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We study the fluid-like dynamics of eigenvalues of the Wilson operator
in the context of the order–disorder (Durhuus–Olesen) transition in large
Nc Yang–Mills theory. We link the universal behavior at the closure of
the gap found by Narayanan and Neuberger to the phenomenon of spectral
shock waves in the complex Burgers equation, where the role of viscosity is
played by 1/Nc. Next, we explain the relation between the universal behav-
ior of eigenvalues and certain class of random matrix models. Finally, we
conclude the discussion of universality by recalling exact analogies between
Yang–Mills theories at large Nc and the so-called diffraction catastrophes.

PACS numbers: 05.40.–a, 11.15.Tk, 12.38.–t

1. Introduction

Many efforts continue to be devoted to the study of QCD in the limit of
a large number of colors, after the initial suggestion by ’t Hooft [1]. This, in
part, is due to the general belief that the large Nc limit captures the essence
of confinement, one of the most elusive of QCD properties. At the same
time the theory simplifies considerably in the large Nc limit: fluctuations die
out and the measure of integration over field configurations in the partition
function becomes localized at one particular configuration, making the large
Nc limit akin to a classical approximation [2].
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Many results have been obtained in the simple case of 2 dimensions.
Then Yang–Mills theory translates into a large Nc matrix model, where the
size of the unitary matrix is identified with the number of colors. More
specifically, the basic observable that one considers is the Wilson loop along
a (simple) curve C

W [A] = P exp

i∮
C

Aµdxµ

 , (1)

where Aµ = AaµT
a, with T a the generators of SU(Nc) in some represen-

tation. In the fundamental representation, W [A] is an Nc × Nc unitary
matrix with unit determinant. Its eigenvalues are of the form λ = exp(iθ)
and can be associated with points on the unit circle. After averaging over
the gauge field configurations, with the usual Yang–Mills measure, one finds
that W = 〈W [A]〉 depends in fact only on the area A enclosed by C, to
within a normalization [3]. It is convenient to measure the area in units of
the ’t Hooft coupling g2Nc, i.e., we set τ ∼ g2NcA. In the limit Nc → ∞,
the eigenvalues are distributed on the unit circle according to an average
density ρ(θ, τ).

The typical behavior of the distribution of eigenvalues as a function of
the area is displayed in Fig. 1. One observes that for small loops (which
probe short distance, perturbative physics), the spectrum does not cover the
whole unit circle, but exhibits a gap; in contrast, for very large loops (which
probe long distance, nonperturbative physics) the spectrum covers uniformly
the unit circle (gapless phase). This behavior of the spectrum agrees with
the order (gapped)-disorder (gapless) transition, proposed by Durhuus and

Fig. 1. The evolution of the spectral density as a function of the area A of the
average Wilson loop (d = 2). The plots of ρ(θ,A) at the bottom are taken from
the simulations of Ref. [6].
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Olesen [3] and based on the explicit solution of the corresponding Makeenko–
Migdal equations [4] in 2 dimensions. Surprisingly, a similar critical behavior
has been observed also in d = 3 dimensions and conjectured to hold in d = 4
large Nc Yang–Mills theory [5], suggesting a universal behavior (see the
lectures by Neuberger and Narayanan in these volume, to which we also
refer for a discussion of the subtleties of the regularization of the Wilson
loops).

This universality conjectured by Narayanan and Neuberger is comforted
by simple schematic matrix models, in particular that proposed by Janik
and Wieczorek [6], hereafter JW model. The model stems from the general
construction of multiplicative free evolution [7], where increments are mutu-
ally free in the sense of Voiculescu [8, 9]. The unitary realization in the JW
model corresponds to matrix value unitary random walk, where the evolu-
tion operator is the ordered string of consecutive multiplications of infinitely
large unitary matrices

W =

〈
K∏
k

Uk

〉
, (2)

where Uk = exp i
(√

t/KHk

)
, with Hk a hermitian random matrix, drawn

from a Gaussian probability distribution P (H) of the form

P (H) ∼ e−NTrV (H) ,

〈
1
N

TrH
〉

= 0 ,
〈

1
N

TrH2

〉
= m2 . (3)

The model is a random matrix generalization of the multiplicative random
walk performed in K steps during “time” t. In the continuum limit K →∞,
the model is exactly solvable. The solution for the spectral density coincides
exactly with that of the two-dimensional QCD, provided one identifies t
with the area of the Wilson loop, modulo a normalization [10]. This model
offers a neat picture for the multiplicative evolution: at t = 0, the spectrum
of W is localized at λ = 1. As t increases, the spectrum starts to spread
symmetrically along the unit circle towards the point λ = −1, reaching
this point and closing the gap at finite time. Further evolution corresponds
to further spreading of eigenvalues around the circle, resulting finally in a
uniform distribution (see Fig. 1).

Neuberger and Narayanan [5] have observed, that large Nc Yang–Mills
lattice simulations in d = 2 and d = 3 demonstrate the same critical scaling
at the closure of the gap as in the JW model and have conjectured that
this model establishes a universality class for d = 4 large Nc Yang–Mills
theory as well. In their simulations, Narayanan and Neuberger [5] did not
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calculate the spectral density directly, but rather the average characteristic
polynomial

QNc(z, t) ≡ 〈det(z −W (t))〉 . (4)

As we shall see later, this contains the same information as the spectral
density when Nc → ∞. Narayanan and Neuberger performed simulations
at finite Nc and obtained evidence that the crossover region between the
gapped and gapless regimes is becoming infinitely thin as Nc →∞.

2. Spectral density and resolvent

The object at the heart of our discussion will be the average density of
eigenvalues ρ(θ, τ), defined so that the number of eigenvalues of the Wil-
son operator in the interval [θ, θ + dθ], after averaging over the gauge field
configurations loops of a given area A ∼ τ , is ρ(θ, τ)dθ.

2.1. The spectral density and its moments

The spectral density ρ(θ, τ) is not available in analytic form, but its
moments

wn(τ) ≡ 〈tr [W [A]]n〉τ =

+π∫
−π

dθ einθρ(θ, τ) (5)

are. An explicit, compact form for these moments is given in Ref. [14] in
terms of an integral representation

wn(τ) =
1
n

∮
dz

2πi
(1 + 1/z)n exp(−nτ(z + 1/2))

=
1
n
L1

(n−1)(nτ) exp(−nτ/2) , (6)

where the representation of Laguerre polynomials, used in the second line,
allows connection to results known already 25 years ago [3, 11].

The Durhuus–Olesen transition can be seen by studying the asymptotic
behavior of these Laguerre polynomials, using a saddle point analysis of
their integral representation [12, 13]. The result is surprising: for a loop
area below the critical value τc = 4, the moments oscillate and decay like
n−3/2, while for τ > τc the moments decay exponentially with n, modulo
similar power behavior. Both regimes are separated by a double scaling
limit.
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Let us quote here the values of the first couple of moments. The nor-
malization of the spectral density is given by

w0 =

π∫
−π

dθρ(θ) = 1 . (7)

The first moment expresses the area law obeyed by the average of the Wilson
operator

w1 = e−τ/2 . (8)

More generally, since ρ is real, w∗n = w−n, and since the moments, as given
by the formula above are real, we have (n > 0) w−n = wn. Thus we can
express ρ as follows

ρ(θ) =
1

2π

+∞∑
m=−∞

wme
−imθ

=
1

2π

(
1 +

+∞∑
n=1

2wn cos(nθ)

)
. (9)

Note that, for τ = 0, wn = 1 for all n, and

ρ(θ, τ = 0) =
1

2π

+∞∑
m=−∞

e−imθ

=
+∞∑

n=−∞
δ(θ + 2nπ)

= δ(θ) , (10)

where we used Poisson summation formula, and in the last line the restriction
−π < θ ≤ π.

