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I summarize a number of ideas about the confinement mechanism which
are currently under active investigation. These include confinement via
center vortices, monopoles, and calorons, Coulomb confinement and the
Gribov horizon, Dyson–Schwinger equations, and vacuum wavefunctionals.
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1. Introduction

Lattice Monte Carlo methods, combined with chiral perturbation theory,
have made great strides in recent years towards solving quantum chromo-
dynamics, in the sense of calculating such things as the low-lying hadron
spectrum and weak decay constants from first principles (see, e.g., [1]). In
view of this progress, it is natural to ask what else is really needed, apart
from more computational efforts along the same lines. I would say that what
is still missing, despite the advances made so far, is a real understanding of
how QCD actually works, especially in regards to the quark confinement
mechanism. In this area, however, progress has been slow, and in fact there
is even some disagreement in the literature about what it is that we are try-
ing to explain. So I will begin these lectures with a discussion of the possible
meanings of the word “confinement”, and I will discuss in particular the ques-
tion of whether confinement can be distinguished from non-confinement by
the broken or unbroken realization of some symmetry, such as gauge symme-
try, dual gauge symmetry, or center symmetry. I will then go on to discuss
a number of promising ideas about the confinement mechanism, some quite
old and some relatively new, that are currently under active investigation.
These include the center vortex mechanism, magnetic monopoles and dual
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superconductivity, calorons, and Dyson–Schwinger equations. I also touch
on progress regarding vacuum wavefunctionals in 2+1 dimensions, the color
Coulomb potential, and the gluon-chain model. The approach known as
AdS/CFT, however, calls for its own lecture series, and will not be covered
here.

2. What is confinement?

The first question to ask is this: what are people trying to prove, in order
to “prove” confinement? And what do they mean by that word?

Most efforts to explain confinement have concentrated on trying to de-
rive a static quark potential which rises linearly at large quark separations,
going to infinity asymptotically. The majority of order parameters that
have been proposed, which would distinguish the confined phase of a gauge
theory from other phases, imply the existence of a static quark potential
which rises indefinitely to infinity. On the other hand, the term “confine-
ment” is also used to mean the absence of color-charged particle states in
the hadron spectrum. But the existence of a linear potential, and the ab-
sence of color-charged particle states, are not quite the same thing, and this
raises some tricky semantic issues. In the first place, if we identify confine-
ment with an asymptotically linear static quark potential, then we are faced
with the fact that real QCD, with light dynamical quarks, does not really
have such a potential, due to a process known as “string-breaking”. This is
the production of light quark–antiquark pairs which bind to the heavy color
sources to form color singlets. As a result, the static quark potential goes
flat asymptotically. So shall we say, against all historical usage, that QCD
is non-confining? The alternative is to use the word “confinement” to mean
the absence of color charged asymptotic particle states. But this alternative
also has its problems, because asymptotic particle states are also colorless in
a Higgs theory, where there is no linear potential whatever. Should we then
describe these so-called “broken” gauge theories, of which the electroweak
theory is one example, as confining?

This last point, concerning color confinement in Higgs theories, deserves
some elaboration. The fact that color is confined in a non-Abelian lattice
gauge-Higgs theory, with the Higgs particle in the fundamental represen-
tation of the gauge group, was first pointed out in 1975 by Fradkin and
Shenker [2], who based their work on a theorem proven by Osterwalder and
Seiler [3]. Consider, for example, an SU(2) lattice gauge-Higgs theory with
the lattice action

S = β
∑
plaq

1
2Tr

[
UUU †U †

]
+ γ

∑
x,µ

1
2Tr

[
φ†(x)Uµ(x)φ(x+ µ̂)

]
,
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where the scalar field φ is an SU(2) matrix-valued scalar field1. The phase
diagram of this theory, in the β− γ coupling plane, is sketched in Fig. 1. At
small γ the theory is “confinement-like”, in the sense that a flux tube forms,
and the static quark potential is linear up to some string-breaking scale,
much as in real QCD. At large γ, the theory is in what is usually called the
“Higgs” or “broken” phase. (What is broken? We will discuss that shortly.)
The solid line was once thought to be a line of first-order transitions, and
this may indeed be the case at large enough β, but extensive computer
simulations in the region of β ≈ 2 have shown that the line is actually a
“crossover region”, where bulk quantities such as the action density vary
rapidly, but without any apparent discontinuity [4]. The line terminates
around β = 2.

