 38 and come from the SU(3) cal-
culation on the coarser lattice, at β = 6.0625. The Nambu–Goto predictions
for the ground and first excited energy levels are also shown. The fit to the
ground state fixes the value of a2σ so that the prediction for the first excited
level is parameter free. The first excited level will have two phonons of equal
and opposite momentum. Since each of these can have positive or negative
helicity there will be four states, two with J = 0 and two with J = 2. These
four states of various Pρ and Pr, are degenerate in the Nambu–Goto model.
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Fig. 38. The ground and first excited level in the q = 0 sector.

What we see in Fig. 38 is that while the lightest four states above the
ground state do indeed have precisely the Nambu–Goto quantum numbers,
only 3 of them are nearly degenerate and close to the Nambu–Goto pre-
diction, while the fourth is far from that prediction, even for l

√
σ ∼ 4.

The quantum numbers of this anomalous state are J = 0, Pρ = Pr = −.
While one might be reassured that at least it appears to be approaching
the other states as l ↑, we also observe that its gap from the ground state
is roughly independent of l. This might suggest that it is a massive rather
than a stringy excitation and that it will ‘cross’ the first excited stringy en-
ergy level rather than asymptoting towards it as l → ∞. So at this stage
we are left not knowing whether this state is a stringy excitation with an
anomalously large interaction energy or something quite different: for ex-
ample an excitation of the massive modes associated with the non-trivial
structure of the confining flux tube. We remark that because this state is
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relatively light, and because it has a good overlap onto our operator basis,
the energy calculation is particularly reliable. We also note that we obtain
essentially the same q = 0 spectrum at the smaller lattice spacing, and in
the SU(5) calculation. This tells us that the anomalous behaviour of this
J = 0, Pρ = Pr = − state is neither a lattice artifact nor some finite-N
correction. It is indeed a feature of the large-N continuum theory.

We turn now to a comparison of the ground and first excited levels in
the q = 1 sector. Here the ground state has one phonon and so can have
spin ±1, or J = 1 and Pρ = ± in our preferred basis. As usual we will only
show one of these exactly degenerate states. The first excited level can be
produced by 2 left and 1 right moving phonons, all with unit momentum,
or by 1 left moving phonon with momentum two and 1 right mover with
unit momentum. Since all these phonons have spin ±1 one has states with
J = 0, 2, 3 each with Pρ = ±, and 2 sets of states with J = 1, Pρ = ±,
i.e. 10 states in all, and they are all degenerate in the Nambu–Goto model.
(In counting states there are fewer than naive combinatorics would suggest
because some are the same state because the phonon operators commute.)

We show in Fig. 39 how our calculated q = 1 energy levels, obtained
in SU(3) at the finer lattice spacing, compare to those of the Nambu–Goto
model. Since a2σ has been fixed by the fit to the q = 0 ground state, these
are all parameter-free predictions. The q = 1 ground state agrees very well
with the prediction, but we have already seen that in Fig. 37. As for the first
excited level, our calculation is incomplete because the combination of large
energies and, in some cases, poorer overlaps means that we are only able to
extract 4 states with any reliability. These have quantum numbers that are
amongst those expected within the Nambu–Goto model, and three of the
states have energies that are close to those predicted by the model. However
the fourth state, with quantum numbers J = 0, Pρ = − is much lower, and
indeed much closer to the q = 1 ground state than to the first excited level,
and shows no sign of approaching the NG prediction as l increases. This
discrepancy is slightly less on the coarser lattice spacing, indicating that
it will probably be even larger in the continuum limit. It is also larger in
the SU(5) calculation, suggesting that this state will be even closer to the
ground state at N = ∞. Again this strikingly anomalous state is clearly a
feature of the continuum large-N physics.

So our overall conclusion is that, just as in D = 2 + 1, typical states are
very close to the Nambu–Goto prediction, even down to very small values
of l
√
σ where the flux tube is far from being a ‘thin string’ and where an

expansion of En(l) in inverse powers of 1/σl2 has long ceased to converge.
However at the same time there are some states which deviate so far from
the free string theory prediction that it is entirely plausible that they involve
massive rather than just stringy excitations.
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Fig. 39. The ground state and first excited level in the q = 1 sector.