2.2. The resolvent

To the spectral density one may associate a resolvent, defined as

G(z) =

+π∫
−π

dθ
ρ(θ)
z − eiθ

. (11)
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For |z| > 1 we can expand the integrand in a power series of eiθ/z and get

zG(z)− 1 =
∞∑
n=1

wn
zn
≡ f(z) , (12)

where the function f is the same as that introduced in Ref. [6]. By setting
z = eiα, we can also write

f(z = eiα) =
∞∑
n=1

wne
−inα (13)

with Imα < 0 to guarantee the convergence of the sum.
Now we introduce a new function that will play a central role in our

discussion. We set [14]:

F (z = eiα) ≡ i

(
f(z) +

1
2

)
= i

(
zG(z)− 1

2

)
= i

(
1
2

+
+∞∑
n=1

wne
−inα

)
, (14)

where in the last line we assume Imα < 0. The imaginary part of F yields
the spectral density (θ real)

ρ(θ) =
1
π

ImF
(
z = eiθ

)
. (15)

We can also write (α and θ real)

F (z = eiα) = i

+π∫
−π

dθ ρ(θ)
{

eiα

eiα − eiθ
− 1

2

}
, (16)

so that

F (z = eiα) =
1
2

+π∫
−π

dθ ρ(θ) cot
(
α− θ

2

)
. (17)

At this point, we shall make an abuse of notation and write F (α) for
F (z = eiα), and furthermore we shall allow α to be complex. One can then
write, for real α

1
π
F (α) = Hρ(α) + iρ(α) , (18)
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where Hρ(α) is the Hilbert transform

Hρ(α) =
1

2π
P.V.

+π∫
−π

dθ ρ(θ) cot
(
α− θ

2

)
. (19)

Note that there is a choice of sign for the imaginary part, related on where
we decide to view F as analytic (lower or upper plane), that is, on how we
take the limit from complex α to real α. The present choice corresponds to
choosing F to be analytic in the lower half-plane.

The following properties of the Hilbert transform will be useful

Heiα =
1

2π
P.V.

+π∫
−π

dθ eiθ cot
(
α− θ

2

)
= −ieiα . (20)

It follows that

H cosα = sinα , H sinα = − cosα . (21)

We have also

H(H(f)) = −f ,
H(fg) = fH(g) + gH(f) +H[H(f)H(g)] , (22)

from which it follows in particular that

H[H(ρ)ρ] = 1
2

(
(H(ρ))2 − ρ2

)
. (23)

3. Complex Burgers equation and its solution
with characteristics

The usefulness of the function F that we have introduced comes from
the fact that it satisfies a simple equation, the complex Burgers equation
[3, 11,14]:

∂τF + F∂θF = 0 . (24)

This equation is analogous to the real Burgers equation of fluid dynamics [15]
(with τ playing the role of time, θ that of a coordinate, and F0 of a veloc-
ity field). The complex Burgers equation is omnipresent in Free Random
Variables calculus [8]. It also appears frequently as one dimensional models
for quasi-geostrophic equations, describing e.g. the dynamics of the mixture
of cold and hot air and the fronts between them [16]. Here, we shall take
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Fig. 2. Characteristic lines for τ ≤ 4, α = ξ + τ
2 cot ξ2 , with α = θ real on the

vertical axis, and τ on the horizontal axis. The various straight lines are given by
the characteristic equation (33) in which ξ = x is treated as a parameter. The
horizontal characteristic corresponds to x = π, the first one, almost vertical, to
x = 0.1.

advantage of the abundant mathematical studies of the complex Burgers
equation to analyze the flow of eigenvalues of Wilson loop operators. We
shall in particular use the crucial fact that the complex Burgers equation
may allow for the formation of shocks.

A simple derivation of the complex Burgers equation will be given in
Sec. 5 below. In this section we shall analyze general properties of its solu-
tions, using the method of complex characteristics.

3.1. Characteristics

The Burgers equation

∂τF + F∂αF = 0 . (25)

admits the following solution in terms of characteristics

F (τ, α)=F0(ξ(τ, α)) , F0(α)=F (τ= 0, α) , α=ξ+τF0(ξ) . (26)

The initial condition F0 corresponding to a spectral density peaked at θ = 0,

ρ0(θ) = δ(θ) , (27)

is

F0(α) =
1
2

cot
α

2
. (28)
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The characteristics are therefore given by

α = ξ +
τ

2
cot

ξ

2
, (29)

with α complex. Once ξ(α, τ) is known, F (α, τ) can be obtained as F (α, τ) =
(α − ξ)/τ . In particular, for real α, we have ImF = −(1/τ)Imξ, so that
ρ = −y/(τπ), with y = Imξ. Alternatively, one may look for F as the
solution of the implicit equation

F =
1
2

cot (ξ + τF ) . (30)

We shall set ξ = x + iy, and α = θ + iη. Then, by taking the real and
imaginary parts of the characteristic equation, we get

θ = x+ τey
sinx

1− 2ey cosx+ e2y
= x+

τ

2
sinx

cosh y − cosx
,

η = y +
τ

2
1− e2y

1− 2ey cosx+ e2y
= y − τ

2
sinh y

cosh y − cosx
. (31)

The characteristics form a family of straight lines in the (θ, η) plane, θ(τ),
η(τ), that depend on the parameters x and y (the values of θ and η at τ = 0).
Since the functions θ(x, y) and η(x, y) are the real and imaginary parts of an
analytic function, α(ξ) given by Eq. (29), they satisfy the Cauchy–Riemann
conditions:

∂θ

∂x
= 1 +

A

2
cosx cosh y − 1
(cosh y − cosx)2

=
∂η

∂y
,

∂θ

∂y
= − sinx sinh y

2(cosh y − cosx)2
= −∂η

∂x
. (32)

An example of characteristic functions θ(x, y) and η(x, y) is displayed in
Fig. 3.

As a simpler illustration, we note that the characteristics that start at
y = 0, and 0 ≤ x ≤ π, remain in the plane η = 0 as τ varies. They are
plotted in Fig. 2. As easily seen from Eqs. (31), when y = 0, η = 0, and

θ = x+
τ

2
cot

x

2
. (33)

The envelope of this family of lines, also drawn in Fig. 2, is given by θc =
xc + (τ/2) cot(xc/2), where xc is obtained from the equation (see Eq. (43)
below)

∂xθ = 0 = 1− τ

4 sin2(x/2)
. (34)
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Fig. 3. The characteristic function θ(x, y) (left) and η(x, y) (right) for τ = 0.5, cut
by the plane θ = 1.38 and η = 0, respectively.