β

γ 1

2 4

2

Confinement−like

0
0

Higgs−like

Fig. 1. Phase diagram of the gauge-Higgs model.

Osterwalder and Seiler proved rigorously that there exists a path in the
coupling plane, between any point in the confinement-like region at β, γ � 1,
and any point in the Higgs region at β, γ � 1, such that all Green’s functions
of all local, gauge invariant observables

〈A(x1)B(x2)C(x3) . . .〉 (2.1)

vary analytically along the path. As emphasized by Fradkin and Shenker,
this fact rules out an abrupt transition from a colorless to a color-charged
spectrum, and implies that the hadron spectrum in the Higgs-like region
at β, γ � 1, like the spectrum in the confinement-like region, is colorless.
Although the Osterwalder–Seiler theorem does not rule out the existence of

1 The action can be re-expressed as the theory of a gauge field coupled to a scalar field
with a fixed modulus.



3358 J. Greensite

a transition to a Coulomb phase somewhere in the phase diagram, computer
simulations of the theory have not found any such transitions, and it is now
believed that all points in the phase diagram are in the same phase.

This conclusion is at odds with the treatment of the Higgs mechanism as
found in many textbooks. There it is usually asserted that the Higgs phase
is a phase of spontaneously broken gauge symmetry, which contrasts with,
e.g., QCD, where the gauge symmetry is unbroken. In fact, such assertions
about spontaneously broken versus unbroken gauge symmetry can be a little
misleading, in view of a theorem by Elitzur [5]:

Elitzur’s Theorem

Local gauge symmetries do not break spontaneously. In the absence of
gauge fixing, the vacuum expectation value (VEV) of a Higgs field is zero,
regardless of the shape of the Higgs potential.

This theorem seems to say that spontaneously broken gauge symmetry
is a myth. That is not quite true, however, because one can always fix to
some gauge, e.g. Landau or Coulomb gauge, having some residual gauge
symmetry which is a global subgroup of the local gauge group. Such global
symmetries can break spontaneously, and they raise the possibility that the
confinement phase can be characterized as the unbroken phase of some global
gauge symmetry.

Two concrete proposals along these lines are the Kugo–Ojima crite-
rion, and the Coulomb confinement criterion, formulated in covariant and
Coulomb gauges, respectively.

2.1. The Kugo–Ojima criterion

Landau gauge does not fix the gauge completely. There is still a remain-
ing global symmetry: if Aµ(x) satisfies the gauge condition ∂µAµ = 0, then
so does the gauge-transformed configuration A′ = g ◦ A, where g(x, t) = g
is spacetime-independent. The set of all such transformations is a global
SU(2) subgroup, called a residual symmetry, of the local SU(2) invariance.
There is, in addition, a residual invariance under spatially inhomogeneous
transformations, which can be expressed as a power series in the coupling g

g(x) = exp
[
iΛa(ε;x)1

2σa
]
,

Λa(ε;x) = εaµx
µ − g

1
∂2

(Aµ × εµ)a +O(g2) . (2.2)

This is still a global symmetry, in the sense that these inhomogeneous trans-
formations depend on only a finite number of parameters.
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These residual symmetries are an important component of a confinement
criterion put forward by Kugo and Ojima [6]. Consider a non-Abelian gauge
theory quantized in some covariant (e.g. Landau) gauge, with ca(x), ca(x)
the ghost and anti-ghost fields, respectively. Kugo and Ojima introduce a
function uab(p2) defined by

uab(p2)
(
gµν− pµpν

p2

)
=
∫
d4xeip(x−y)〈0|T

[
Dµc

a(x)g(Aν × c)b(y)
]
|0〉 .(2.3)

They then show that the expectation value of a (suitably defined) color
charge operator vanishes in any physical state, i.e.