9. Conclusions

My paper has covered two loosely linked topics.
In the first part of my paper I described in some detail how the lattice

has answered some important questions about SU(N) gauge theories in the
’t Hooft large N limit. For example, we now have quite convincing evidence
that the SU(∞) theory is linearly confining for temperatures T < Tc, and
that the deconfining temperature remains finite and non-zero as N → ∞.
Importantly — from the phenomenological point of view — it turns out
that many quantities show small corrections as we go from SU(3) to SU(∞).
That is to say, N = 3 is ‘close to’ N = ∞. And where we have looked,
we find that ’t Hooft’s large N counting, derived by looking at diagrams to
all orders, is corroborated by the non-perturbative lattice calculations: e.g.
g2 ∝ 1/N as N →∞. (This comment does not apply to the way σk → kσ as
N →∞ [66], but that is another story.) We also spent some time on physics
at finite T , in particular in the region above but close to Tc where RHIC
experiments have been very active and calculations based on gauge-gravity
duality have been widely employed. We showed that the strong coupling
plasma in this region is very similar in SU(3) and SU(∞), as needs to be
the case if the AdS/CFT calculations are to have any relevance. All this is
‘good news’ for the application of large N arguments to the real world.

The situation is currently less clear as far as the meson spectrum of QCD
is concerned. Here there have been three calculations of the ρ and π mesons.
Two have shown that mρ has a weak dependence on N , while one shows a
strong dependence. While the methods used in the two sets of calculations
are very different, the overlap in what is actually being calculated is large
enough that it is clear that (at least) one set of calculations must be incorrect.
This needs to be resolved and urgently.
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The computational cost of such calculations is modest and, as discussed
in my paper, grows with N quite weakly for calculations with quarks. As-
suming that when things are clarified we find that QCDN=3 ' QCDN=∞,
for the prominent low-lying mesons there are some very interesting questions
to address here. The point is that at large N mixings vanish so we will have
a clean separation between qq̄ mesons and glueballs. And all the states be-
come stable so we should get well-defined excited states, including qq̄ radial
excitations. Interactions between colour singlet states vanish, so ‘molecular’
states should disappear from the spectrum. One can therefore obtain a clean
and precise spectrum to as high a mass as one’s computing resources allow.
Such a spectrum, beyond its elegance and the dynamical insights it might
provide, would be of great value in interpreting hadron spectroscopy in the
real world.

In the second part of this paper I focused on a very specific question:
what is the effective string theory that describes confining flux tubes? Even
a partial answer to this question will clearly be important in the search
for an answer to the broader question of what is the string theory that
describes SU(N) gauge theories in the N →∞ limit. Gauge-gravity duality
has brought a new and more precise focus to this long-standing issue.

At the theoretical level it is simplest to restrict oneself to the massless
modes of the string that are associated with the spontaneous breaking of the
transverse translation invariance. For a long string, l � 1/

√
σ, the lightest

such modes lead to energy levels that are within ∆E ∼ O(π/l)� √σ of the
ground state, and this is where one would expect such an effective theory
to be valid. The derivative expansion of the effective action leads to con-
tributions of higher order in 1/l2 to the string partition function evaluated
on a cylinder or on a torus, and so to the corresponding partition functions
for the open and/or closed flux tubes that sweep out the surfaces with the
corresponding boundaries. The relationship between these string and field
theoretic partition functions can only become exact in the N = ∞ limit.
I sketched, in some detail, the recent, quite dramatic analytic progress on
using this relationship to constrain the form of the corrections to the energy
spectrum of long strings. As a result we now know that not only is the
Luscher O(1/l) correction to the linear σl piece universal, but so are the
terms of O(1/l3) and of O(1/l5). (Up to some dimension-dependent qualifi-
cations.) Moreover these terms are exactly the same as one finds in the free
string theory described by the Nambu–Goto action in flat space-time. (This
follows automatically since Nambu–Goto theory satisfies the same theoreti-
cal constraints.) Thus the effective string theory describing the low-energy
excitations of a long flux-tube is, to this quite high order, precisely a free
string theory.
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The numerical calculations are largely complementary to the analytic
analysis in that they provide information on the energy spectrum of confining
flux tubes that are of short or intermediate length, i.e. l ∼ O(1/