Let us emphasize that these characteristics in the plane η = 0 are not enough
to construct the solution of the complex Burgers equation. In fact, by re-
stricting the starting coordinate to be real (y = 0), we have produced a set of
characteristics that cross each other. This set of characteristics is “unstable”:
As soon as a small imaginary part is present (i.e., y 6= 0), the characteristics
move away from the plane η = 0.

3.2. Graphical solution

To obtain the solution of the Burgers equation from the characteristics
one needs to identify the characteristic (i.e. determine its origin ξ in the
plane τ = 0) that goes through the point (θ, η) at time τ . In other word,
one needs inverting the relation α(ξ, τ) → ξ(α, τ), and inserting this value
of ξ in F0(ξ). This can be done graphically by first drawing the lines of
constant θ and constant η. We are interested mostly in the values of F for
real angles α, that is for η = 0−. Fig. 4 provides an example for τ = 0.5.
This figure could be used as a basis for a “graphical” solution of the Burgers
equation: each intersection point in Fig. 4 gives the coordinates x, y of the
origin in the plane τ = 0 of a characteristic going through the point of
coordinates θ, η = 0 (where θ can be read on the corresponding level line).
We shall examine later the cases where this construction fails.

3.3. The curves of constant η = 0

Because ρ ∼ y, it is instructive to analyze the shape of the curves η = 0
in the (x, y) plane. Indeed this shape will be similar to that of the function
ρ(θ), with θ related to x as described in the caption of Fig. 4. Some curves
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Fig. 4. The set of curves represent level lines of constant θ in the x, y plane.
These lines are intersected by the line of constant η = 0 (η < 0 “inside”,
and η > 0 “outside”). Each intersection point represents the origin (x, y) of
a characteristic arriving at point (θ, η = 0) in time τ . Here τ = 0.5. The
various lines correspond, from left to right, to θ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 1, 1.2, 1.3, 1.35, 1.38, 1.384, 1.3845, and the line crossing orthogonally the
lines of constant θ is the line η = 0 for the same value of τ . Note that there is a so-
lution (i.e. an intersection point) only for x <∼ 0.7. This point is the singular point
associated to the edge of the spectrum, given by ξc = xc = 2Arcsin(

√
0.5/2) '

0.722734, corresponding to θc = 0.7227234 +
√

0.5(1− 0.5/4) ' 1.38417. Note
that as one approaches this singular point, the landscape becomes completely flat,
i.e., ∂xθ = ∂yθ = 0. Note also that the curve of constant η = 0 is essentially
the spectral density ρ(θ, τ), with θ determined form the intersection points (this
follows from the fact that ρ = −y/(πτ) for negative y, and the fact that the set of
lines in the figure is the mirror image of the corresponding set for y < 0).

η = 0 are displayed in Fig. 5. These are determined by the implicit equation

y =
τ

2
sinh y

cosh y − cosx
. (35)

It is easy to show that the curves η = 0 intersect the y-axis with a
vanishing slope. Let us focus on their behavior near the x axis. For small y
we have

y =
τ

2
y

1− cosx
, cosxc = 1− τ

2
. (36)
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Fig. 5. The lines of constant η = 0 in the x, y plane. The different curves correspond
to τ = 0.5, 1, 2, 4, 4.1, 5, 7. These lines yield also the density ρ(τ, x). In order to get
the density ρ(τ, θ) we need the mapping between x and θ, which can be read on a
figure like Fig. 4.

Thus, as long as τ ≤ 4, there is a value xc of x at which the curve η = 0
intersects the x-axis. As we shall verify later, this point is the singular point
associated with the edge of the spectrum. In the vicinity of this point, the
curve η = 0 does not depend on y, that is, it has infinite slope in the (x, y)
plane.

For τ > 4, the curve intersects the axis x = π at a point ys solution of

ys =
τ

2
tanh

ys
2
. (37)

ys is a growing function of τ . For large τ , ys ' ±τ/2, and one can easily
construct the solution. Indeed we have then ξ = π+ iys ' π± iτ/2, so that

F0(ξ) =
1
2

cot
π ∓ iτ/2

2
= ± i

2
tanh

τ

2
, (38)

and the density is

ρ(π, τ) =
1

2π
tanh

τ

2
. (39)

For τ → 4 + 0, the equation for ys becomes

ys =
τ

2

(
y

2
− y3

24

)
, y2

s ' 3(τ − 4) , (40)
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so that

ρ(π, τ) ' 1
4π

√
3(τ − 4) . (41)

Thus the derivative ∂ρ/∂τ is singular at τ = 4.

3.4. The caustics

The construction of the solution of the Burgers equation from the char-
acteristics is possible as long as the mapping between α and ξ is one-to-one,
that is, as long as ∂α/∂ξ 6= 0. When ∂α/∂ξ = 0 a singularity develops.
The equation which determines the location of the singularities is also that
which determines the envelope of the characteristics, the so-called caustics
of optics. Let ξc(τ) be the location of the singularity. We have

F ′0(ξc) = − 1
4 sin2(ξc/2)

= −1
τ
. (42)

The equation for the caustics is then given by

α(τ) = ξc(τ) +
τ

2
cot

ξc(τ)
2

. (43)

By setting ξc = xc + iyc, we transform the singularity condition into two
equations for xc and yc:

sinh
(yc

2

)
cos
(xc

2

)
= 0 ,

cosh
(yc

2

)
sin
(xc

2

)
= ±

√
τ

2
. (44)

These equations are equivalent to the equations ∂xθ = ∂yθ = 0 (we used
the Cauchy–Riemann conditions). The first equation implies that yc = 0
unless xc = π. Consider the first possibility, i.e., yc = 0. The second
equation then yields sin(xc/2) = ±

√
τ/2 which is possible only if τ ≤ 4.

One concludes therefore that if τ > 4, yc 6= 0 and xc = π. Consider now
the second possibility, xc = π. In this case, the second equation yields
cosh(yc/2) = ±

√
τ/2, which is possible only if τ ≥ 4. Therefore if τ < 4,

xc 6= π and yc = 0. In summary, for τ < 4, the caustic lies in the plane
η = 0, while for τ > 4 it lies in the plane θ = π.

For τ < 4, the value of xc is given by

xc = 2 arcsin
(√

τ

2

)
= arccos

(
1− τ

2

)
. (45)
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The equation of the caustics in the θ, η plane, is given by

θc = 2 arcsin
(√

τ

2

)
+
√
τ
(

1− τ

4

)
, ηc = 0 . (46)

This is the curve plotted in Fig 2. The value θc corresponds also to the edge
of the spectrum when τ ≤ 4. When the gap closes, τ → 4, θc → ξc = π.

For τ > 4, yc is given by

yc = 2argcosh
√
τ

2
, (47)

and (for y > 0)

ηc = 2 argcosh
√
τ

2
−
√
τ
(τ

4
− 1
)
, (48)

with −ηc also solution (for y < 0), describing a symmetric branch of the
caustic. Note that as τ →∞, ηc ' −τ/2.