〈phys |Qa|phys〉 = 0 (2.4)

providing the following conditions are satisfied:

• Remnant symmetry under g(x) = g is unbroken;

• The condition uab(0) = −δab is satisfied.
It turns out that the second condition implies that the spatially inhomoge-
neous global gauge symmetry defined by (2.3) is also unbroken, cf. Hata [7]
and Kugo [8]. This means that the Kugo–Ojima criterion depends on the un-
broken realization of all remnant gauge symmetries in Landau gauge, which
would also imply that the expectation value of the Higgs field vanishes.

2.2. The Coulomb criterion

Here the idea is to show that the Coulomb self-energy of a static color
charge is infinite, even when the ultraviolet contribution is cut off with, e.g.,
a lattice regulator, and to further show that the Coulomb potential between
static quarks is confining, i.e. rises indefinitely with quark separation. Both
of these requirements are satisfied if the remnant gauge symmetry that ex-
ists in Coulomb gauge is not spontaneously broken, as first pointed out by
Marinari et al. [9] (see also Ref. [10]).

If Aµ(x, t) satisfies the Coulomb gauge condition ∇·A = 0, then so does
the gauge-transformed configuration g ◦ A where the gauge transformation
g(x, t) = g(t) depends only on time, but not the space coordinates. Now let
us consider the time-like Wilson line2

L(x, T ) = P exp

i T∫
0

dtA0(x, t)

 . (2.5)

2 This is an open line, not a Polyakov line closed by periodicity. The time T is arbitrary,
and is not the time extension of a periodic volume.
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This quantity transforms under the residual gauge symmetry, and if the
residual invariance with respect to spatially global (x-independent) trans-
formations at times t = 0 and t = T is unbroken, then it follows that
〈TrL〉 = 0. This immediately implies that the Coulomb self-energy of an
isolated color charge in an infinite volume is infinite, for the following reason:
Let Ψ0 denote the vacuum state in Coulomb gauge. Then a physical state
containing a single static quark at point x is

Ψa
q = qa(x)Ψ0 , (2.6)

where q is a heavy quark operator. When the quark is so massive that
fluctuations in spatial position can be neglected, the Euclidean amplitude
for time propagation is

G(T ) =
〈
Ψa
q

∣∣ e−(H−E0)T
∣∣Ψa

q

〉
∝ 〈

Tr
[
L(x, T )

]〉
. (2.7)

Now if the Coulomb energy of the isolated quark is infinite, then G(T ) = 0
for arbitrarily small T 6= 0, which is clearly equivalent to 〈TrL〉 = 0. In this
way, the unbroken residual symmetry in Coulomb gauge implies an infinite
Coulomb self-energy for static charges.

In a very similar way, one can show (by considering states qa(x)q†a(y)Ψ0)
that the instantaneous Coulomb potential between static sources, separated
by a distance R = |x− y| is

Vcoul(R) = − lim
T→0

d

dT
log
[
Tr
[
L(x, T )L†(y, T )

]]
+ constant . (2.8)

It is clear that if 〈TrL〉 6= 0, then Vcoul(R) flattens out as R → ∞. The
conclusion is that the infinite Coulomb self-energy of a confining charge, and
the infinitely rising Coulomb potential of static charges, both require that
the remnant gauge symmetry in Coulomb gauge is unbroken.

2.3. The ambiguity of spontaneously broken gauge symmetry

The Kugo–Ojima criterion and the Coulomb criterion both make perfect
sense in real QCD, with light quark fields, where the static quark potential
goes flat asymptotically, and both depend on the unbroken realization of
some remnant gauge symmetry. So is that what we mean by confinement?
I think there are at least two problems with this idea. First, the residual
symmetries associated with Coulomb and Landau gauges break in different
places (so which is the relevant breaking?), and secondly, these symmetries
break in the absence of any other abrupt change in the physical state.
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Fig. 2 shows the situation for SU(2) gauge-Higgs model of Eq. (2.1);
the data points indicate the locations of spontaneous breaking of the Lan-
dau gauge remnant symmetry, and the Coulomb gauge remnant symmetry.
Along the crossover line at β > 2 these transitions seem to coincide, but
at β < 2 the symmetry-breaking transitions occur at different values of γ.
Moreover, these transitions occur in regions where the Osterwalder–Seiler
theorem assures us that there is no physical transition whatever in the gauge-
Higgs system. We must, therefore, conclude that both the Kugo–Ojima and
Coulomb confinement conditions are misleading, because each predicts the
occurrence of a non-existent phase transition, and the two predictions are
not even in agreement with each other. In fact, what the figure indicates
is that the whole notion of “spontaneously broken” gauge symmetry is am-
biguous, because (in view of the Elitzur theorem) one really has to specify
which global subgroup of the gauge group is under consideration, and we
see that the breakings of such subgroups are not universal, but can occur at
different places in the phase diagram.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2