√
σ). While

there is a plausible overlap in l between the range of validity of the analytic
and numerical calculations for the ground state, this quickly disappears as
we go to more highly excited states. This is not by choice, but rather because
the energy of a very long flux tube is large, and the corresponding correlation
function disappears very rapidly, ∝ exp{−aEn(l)nt}, into the statistical
noise of the Monte Carlo calculation. For l

√
σ ∈ (1.5, 4.5) however, we are

able to obtain very accurate results for the lightest energy levels, particularly
in D = 2 + 1. In this case we find that the ground and excited states can
be accurately described by the Nambu–Goto model, almost down to the
critical length lc ' 1/

√
σ where one loses confinement. For such values of

l, for example for l
√
σ ' 2, the flux tube is almost as wide as it is long

— naively it is more like a fat blob than a thin string. It is remarkable
that the lowest excitations of this ‘fat blob’ remain almost precisely those
of a thin string. The more so that at such low values of l the Nambu–Goto
expression for the energy of the excited states can no longer be expanded in
a convergent power series in powers of 1/l.

So in D = 2 + 1, the theoretical analysis tells us that the effective string
action is Nambu–Goto-like to some high order in 1/l. Numerical results
tell us that this continues to be the case even when l is so small that an
expansion in 1/l2 has long ceased to converge. We take this to be strong
evidence that there is a useful effective string action for confining flux tubes
not only at very large l, but at almost all values of l, and that an accurate
first approximation to such an action is the Nambu–Goto free string theory.

We can be a little more specific. Let the actual energy level be En(l), and
let ENG

n (l) be the corresponding energy level in the Nambu–Goto model, as
given by the square root expression in Eq. (62) arising from Eq. (61). Then
if at large l the leading correction arises at O(1/lα), we can write for the
low-lying excited states

En(l) = ENG
n (l) +

c
√
σ

(l
√
σ)α

Fn(l
√
σ) , Fn(l

√
σ) l→∞−→ 1 , (77)

where we know, from the theoretical analyses that

α ≥ 7 (78)

and from the numerical calculations that the correction

∆En(l) =
c
√
σ

(l
√
σ)α)

Fn(l
√
σ)� En(l), l ∈ [l0, l1] , (79)
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where the range [l0, l1] extends from well below the value of l where the
expansion of ENG

n (l) no longer converges. (Recall that ENG
n (l) is completely

fixed once we have determined the string tension from the calculation of the
ground state, E0(l)).

An important puzzle is that we observe no excitations of massive modes,
with say E(l) − E0(l) ∼ O(

√
σ), even at the smaller values of l where they

should be clearly visible (unless the energy gap is unexpectedly large). Pre-
sumably our basis of operators has a small overlap with such states. This
again suggests a weak coupling between stringy and massive modes, and
needs clarification.

We also studied k = 2 flux tubes which can be thought of as bound states
of two fundamental flux tubes. Here the binding, if nothing else, tells us that
there must be associated massive modes. While we do not see any modes
that are clearly massive excitations, we do find quite large corrections to the
Nambu–Goto eigenspectrum for some eigenstates. Since there is no large-N
limit to such flux tubes, in the sense that the binding vanishes atN =∞, the
theoretical basis for this analysis is less rigorous. However the comparison
does confirm that there is something very special and simple about the
elementary flux tubes that carry flux in the fundamental representation.

Our results for D = 3 + 1 are incomplete and not yet published. There
is a richer spectrum of states, because there are more relevant quantum
numbers once we have two transverse directions. By the same token our
calculations are less accurate because our basis of operators is significantly
less complete than it was in the lower dimension. Despite these caveats,
we have established some striking regularities. As in the lower dimension,
many states have energies close to the Nambu–Goto prediction even for l
close to the deconfining length scale, lc

√
σ ∼ 1.5. However, now there is a

new feature, and that is that there are a few states that are very far from
Nambu–Goto and show no sign of approaching the predicted energy levels
as l increases. Are these anomalous states related to the massive excitations
of the flux tube that have eluded us, so far, in two spatial dimensions? This
remains to be understood. The fact that the overall picture has this clear
binary character, gives us some confidence that it can be simply understood.

The calculations that I have summarised or merely referred to in this
paper, are mostly a first attempt to get a rough idea of the physics of SU(∞)
gauge theories. Perhaps their main virtue is to point to the huge amount of
interesting physics that is waiting to be done, and to provide a demonstration
that lattice calculations can address such questions with readily available
resources. I hope that this will encourage you to get actively involved.
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