3.5. Solution of Burgers equation in the vicinity of the caustics

In the vicinity of the caustics one can construct the solution of the Burg-
ers equation analytically. This is because one can then easily invert the
relation between ξ and α. One has, quite generally,

F0(ξ) = F0(ξc) + (ξ − ξc)F ′0(ξc) + 1
2(ξ − ξc)2F ′′0 (ξc)

+1
6(ξ − ξc)3F ′′′0 (ξc) + · · · , (49)

so that

α = αc +
τ

2
(ξ − ξc)2F ′′0 (ξc) +

τ

6
(ξ − ξc)3F ′′′0 (ξc) + · · · . (50)

For τ ≤ 4, we have ξc = 2 arcsin(
√
τ/2) and

τF0(ξc) =
√
τ
(

1− τ

4

)
,

τ

2
F ′′0 (ξc) =

√
1
τ
− 1

4
,

τ

6
F ′′′0 (ξc) = − 1

3τ
− 2

3

(
1
τ
− 1

4

)
. (51)

For τ < 4, one can ignore the cubic term. One gets then

α = αc + (ξ − ξc)2
√

1
τ
− 1

4
, (52)
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which is easily inverted to yield

ξ − ξc =
±1

(1/τ − 1/4)1/4
√
α− αc . (53)

We have then

F (α, τ) = F0(ξ(α, τ) ' F0(ξc) + (ξ − ξc)F ′0(ξc)

=
√

1/τ − 1/4− 1
τ

√
α− αc(τ)

(1/τ − 1/4)1/4
. (54)

The spectral density can be deduced from the imaginary part of F , or equiv-
alently F0. We have

ρ(α) =
1
π

ImF (α− i0+) . (55)

It follows that the spectral density vanishes for α > αc (confirming the
interpretation of αc as the edge of the spectrum). For α <∼ αc,

ρ(α) ' 1
πτ(1/τ − 1/4)1/4

√
αc − α . (56)

When τ = 4, the second derivative vanishes, αc = π = ξc, and we have

α = π − 1
3τ

(ξ − ξc)3 , α− π = − 1
3τ

(ξ − π)3 , (57)

so that

ξ − π ' (3τ)1/3eiπ/3(α− π)1/3. (58)

It follows that the spectral density is given by (with α real and α < π)

ρ(α) ' (3τ)1/3

πτ
sin

π

3
(π − α)1/3 =

1
4π

(
9
√

3
2

)1/3

(π − α)1/3. (59)

As τ grows beyond τ = 4, the real caustic splits into two complex ones,
moving in opposite directions along the η axis. At this point we shall not
pursue our analysis with complex characteristics, but go through a specific
study at θ = π using a different approach.

3.6. Specific study at θ = π

In this section, we study the solution for θ = π, using an approach which
will allow us to make contact with the work of Neuberger [17,18].
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3.6.1. Solution with a real Burgers equation

Starting from the complex Burgers equation, for complex α,

∂τF + 1
2∂αF

2 = 0 , (60)

we restrict α to α = π + iη = π − iy (where y is the variable introduced
by Neuberger). Choosing y > 0, we get η < 0 so that we are in the right
domain of analyticity of F . In fact, F is analytic except possibly at y = 0
(where it develops a discontinuity when the gap closes; this discontinuity is
proportional to the spectral density at α = π). To avoid confusion (in all
this discussion x and y will not have the same meaning as before in these
lectures) we use Neuberger’s notation and set

φ(y) = iF (α = π − iy) , ∂τφ(y, τ) + 1
2∂yφ

2(y, τ) = 0 , (61)

with the boundary condition

φ(y, τ = 0) = φ0(y) = −1
2 tanh

y

2
. (62)

Note that since F (π ∓ iε) = ±iπ(ρ(π), we have

ρ(π, τ) =
1

2π
[φ(0−, τ)− φ(0+, τ)] . (63)

3.6.2. Characteristics of the real Burgers equation

The characteristics are given by

y = x+ τφ0(x) = x− τ

2
tanh

x

2
, (64)

and the solution is given in terms of them by

φ(y, τ) = φ0(x(y, τ)) , x(y, τ) = y − τφ0(x) . (65)

The velocity field φ(y, τ) will eventually become infinitely steep at some
points yc. To determine these points we calculate the derivative ∂yφ(y, τ):

∂φ

∂y
=
dφ0

dx

dx

dy
=
dφ0

dx

1
dy/dx

, (66)

where we use the fact that y and x are related by the characteristic equation.
It follows from this equation that

dy

dx
= 1 + τ

dφ0

dx
. (67)
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Since dφ0/dx in Eq. (66) is finite for all x, an infinite slope in the velocity
field will develop when dy/dx = 0, that is, for values of xc such that

1 + τ
dφ0

dx

∣∣∣∣
xc

= 0 . (68)

It is convenient to set

fτ (x) = φ0(x) +
x

τ
. (69)

The characteristic equation (64) reads then y = τfτ (x) = 0, and the location
of the singularities is given by f ′(xc) = 0. The relation between x and y can
be inverted if the solution of the equation fτ (x) = y/τ is unique. The plot
in Fig. 6 indicates that this happens when τ < 4. Indeed the derivative of
fτ (x) is given by

f ′τ (x) =
1
τ
− 1

4 cosh2(x/2)
, f ′τ (0) =

1
τ
− 1

4
, (70)

so that the derivative in x = 0 is positive as long as τ < 4. In this regime,
there is a unique solution x for each y. When τ = 4, f ′(0) = 0, i.e.,
x = 0 = xc and the slope at y = 0 of φ(y, 4) is infinite. This is the preshock
corresponding physically to the closure of the gap and the beginning of
the build up of the spectral density at θ = π. For τ > 4 the solution
becomes multi-valued (takes an S-shape). The function φ becomes then
discontinuous, its discontinuity giving the density, according to Eq. (63).

Fig. 6. The function fτ (x) plotted as a function of x for the values τ = 3, 4, 5.
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3.6.3. Solution of the real Burgers for large τ

For large τ , the solutions of the equation fτ (x) = 0 are approximately
given by

x1 =
τ

2
tanh

τ

2
(x > 0) , x1 = −τ

2
tanh

τ

2
(x < 0) . (71)

The solution of the characteristic equation y = τfτ (x) are shifted linearly
with respect to these values, when y is small, that is, ±x1 → ±x1 + y. It
follows that φ(y, τ) = (y − x1)/τ becomes independent of y in the vicinity
of y = 0, except for a jump that depends on the sign of y. We have

φ(y < 0, τ) ' 1
2

tanh
τ

2
, φ(y > 0, τ) ' −1

2
tanh

τ

2
. (72)

It follows that

ρ(π, τ) ' 1
2π

tanh
τ

2
, (73)

in agreement with Eq. (39).