γ

β

Gauge Symmetry-Breaking Transition Lines

confinement-like region

higgs-like region

Coulomb transition
Landau transition

Fig. 2. The location of remnant global gauge symmetry breaking in Landau and
Coulomb gauges, in the β − γ coupling plane. From Caudy and Greensite [11].

2.4. Dual superconductivity

The idea that the Yang–Mills vacuum could be thought of as a dual
superconductor, in which the roles of the electric and magnetic fields are
interchanged, was put forward independently by ’t Hooft and Mandelstam
in the mid-1970s. In an ordinary Type II superconductor, magnetic lines
of force are squeezed into flux tubes by the Meissner effect, and if there
were magnetic monopoles and antimonopoles present in the material, then
a magnetic flux tube would form between a monopole–antimonopole pair,
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and the corresponding potential would grow linearly with monopole sepa-
ration. A relativistic system of this kind is described by an Abelian gauge-
Higgs model, and what is usually called the Higgs phase corresponds to the
superconducting (or massive) phase, which is separated from the massless
Coulomb phase by a transition3. In the “dual superconductor” proposal, it
is electric, rather than magnetic field lines which are compressed into flux
tubes, and electric, rather than magnetic, charges which are confined by the
dual Meissner effect.

This proposal is essentially Abelian in character. In a compact U(1)
gauge theory there is a magnetic current

jMµ = ∂νF̃µν = 1
2∂

νεµναβF
αβ (2.9)

whose conservation is a consequence of the dual U(1) symmetry, just as
conservation of the electric current is a consequence, via Noether’s theorem,
of the usual U(1) gauge symmetry. The idea is that spontaneous breaking
of (a global subgroup of) this dual gauge symmetry leads to confinement
via the dual Meissner effect. The question is how to detect the spontaneous
breaking of a dual global gauge symmetry, i.e. what is the appropriate order
parameter?

An order parameter for the dual symmetry breaking has been put forward
by di Giacomo et al. [12]. The order parameter is the expectation value
of a monopole creation operator, denoted µ, which does not commute with
the magnetic charge (spatial integral of jM0 ), and therefore 〈µ〉 = 0 in the
unbroken, non-confining phase, and 〈µ〉 6= 0 in the broken, confined phase.

The monopole operator inserts a monopole field AM centered at a point x

µ(x)|Ai〉 =
∣∣Ai +AMi

〉
(2.10)

and this is accomplished by

µ(x) = exp
[
i

∫
d3y AMi (y)Ei(y)

]
(2.11)

assuming a U(1) gauge group. In a non-Abelian theory, it is necessary to
choose an Abelian subgroup of the gauge group, in order to define the µ
operator. There are, of course, an infinite number of inequivalent ways to
do that in an SU(N) gauge theory, all of which correspond to picking a
so-called Abelian-projection gauge which leaves a residual U(1)N−1 gauge
invariance. The µ operator for an Abelian theory is defined with respect to
this Abelian subgroup, and it has been argued [14] that the choice of Abelian
projection gauge makes no difference.