3.6.4. Introducing a small viscosity

Anticipating on the discussion in the next sections, it is interesting to
consider the viscid Burgers equation for φ(y, τ)

∂τφ+
1
2
∂yφ

2 = ν∂2
yφ , (74)

where ν plays the role of a viscosity (we shall see later that ν = 1/2Nc).
This equation can be solved with the so-called Cole–Hopf transform

φ(y, τ) = −2ν∂y lnK(y, τ) , (75)

where K satisfies the diffusion equation

∂K

∂τ
= ν

∂2K

∂y2
. (76)

Let K0(x, τ) be the solution that reduces to δ(x) at τ = 0:

K0(x, τ) =
1√

4πντ
e−

x2

4ντ . (77)

Then the solution of the Burgers equation reads

K(y, τ) =
1√

4πντ

+∞∫
−∞

dx e−
(y−x)2

4ντ e−
1
2ν

R x
0 φ0(u)du . (78)
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We have
x∫

0

duφ0(u) = − ln cosh
x

2
, (79)

and we can write

K(y, τ) =
1√

4πντ
e−

y2

4ντ

+∞∫
−∞

dx e−
1
2ν
V (x), (80)

with

V (x) =
x2

2τ
− xy

τ
− ln cosh

x

2
' x4

192
+
(

1
τ
− 1

4

)
x2

2
− xy

τ
. (81)

The expansion on the r.h.s. allows us to recover the Pearcey integral and
study the vicinity of the critical point (near τ = 4) and the scaling with
(small) viscosity. We have indeed

+∞∫
−∞

dx e−
1
2ν
V (x) = 4

(
3
2

)1/4

ν1/4

+∞∫
−∞

du e−u
4−αu2+ξu (82)

with

x = 4
(

3
2

)1/4

ν1/4u , (83)

and the scaling variables related to τ and y are, respectively

α = 4
(

3
2

)1/2

ν−1/2

(
1
τ
− 1

4

)
, ξ = 2

(
3
2

)1/4

ν−3/4y . (84)

4. The gapless phase and the inverse spectral cascade

In this section, we shall illustrate a particular feature of the disordered
(gapless) phase. Consider the large τ uniform solution, and a small pertur-
bation of the spectral density of the form

ρ(θ, τ0) =
1

2π
(1 + 2ε cos θ) (85)

with τ0 � 1. Note that this form of the density results from truncating
the general expansion (9) at the first moment, and set w1 = ε. We wish
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to solve the Burgers equation with ρ(θ, τ0) as the initial condition. The
characteristics are given by

θ = ξ + (τ − τ0)F0(ξ) , (86)

and the function F0(ξ) corresponding to the initial condition can be read off
Eq. (14):

F0(ξ) =
i

2

(
1 + 2εe−iξ

)
. (87)

A singularity occurs for ξ = ξc, with ξc solution of

eiξc = −ε(τ − τ0) . (88)

At ξc, we have

F0(ξc) =
i

2
− i

τ − τ0
, F ′0(ξc) = − 1

τ − τ0
, F ′′0 (ξc) =

i

τ − τ0
. (89)

We may now proceed and determine the solution in the vicinity of the
singularity, as we did in Sec. 3. In the vicinity of the singularity we have

θ = θc +
i

2
(ξ − ξc)2. (90)

The equation for the singularity, Eq. (88), has two solutions, depending on
whether τ > τ0 or τ < τ0. Let us consider these solutions in turn.

If τ > τ0,

ξc = π − i ln ε(τ − τ0) + 2nπ , (91)
and

θc = π − i
(

1− τ − τ0
2

+ ln ε(τ − τ0)
)
. (92)

When τ is near τ0, τ >∼ τ0, the singularity is at θc ∼ π + i∞. As τ keeps
increasing, θc remains complex unless ε is too large (i.e., unless ε ≥ 1/2).
So, for small ε, as one propagates forward in time, θc remains complex and
return to +i∞ as τ →∞. Note that at large τ , F0(ξc) ∼ i/2 and the density
ρ ∼ 1/2π.

The situation is different for τ < τ0. Then

ξc = −i ln ε(τ0 − τ) + 2nπ (93)
and

θc = −i
(

1 +
1
2

(τ0 − τ) + ln ε(τ0 − τ)
)
. (94)
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Again the singularity is at +i∞ when τ = τ0, but as τ decreases, it moves
towards the real axis and reaches it in a finite time τ∗ given by

0 = 1 + 1
2(τ0 − τ∗) + ln ε(τ0 − τ∗) . (95)

At this point we have the usual blow up, and the solution ceases to exist.
This simple calculation shows that while the complex Burgers equation

provides a unique solution that connects the singular density at τ = 0
(ρ(θ) = δ(θ)) and the uniform density at τ → ∞ (ρ = 1/2π), this so-
lution is “unstable” to backward motion for initial conditions that deviate
only slightly form the generic solution of the Burgers equation. It is tempt-
ing to speculate that this particular feature is related to turbulent aspects of
the disordered phase [19], and indeed the Burgers equation has often been
used as a toy model to study such turbulent behavior. As a further remark,
note that as one propagates forward in time, the higher moments of the
spectral density are damped, leaving eventually only the uniform density
at large time. This process is reminiscent of the inverse cascade, a feature
of two-dimensional turbulence that can also be studied with the Burgers
equation (for a pedagogical illustration of the phenomenon, see [20]).

5. Dyson fluid

In this section we would like to demystify somewhat the omnipresence
of inviscid and viscid Burgers equations in the analysis of the closure of the
spectral gap of Wilson loops. We will see that these equations originate from
either algebraic or geometric random walks, where however the standard in-
dependent scalar increment is now replaced by its matrix-valued analogue.
Actually, the idea of matrix-valued random walks appears already in pio-
neering papers on random matrix theories. In a classical paper [21], Dyson
showed that the distribution of eigenvalues of a random matrix could be
interpreted as the result of a random walk performed independently by each
of the matrix elements. The equilibrium distribution yields the so-called
“Coulomb gas” picture, with the eigenvalues identified to charged point par-
ticles repelling each other according to two-dimensional Coulomb law. For
matrices of large sizes, this correctly describes the bulk properties of the
spectrum [22]. In his original work, Dyson introduced a restoring force pre-
venting the eigenvalues to spread for ever as time goes. This is what allowed
him to find an equilibrium solution corresponding to the random ensemble
considered with a chosen variance (related to the restoring force). We do not
need to take this force into account here, since the phenomenon we are after
is a non-equilibrium phenomenon. In particular, in the picture that we shall
develop, and that we may refer to as “Dyson fluid”, the edge of the spectrum
appears as the precursor of a shock wave, and its universal properties follow
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from a simple analysis of the Burgers equation that was developed in other
contexts [23]. This observation allows us to link familiar results of random
matrix theory to universal properties of the solution of the Burgers equation
in the vicinity of a shock [24].

5.1. Additive random walk of large matrices

We start from the simpler case of additive random walk of N ×N her-
mitian matrices H with complex entries. The explicit realization of the
random walk is provided by the following construction: In the time step δτ ,
Hij → Hij + δHij , with 〈δHij〉 = 0, and 〈(δHij)2〉 = (1 + δij)δt, so at each
time step, the increment of the matrix elements follows from a Gaussian
distribution with a variance proportional to δt. The initial condition on the
random walk is that at time t = 0, all the matrix elements vanish. The cru-
cial difference between the scalar and matricial random walk is visible when
we switch from matrix elements to eigenvalues of H, which we denote by xi.
The random walk of the eigenvalues has the following characteristics [21]

〈δxi〉 = E(xi) δt ,
〈
(δxi)2

〉
= δt , (96)

where the “Coulomb force”

E(xj) =
∑
i 6=j

(
1

xj − xi

)
(97)

originates in the Jacobian ∆ of the transformation from the matrix elements
to the eigenvalues, ∆ =

∏
i<j(xi − xj)2. Note that now random walkers in-

teract with each other, due to the “electric field” E(xi−xj). This interaction
may a priori introduce non-linearities in the corresponding Smoluchowski–
Fokker–Planck (SFP) equations. Indeed, this is the case, as we demonstrate
below.

Using standard arguments, we see that the joint probability P (x1, · · · ,
xN , t) for finding the set of eigenvalues near the values x1, · · · , xN at time t,
obeys the SFP equation

∂P

∂t
=

1
2

∑
i

∂2P

∂x2
i

−
∑
i

∂

∂xi
(E(xi)P ) . (98)

The average density of eigenvalues, ρ̃(x), may be obtained from P by inte-
grating over N − 1 variables. Specifically:

ρ̃(x, t) =
∫ N∏

k=1

dxk P (x1, · · · , xN , t)
N∑
l=1

δ(x− xl) , (99)
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with normalization
∫
dx ρ̃(x) = N. Similarly we define the “two-particle”

density ρ̃(x, y) = 〈
∑N

l=1

∑
j 6=l δ(x − xl)δ(y − xj)〉, with

∫
dx dy ρ̃(x, y) =

N(N − 1). These various densities obey an infinite hierarchy of equations
obtained form Eq. (98) for P . Thus, the equation relating the one and two
particle densities reads

∂ρ̃(x, t)
∂t

=
1
2
∂2ρ̃(x, t)
∂x2

− ∂

∂x
P.V.

∫
dy

ρ̃(x, y, t)
x− y

, (100)

where P.V.
∫

denotes the principal value of the integral.
In the large N limit, this equation becomes a closed equation for the one

particle density. To show that, we set

ρ̃(x, y) = ρ̃(x)ρ̃(y) + ρ̃con(x, y), (101)

where ρ̃con(x, y) is the connected part of the two-point density. Then we
change the normalization of the single particle density, defining

ρ̃(x) = Nρ(x), (102)

and similarly ρ̃(x, y) = N(N − 1) ρ(x, y). At the same time, we rescale the
time so that τ = Nt [25]. One then obtains

∂ρ(x)
∂τ

+
∂

∂x
ρ(x)P.V.

∫
dy

ρ(y)
x− y

=
1

2N
∂2ρ(x)
∂x2

+P.V.
∫
dy
ρcon(x, y)
x− y

. (103)

In the large N limit, the right-hand side vanishes, leaving, as announced, a
closed equation for ρ(x, τ). Taking the Hilbert transform of the above equa-
tion, and following the procedure from the previous sections, we immediately
recognize the complex inviscid Burgers equation for the resolvent

G(z, τ) =
〈

1
N

Tr
1

z −H(τ)

〉
=
∫
dy

ρ(y, τ)
z − y

, (104)

which reads explicitly

∂τG(z, τ) +G(z, τ) ∂zG(z, τ) = 0 . (105)

Let us comment the differences between this equation and the standard
diffusion: First, the usual Laplace term (1/2)∆ has vanished, since in the
matricial case this term is dwarfed by 1/N factor. An additional non-linear
term has however appeared, due to the interaction of diffusing eigenvalues,
a term which by definition is absent in a one-dimensional random walk.
This is how the inviscid (complex) Burgers equation [8, 25] appears in the
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Fig. 7. The Wigner semi-circle.

matrix-valued diffusion process. The resulting nonlinearity can trigger shock
waves, as we will see below.

Repeating the method of (complex) characteristics described in Sec. 3,
with the characteristics determined by the implicit equation

z = ξ + τG0(ξ) , G0(z) = G(z, τ = 0) =
1
z

(106)

and assuming the solution ξ(z, τ) to be known, the Burgers equation can
be solved parametrically as G(z, τ) = G0(ξ(z, τ)) = G0(z − τG(z, τ)). The
solution of this equation that is analytic in the lower half plane is

G(z, τ) =
1
2τ

(
z −

√
z2 − 4τ

)
, (107)

whose imaginary part yields the familiar Wigner’s semicircle for the aver-
age density of eigenvalues. This is perhaps the fastest, and quite intuitive,
derivation of this seminal result.

In the fluid dynamical picture suggested by the Burgers equation, the
edge of the spectrum corresponds to a singularity that is associated with the
precursor of a shock wave, sometimes referred to as a “preshock” [23]. As
discussed earlier, this singularity occurs when

dz

dξ
= 0 = 1 + τG′0(ξc) , (108)

defining ξc(τ). Since G′0(ξc) = −1/ξ2c , ξc(τ) = ±
√
τ , and

zc = ξc + τG0(ξc) = ±2
√
τ . (109)

That is, the singularity occurs precisely at the edge of the spectrum, traveling
with time τ . Furthermore, the resulting singularity is of the square root type.
To see that, one expands the characteristic equation around the singular
point. One gets

z − zc =
τ

2
(ξ − ξc)2G0

′′(ξc) =
τ

ξ3c
(ξ − ξc)2 . (110)
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It follows that, in the vicinity of the positive edge of the spectrum z ' zc =
2
√
τ ,

ξ − ξc = ±τ1/4√z − zc . (111)

Thus, as z moves towards zc and is bigger than zc, ξ moves to ξc on the
real axis. When z becomes smaller than zc, ξ moves away from ξc along the
imaginary axis. The imaginary part therefore exists for z < zc and yields a
spectral density ρ(z) ∼

√
zc − z, in agreement with (107). This square root

behavior of the spectral density implies that in the vicinity of the edge of
the spectrum, the number of eigenvalues in an interval of width s scales as
Ns3/2 = (N2/3s)3/2, implying that the interlevel spacing goes as N−2/3.

This scaling of the preshock wave resembles the Airy scaling in random
matrix models. Indeed, we can provide a rigorous argument why this is the
case [24]. Note that in the case of an additive diffusion we can simply find
the solution of Eq. (98)

P (x1, · · · , xN , t) = C
∏
i<j

(xi − xj)2 exp

(
−
∑
i

x2
i

2t

)
, (112)

with C a (time-dependent) normalization constant. Indeed, in the random
walk described above, the probability distribution retains its form at all
instants of time. This means that we can repeat the standard stationary
solution in terms of time dependent Hermite polynomials, which now remain
orthogonal with respect to the time-dependent measure exp

(
−Nx2/(2τ)

)
.

Explicitly, the monic, time-dependent orthogonal Hermite polynomials read

πk(x, τ) =
(−i)k

k!

√
N

2πτ

∫
dqqk exp

(
−N

2τ
(q − ix)2

)
, (113)

and satisfy

∞∫
−∞

dx exp
(
−Nx

2

2τ

)
πn(x, τ)πm(x, τ) = δnmc

2
n , (114)

with c2n = n!
√

2πτn+1/2, where we have used conventions from [26]. Note
that the monic character of the πn’s is not affected by the time dependence.

By using the integral representation (113), it is easy to show that the
πn(x, τ)’s satisfy the following equation

∂τπn(x, τ) = −νs∂2
xπn(x, τ) , (115)
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with νs = 1/2N , for any finite N . This is a diffusion equation with, how-
ever, a negative diffusion constant, which prevents an immediate physical
interpretation. One can, however, understand intuitively this negative sign:
a positive diffusion (viscosity) would smoothen the shock wave. In order
to obtain the wildly oscillating pattern of the preshock corresponding to
the universal spectral fluctuations in the random matrix theory, we need
an opposite mechanism. Note also that πn is an analytic function of x, and
πn(−iy, τ), with y real, satisfies a diffusion equation with a positive constant.