3 Note that in the non-Abelian gauge-Higgs theory, both the Higgs-like region and the
confinement-like region are massive.
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In practice, one computes numerically the logarithmic derivative

ρ =
∂

∂β
log〈µ〉 = −β−1

[
〈S〉S − 〈S〉M

]
(2.12)

since this can be computed in terms of the expectation value of the action
S with (〈S〉M ) and without (〈S〉S) a monopole insertion. It can be shown
analytically that 〈µ〉 = 1 at β = 0, which supplies the necessary boundary
condition. Then a large negative peak in ρ at some critical value β = βc of
the lattice coupling, whose depth increases with lattice volume, is the signal
that 〈µ〉 = 0, and dual superconductivity disappears, for β > βc. In fact,
it has been shown in case after case that ρ → −∞, and therefore 〈µ〉 → 0,
precisely at the high-temperature deconfinement transition. But although
the ability of this parameter to pick out the deconfinement transition can
be counted as a success, one can still ask about the behavior of ρ near other
types of transitions that occur at zero temperature, or in theories (such as
pure SU(2) gauge theory, and SU(2) gauge-Higgs theory) in which there is
no transition at all.

Unfortunately, numerical simulations have found [15] that the µ → 0
transition is found at zero temperature in a number of gauge theories, such
as

1. SU(5) pure gauge theory, which has a 1st-order transition;

2. SU(2) pure gauge theory, which has no transition;

3. mixed fundamental-adjoint SU(2) gauge theory, with a line of first-
order transitions;

4. SU(2) gauge-Higgs theory defined by (2.1);

5. G(2) gauge theory, which has a 1st-order transition (cf. [16]).

As an example, two 〈µ〉 → 0 transitions in gauge-Higgs theory, one at a point
on the crossover line, and one at point where there is no thermodynamic
activity at all, are displayed in Fig. 3. In these, and in all of the cases
listed, the transition to the unbroken phase of dual gauge symmetry may
or may not be accompanied by a thermodynamic transition of some sort,
but they are not associated with a transition to a deconfined phase. This
means that, as with the Kugo–Ojima and Coulomb confinement criteria,
the broken or unbroken realization of a gauge symmetry (in this case a dual
gauge symmetry) is not a reliable indicator of the presence or absence of the
confinement phase.
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Fig. 3. ρ versus β in the SU(2) gauge-Higgs (Fradkin–Shenker) model of Eq. (2.1).
(a) At β = 2.2 a very sharp negative peak in ρ is found at the thermodynamic
crossover point at γ = 0.84. (b) At β = 1.6, there is not even a crossover, but
nevertheless there is a broad negative peak in ρ centered at γ ≈ 1.3, and growing
deeper with volume. From Ref. [15].

2.5. Magnetic disorder and center symmetry

The evidence suggests that broken versus unbroken gauge symmetry,
dual or otherwise, is not a very meaningful distinction so far as confinement
is concerned, and if by the term “confinement” one means the existence of
a color-neutral spectrum, then this term must also be applied to the non-
Abelian Higgs phase.

On the other hand, when comparing QCD with a Higgs theory in the
“Higgs-like” region of couplings, there is clearly a qualitative difference in
the dynamics of the two theories. In QCD there is flux tube formation
and a linear potential, at least in some range of distances, and a hadron
spectrum which lies on linear Regge trajectories. The gauge-Higgs theory in
the Higgs-like region exhibits none of these phenomena, and there is only a
Yukawa potential between static charges. If we focus on such things as flux
tube formation and the linear potential, then I think it better to describe
confinement as a phase of magnetic disorder ; i.e. a phase characterized by
the existence of vacuum fluctuations which are strong enough to induce an
area law falloff in Wilson loops at arbitrarily large scales. The vacuum state
of a gauge-Higgs theory has this property in the γ → 0 limit, while QCD
would have this property in the mq →∞ infinite quark mass limit. What is
interesting is that in these two limits, where the static quark potential rises
linearly out to infinity as R → ∞, the Lagrangian acquires an unbroken
global symmetry which is known as center symmetry. When this symmetry
is broken, either
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1. spontaneously; which can happen at high temperatures (the decon-
finement transition), or through the addition of matter fields in the
adjoint representation of the gauge group,

2. explicitly, through the introduction (as in QCD) of matter fields in the
fundamental representation of the gauge group,

3. or the (non-trivial) symmetry does not exist in the first place, as in
the case of the G(2) gauge group,

then magnetic disorder is lost. In fact, all of the “traditional” conditions for
confinement, namely

A. area law for large Wilson loops,

W (C) =

〈
P exp

[
i

∮
C

dxµAµ

]〉
∼ exp[−σArea (C)] , (2.13)