As a last step, to see the emerging viscid Burgers structure, we perform
a so-called inverse Cole–Hopf transform, i.e., we define the new function

fk(z, τ) ≡ 2νs∂z lnπk(z, τ) =
1
N

k∑
i=1

1
z − x̄i(τ)

, (116)

with Im z 6= 0. The resulting equation for fk is the viscid Burgers [15]
equation

∂τfk(z, τ) + fk(z, τ)∂zfk(z, τ) = −νs∂2
zfk(z, τ) . (117)

The equation (117) is satisfied by all the functions fk, for any k. We
shall focus now on the function fN associated to πN (z, τ), due to the known
fact that πN (z, τ) is equal to the average characteristic polynomial [29], i.e.

〈det(z −H(τ))〉 = πN (z, τ) . (118)

Note that in the large N limit, ∂z ln〈det(z−H(τ))〉 ≈ ∂z〈ln det(z−H(τ))〉 =
N G(z). Thus fN (z, τ) coincides with the average resolvent G(z, τ) in the
large N limit. In fact the structure of fN , as clear from Eq. (116), is very
close to that of the resolvent, with its poles given by the zeros of the char-
acteristic polynomial. Eq. (117) for fN (z, τ) is exact. The initial condition,
fN (z, τ = 0) = 1/z, does not depend on N , so that all the finite N correc-
tions are taken into account by the viscous term. This observation allows
us to recover celebrated Airy universality in the random matrix models, this
time solely from the perspective of the theory of turbulence [27]. Let us
recall that in the vicinity of the edge of the spectrum, and in the inviscid
limit,

fN (z, τ) ' ± 1√
τ
∓ 1
τ3/4

√
z − zc . (119)

We set

x = zc(τ) + ν2/3
s s , fN (x, τ) = żc(τ) + ν1/3

s χN (s, τ) , (120)
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with żc ≡ ∂τzc = ±1/
√
τ . The particular scaling of the coordinate is moti-

vated by the fact that near the square root singularity the spacing between
the eigenvalues scales as N−2/3. A simple calculation then yields the follow-
ing equation for χ(s, τ) in the vicinity of zc(τ) = 2

√
τ :

∂2
τ zc + ν1/3

s

∂χ

∂τ
+ χ

∂χ

∂s
= −∂

2χ

∂s2
, (121)

which, ignoring the small term of order ν1/3
s , we can write as

∂

∂s

[
− s

2τ3/2
+

1
2
χ2 +

∂χ

∂s

]
= 0 . (122)

Note that the expression in the square brackets represents the Riccati equa-
tion, so the particular explicit solution corresponding to characteristic poly-
nomial is

χ(s, τ) = 2
Ai′(a1/3(s))
Ai(a1/3(s))

. (123)

where Ai denotes the Airy function, and a = 1/(4τ)3/2.
For completeness we note, that the Cauchy transforms of the monic

orthogonal polynomials

pk(z, τ) =
1

2πi

∞∫
−∞

dx
πk(x, τ)e−Nx

2/2τ

x− z
, (124)

which are related to average inverse spectral determinant, generate similar
universal preshock phenomena in complex Burgers equations. Their detailed
behavior in the vicinity of the preshock is related to the two remaining
solutions of the Airy equation (Airy of the second kind, [28]).

5.2. Multiplicative random walk of large matrices

The case of multiplicative (geometric) one dimensional random walk can
be easily reduced to the additive one, since ex+y = exey, so taking the
logarithm of the multiplicative random walk reduces this case to the additive
random walk of the logarithms of multiplicative increments. Note that this
simple prescription does not work in the case of matrices. First, the product
of two hermitian matrices is no longer hermitian, second, matrices do not
commute, so eX+Y 6= eXeY . This means that the matrix-valued geometric
random walk may exhibit new and interesting phenomena. To avoid the
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nonhermiticity of the product of hermitian matrices, we stick to unitary
matrices — their product is unitary and a simple realization is

U = exp
{
i
√
δtH

}
, (125)

where H is hermitian. Note that this procedure is equivalent to Janik–
Wieczorek model, described in the first part of these notes. Following Dyson,
we recover that the only difference corresponding to the multiplicative case
is the modification of the electric force. Since the eigenvalues of the unitary
matrices are forced to stay on the unit circle, the electric force has to respect
periodicity, i.e. has to gain contributions from all the distances between
the interacting charges modulo 2πm, where m is the integer. This infinite
resummation modifies the electric force, yielding a SFP equation for Circular
Unitary Ensemble [21] and corresponding to the process where

〈δyi〉 = E(yi) ∆t ,
〈
(δyi)2

〉
= ∆t , (126)

where E(yi) = 1
2

∑
i 6=j cot(yi − yj)/2, parameterizing the eigenvalues on the

unit circle as z = exp(iy). This particular form of the electric field was
already met in the first part of these lectures. Let us make two remarks.
First, we note that in the present case, in order to reach the equilibrium
solution, corresponding to a uniform distribution of eigenvalues along the
unit circle, one does not need the stabilizing external force — due to the
compactness of the support of the eigenvalues the mutual repulsion between
them is sufficient to reach equilibrium in the infinite time limit. Second,
we may expect a new universal phenomenon — due to the compactness of
the support of the spectrum, left and right Airy preshocks at the ends of
evolving packet of eigenvalues have to meet at some critical time, creating
universal generalized Airy function exhibiting novel scaling with large N .

In principle, we can follow the route sketched above for the additive
case, i.e. find the time-dependent solution of the pertinent SFP equation
and construct orthogonal polynomials. This time, however, the mathe-
matics is more involved — the time dependent solution does not factorize
nicely, and depends on the ratio of Vandermonde determinants built from
Jacobi theta functions (solutions of diffusion equation with periodic bound-
ary conditions), and the corresponding orthogonal polynomials belong to
Schur class. In order to avoid these complications and to make connection
with the lectures of Neuberger [30] at this School, we make the following
observation [31]. Let us define a generic observable

e−aτO(z, U) ≡ e−aτ
∑
R

ar(z)
dR

χR

(
U †
)
, (127)
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where the sum is over the representations, χR denotes the character of the
representation R and dR its dimension. Calculating the expectation value
of the above object with respect to the measure [30]

P (U) =
∑
R

dR χR(U)e−τC2(R), (128)

where C2(R) is a Casimir operator for the representation R, we get〈
e−aτO(z, U)

〉
= e−aτ

∑
R

aR(z) e−τC2(R) . (129)

If we act now on this expression with the heat-kernel operator (z∂z)2 +κ∂τ ,
we notice that the heat equation does not mix the coefficients aR corre-
sponding to different representations. This allows us to write down a simple
solution

aR(z) = z±
√
κ(C2(R)+a) . (130)

This expression has to be well defined on the unit circle, which implies that
the argument of the square root has to be the square of an integer. This
imposes very strong restriction on Young diagrams forming the representa-
tion R. For antisymmetric representations considered in Ref. [17], the single
valued-ness of the solution corresponds to a = −N/8, provided the evolution
time is identified as τ = t(1+1/N). Indeed, the combination of Casimir and
a reads in this case 1

2N

(
N
2 − k

)2, for any k running between 0 and N . This
gives the whole family of (N + 1) heat equations, one for each k, in analogy
to the family of monic Hermite polynomials fulfilling the heat equation for
the case of additive random walk. Since the heat equation is linear, any
combination of monomials in z fulfills the same equation. In particular this
is the case of the characteristic polynomial considered by Neuberger [17].
As before, the inverse Cole–Hopf transformation yields the viscid Burgers
equation. Note that this construction explains naturally the appearance of
the somewhat mysterious extra factor e−Nτ/8 in the corresponding viscid
Burgers equations for the characteristic polynomial. For completeness we
note that a similar viscid Burgers structure appears for the inverse charac-
teristic polynomial [18]. Now, the relevant representations are symmetric,
which corresponds to “time” τ = t

(
1− 1

N

)
, and unrestricted k running

from zero to infinity, and the argument of the square root is proportional
to
(
N
2 + k

)2, provided that again a = −N/8. This gives the infinite hierar-
chy of heat equations for any k. Since 1/ det(z − U) can be expanded into
infinite series in 1/z, again the pertinent inverse Cole–Hopf transformation
reproduces viscid complex Burgers equation, as noted by Neuberger.
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Alike in the additive case, we can now analyze the critical behavior at
the closure of the spectral gap, using the tools of the theory of turbulence
for the coalescence of two Airy-like universal preshocks merging at z = −1
at some critical time. However, instead of going into the beautiful, but
involved mathematical construction corresponding to the appearance of the
universal Pearcey function at the closure of the gap, we propose to exploit
a somewhat unexpected analogy between the spectral properties of the gap
in large Nc Yang–Mills theory and geometric optics.

6. Diffraction catastrophes and large N universalities
in YM theories

The large N limit is very often considered as a “classical” one, since it
switches off fluctuations. In the spirit of this analogy we consider classical
(geometric) optics, where the wavelength vanishes, λ = 0, and rays of light
are straight lines. These rays of light can condense on some surfaces, yielding
high intensity (actually, in the λ = 0 limit infinite intensity) hypersurfaces,
which are called caustics, from a Greek word denoting “burning”. If we
relax the restrictions of geometric optics, i.e., if we allow for some very
small λ 6= 0, wave patterns of light appear. Rays start to interfere, forming
wave packets, and intensity is no longer infinite. We may ask now, how
the limiting procedure from wave optics to geometric optics takes place. In
other words, we ask how the wave packet scales with λ → 0. The answer
to this intriguing question has been provided by Berry and Howls [32], and
their classification of “color diffraction catastrophes” is a particular, physical
realization of the classification of singularities in the so-called catastrophe
theory. There are only seven stable caustics, the two lowest, relevant for our
analysis, corresponding to so-called fold and cusp singularities, controlled
by one and two parameters, respectively. The scaling of the wave packet in
these two cases reads [35]

Ψ(~r, λ) ∼ 1
λβ
ψ
( x

λσ1
,
y

λσ2

)
, (131)

where ~r denotes a set of “control parameters” and the universal critical ex-
ponents σi and β are known respectively as Berry and Arnold indices. The
Table I summarizes the universal properties of caustics. Immediately we
see an analogy between the Airy (Ai(ξ)) and Pearcey (P (ξ, η)) universal
functions appearing at the fold and cusp (merging of two folds) and which
describe the properties of the characteristic polynomials for critical spectra
of Wilson loops in Yang–Mills theory, also for D > 2. Complex characteris-
tics (straight lines) play the role of rays of line. Singularities (shock waves)
correspond to caustics, finite viscosity (1/2N) scaling has the same critical
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TABLE I

Classification of two lowest stable singularities.

Type β σi ψ

Fold β = 1
6 σ = 2

3 ψ = 2πAi(ξ) =
∫∞
−∞ dt exp i(t3/3 + ξt)

Cusp β = 1
4 σx = 1

2 σy = 3
4 ψ = P (ξ, η) =

∫∞
−∞ dt exp i(t4/t+ ξt2/2 + ηt)

indices as finite λ scaling for the intensity of the wave packets, see Eqs. (82)–
(84). The exact correspondence is summarized in the form of Table II. We
find it rather intriguing that the beautiful scaling of interference fringes in
diffractive optics could belong to the same universality class as the finite N
critical scaling of the spectral density of the Wilson operator in non-Abelian
gauge theories in nontrivial dimensions.

TABLE II

Morphology of singularities — analogies.

GEOMETRIC OPTICS N =∞ YANG–MILLS

wavelength λ = 0 viscosity νs = 1
2N = 0

rays of light rays of characteristics
caustics singularities of Wilson loop spectra

WAVE OPTICS FINITE N YANG–MILLS

Ψ(~r, λ) ∼ 1
λβ ψ

(
x
λσ1 ,

y
λσ2

)
〈det(z −W (C))〉

Fold scaling σ = 2/3 N2/3 scaling at the edge

Cusp scaling σ1 = 1/2 σ2 = 3/4 N1/2 and N3/4 scaling at critical size

7. Outlook

In these lectures, we have shown how the study of the complex Burg-
ers equation sheds a new light on universal properties of the the large Nc

transition in multicolor Yang–Mills, that was first identified by Durhuus and
Olesen many years ago. These lectures should be viewed as complementary
to those by Neuberger and by Narayanan at this School, and they offer a view
of a similar subject from different angles and perspectives. Our observations
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A familiar example of “caustics”

Fig. 8. A familiar example of caustics [33]. Note two fold-line caustics merging into
the cusp.

allow us to link together domains of theoretical physics and mathematics
that are rather unrelated at first sight: The spectral flow of eigenvalues
of the Wilson operators has features reminiscent of classical turbulence, the
universal behavior is locked by multiplicative unitary diffusion considered by
Dyson already in 1962, critical exponents belong to a classification of stable
singularities (catastrophe theory) and the phenomenon of scaling with finite
N at critical size of the Wilson loop has exact counterpart in diffractive
optics! The fact the whole dynamics of complicated non-perturbative QCD
can be reduced in some spectral regime to a matrix model is not new — a
notable case is the universal scaling of the spectral density of the Euclidean
Dirac operator for sufficiently small eigenvalues, where the spectrum be-
longs to the broad universality class of the corresponding chiral models [36].
What we find remarkable is that, in the case of the large Nc transition, the
analogous universal matrix model seems to be represented by the simplest
realization of the multiplicative matrix random walk. In general, one may
expect that in a very narrow spectral window around λ = −1 a universal os-
cillatory behavior appears as a preparation for the formation of the spectral
shock-wave, in qualitative analogy to similar spectral oscillations of quark
condensate before spontaneous breakdown of the chiral symmetry based on
Banks–Casher relation [37].

Certainly, further generalizations and analogies are possible. We men-
tion here the extension to supersymmetric models, intriguing role of the
fermions [38] and the analogies with shock phenomena in mezoscopic systems
(universal conductance fluctuations) [39] or growth processes of the Kardar–
Parisi–Zhang universality class and statistical properties of the equilibrium
shapes of crystals [40]. We hope that these lectures will trigger the need of
better understanding of all these relations and analogies.
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Fig. 9. Color diffraction catastrophe [34]. Picture shows modulus of Pearcey func-
tion, anisotropic character of interference fringes reflects different scaling exponents
σ1 and σ2.
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