B. vanishing Polyakov lines

P (~x) =

〈
P exp

[
i

Lt∫
0

dt A0(~x, t)

]〉
= 0 , (2.14)

C. perimeter law falloff for large ’t Hooft loops

B(C) ∼ exp[−µPerimeter (C)] , (2.15)

D. vanishing of the center vortex free energy, in the large volume limit,
according to

Fv = cLzLt exp[−σ′LxLy] , (2.16)

where the vortex is a sheet of quantized magnetic flux in the z–t plane,
in a finite Lx × Ly × Lz × Lt volume

require unbroken center symmetry. None of these conditions are satisfied if
global center symmetry is broken spontaneously (deconfinement) or explic-
itly (quarks) or is trivial (G(2) gauge group).

At this point, we need to recall a little group theory. The center subgroup
of any group is the set of all group elements that commute with the full
group. For an SU(N) group, the center subgroup consists of the elements
proportional to the identity matrix

ZN =
{
zn = e2πin/NIN , n = 0, 1, . . . , N − 1

}
. (2.17)
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Suppose M [g] is an irreducible representation of the group element g. Then
there is a fixed power k, known as the “N -ality” of the representation, such
that

M [zng] = (zn)kM [g] . (2.18)

The charge of a gluon lies in the adjoint color representation, which has
zero N -ality. Gluons binding to another particle can reduce the dimension-
ality of the color representation of the bound state, but not the N -ality
of the particle’s original color representation. What this implies is that if
we have a heavy quark–antiquark pair, then as the quarks move apart it
may become energetically favorable to pair-produce gluons which bind with
each of the quarks, reducing the dimensionality of the effective quark color
charge representation, but not it is N -ality. Ultimately the gluons screen the
quark charges down to the lowest dimensional representation of the original
N -ality. This fact has a profound conclusion, which bears directly on the
type of vacuum fluctuations which must be dominant at large scales: Asymp-
totically, the string tension of a quark–antiquark pair can only depend on
the N -ality of the quark color charge representation.

Center symmetry on the lattice is invariance of the action with respect
to transformations that are gauge-equivalent to the global transformations

U0(x, t0)→ zU0(x, t0) . (2.19)

These transformations are carried out at one timeslice t = t0 but all x,
and z is any element of the center of the gauge group. It is easy to see
that this transformation does not change the value of plaquettes or Wilson
loops (where every z is paired with a z−1), but such a transformation does
transform any Polyakov line P → zP . This means that the VEV of the
Polyakov line vanishes if and only if center symmetry is unbroken, and the
self-energy of any isolated color charged particle, in a representation of non-
zero N -ality, is infinite. Likewise, if center symmetry is completely broken,
then any charge can be screened to zero N -ality, and large Wilson loops can
only fall off with a perimeter law. Thus, if we take the word “confinement”
to mean magnetic disorder, then we may say that confinement is the phase
of unbroken center symmetry4.

It is natural to ask, if the center is so important, then why we do not see
gluons in the asymptotic spectrum, given that theN -ality of gluons vanishes,
and they are therefore insensitive to center transformations. The answer is
that gluons disappear from the spectrum by the same process that forbids an
object the size of, e.g., an atomic nucleus, to have an electric charge greater

4 This terminology comes with a price: we must then describe real QCD as a “con-
finement-like” theory, with magnetic disorder only up to some color-screening length
scale.
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than some critical value QC. Suppose we create, by some collision process,
two such objects with charges QC + 1 and −QC − 1, respectively. Then
the electric field energy surrounding these objects is such that it becomes
energetically favorable for the vacuum to pair-produce an electron positron
pair, with the electron binding to the positively charged object, and the
positron binding to the negatively charged object. The end result is that
the effective charge of the two objects is reduced to the critical value. The
process is similar for any two objects having adjoint color charge in a non-
Abelian gauge theory. As the objects separate, the energy due to the color
electric field increases, until at some point it becomes energetically favorable
for the vacuum to pair-produce gluons, which bind to each of the adjoint
sources and completely neutralize their color charge. If the adjoint sources
are themselves gluons, then as they fly apart from one another we end up
with two glueballs. Since the process involves screening the adjoint charge
with the charge of pair-produced gluons, I prefer to refer to this process as
“color screening” rather than confinement.

3. Some features of the confining force

In theories with unbroken, non-trivial center symmetry, charges with
non-zero N -ality cannot be completely screened by gluons, as already men-
tioned. These theories — mainly pure SU(2) and SU(3) but also higher
N to some extent — have been studied extensively via lattice Monte Carlo
simulations. The first striking feature is the linearity of the quark–antiquark
potential, for quarks in the fundamental representation of the gauge group,
at large separations. A sample calculation in SU(3) pure gauge theory is
displayed in Fig. 4. In this figure, and in Fig. 5, r0 ≈ 0.5 fm is the Sommer
scale. If we inquire how things change when the quark and the antiquark
are in color representations beyond the fundamental, then the answer is that
there are (at least) three distance regimes. At small quark–antiquark sep-
arations, where weak-coupling perturbation theory makes sense, the static
potential goes as −1/R times the running coupling. This is followed by
an intermediate distance regime, where the quark–antiquark potential rises
linearly, up to the onset of color-screening. Beyond this is an asymptotic
regime, where the string tension depends only on the N -ality of the quark
color representations.

In the intermediate distance regime (as in the perturbative regime) it
is found that the static quark potential is proportional to the quadratic
Casimir Cr of the quark color charge representation r, i.e.

Vr(R) =
Cr
CF

VF(R) , (3.1)
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Fig. 4. The static quark potential in SU(3) lattice gauge theory, normalized to
V (r0) = 0. From Bali [17].

Fig. 5. Numerical evidence for Casimir scaling in SU(3) lattice gauge theory. The
solid lines are obtained from a fit of the potential in fundamental representation,
multiplied by a ratio of quadratic Casimirs Cr/CF. From Bali [18].
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where VF(R) is the static potential of quarks in the fundamental representa-
tion. This behavior is known as “Casimir scaling”, and numerical evidence of
the effect is shown in Fig. 5. It should be noted that the calculation on which
this figure is based uses a method which creates metastable flux tubes, which
are then allowed to propagate for a relatively short Euclidean time interval.
This procedure is insensitive to the string-breaking process, and hence one
can only calculate the string tension of the metastable states. To observe
string-breaking (i.e. color screening by gluons) for adjoint representation
heavy quark states, using only rectangular Wilson R × T Wilson loops is
numerically difficult, but was achieved by de Forcrand and Kratochvila [19]
using a noise reduction technique due to Lüscher and Weisz [21]. The result
of their calculation in SU(2) lattice gauge theory is shown in Fig. 6; the ad-
joint string breaks at about ten lattice spacing, corresponding (at the given
value of the lattice coupling) to 1.25 fm in physical units.

Fig. 6. The adjoint and 8
3×fundamental static potentials V (R) versus R, in D = 3

dimensional SU(2) lattice gauge at β = 6.0. The horizontal line at 2.06(1) repre-
sents twice the energy of a gluelump. From de Forcrand and Kratochvila [19].

A final striking feature is that the QCD flux tube appears to share certain
properties of the Nambu string. In string theory, the energy of the string
with fixed ends a distance R apart includes a linear piece, σR, where σ
depends on the string tension, but also, in d spacetime dimensions, includes
a universal contribution due to the fluctuations of the string

VL(R) =
c(R)
R

, where c(R) = −(d− 2)
24

. (3.2)

Note that this term is independent of the string tension. The subscript L
refers to Lüscher, who suggested that such a term would also appear in the
static quark potential. Numerical simulations performed by Lüscher and
Weisz [21] and others indicate that such a universal −1/R contribution,
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with the coefficient expected from bosonic string theory, is indeed present
(cf. Fig. 7, which displays values of c(R) obtained via numerical simulation).

0 0.5 1 r [fm]

−0.3

−0.2

−0.1

0

c(r)

d = 3

d = 4

Fig. 7. Coefficient of the Lüscher term c(r) in D = 3 and D = 4 dimensions. The
Nambu–Goto string action predicts c = −0.262 for D = 4 and c = −0.131 for
D = 3. From Lüscher and Weisz, Ref. [21].

Judging from Figs. 4–6, it appears that if we set the scale from an asymp-
totic string tension (extracted from the hadronic Regge slope) of (440 MeV)2,
then the perturbative region persist up to roughly 0.25 fm, followed by the
Casimir scaling region up to 1.25 fm, and all distances beyond that are in
the N -ality regime, where the string tension depends, not on the quadratic
Casimir, but only on the N -ality. Because color screening is a non-planar,
1/N2-suppressed process, we expect that the transition between Casimir
scaling and the N -ality regime will run off to infinity for SU(N) gauge the-
ories, as N →∞.

There is still the question, in the N -ality regime, of precisely how the
string tension depends on the N -ality k of the quark color charges. This
dependence is known as “k-string scaling”, and at present there are two
proposals on the table:

σ(k)
σF

=


sin(πk/N)
sin(π/N) sine law scaling ,

k(N−k)
N−1 Casimir k-string scaling .

(3.3)

At present the data seems to lie between these two proposals, slightly above
the Casimir prediction [20].
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So the bar is set rather high: an explanation of confinement will have
to account for asymptotic linearity of the potential, Casimir scaling in the
intermediate region, N -ality dependence asymptotically, and the presence of
the Lüscher term in the potential. At present, theories of how confinement
comes about fall into a few broad categories:

I. Dominance of the functional integral by a special class of confining field
configurations. There is a number of competing (or possibly compli-
mentary) proposals for what this special class might consist of; sug-
gestions include center vortices, monopoles, and calorons.

II. Ladder exchange. It has been argued that the confining force is gener-
ated by ladder exchange processes involving the dressed gluon propaga-
tor and dressed vertices. There are variations of this idea in Coulomb
gauge (the Gribov–Zwanziger scenario), and in covariant gauges, treat-
ed via the Dyson–Schwinger equations.

III. Vacuum wavefunctionals. It is an old idea, which is still under active
investigation, that confinement might be manifest from the form of
the wavefunctional of the ground state, and the problem is therefore
to determine that wavefunctional.

IV. AdS/CFT. In string theory there is a kind of equivalence (a “duality”)
between N = 4 super Yang–Mills theory (a non-confining theory) and
string theory in the product space of five-dimensional anti-deSitter
space with a five-dimensional hypersphere. The theories are equiva-
lent in the sense that there is a correspondence such that correlators
in the field theory can be calculated from observables in the string the-
ory. Calculations have mainly been carried out in the limit of strong
coupling, and an infinite number of colors. There have been efforts to
extend this approach to non-conformal theories, which are more like
QCD.

In the next sections I will briefly describe some of these promising ideas.
AdS/CFT, however, demands some background in string theory, and is be-
yond the scope of these lectures.

4. Center vortices

The center vortex theory of confinement, introduced by ’t Hooft [22] in
1978, has two motivations. First, as already emphasized, the asymptotic
string tension depends only the N -ality of static charges, and if we are de-
scribing confinement in terms of some special class of field configurations,
then this property must somehow be manifest in that special class. Secondly,
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all of the unambiguous order parameters for confinement indicate that con-
finement is a phase of unbroken center symmetry. The only scenario I am
aware of, which explains N -ality dependence solely in terms of vacuum field
configurations, is the center vortex mechanism.

A center vortex is a loop of quantized magnetic flux which sweeps out a
sheet (of finite thickness), as it propagates in time. If we imagine a Wilson
loop holonomy

U(C) = P exp

i ∮
C

dxµAµ

 (4.1)

running around a loop C, then the creation of a center vortex topologically
linked to the loop C, with linking number 1, multiplies the loop holonomy
by a center element, i.e.

U(C)→ zU(C) , where z ∈ ZN . (4.2)

The exterior field of a center vortex is a close analogy to the exterior of a
solenoid in ordinary electrodynamics, where there is a non-vanishing vector
potential which cannot be completely removed by a gauge transformation,
but this potential does not give rise to any finite field strength. In the
vortex theory, the area-law falloff of a large Wilson loop W (C) = 〈Tr[U(C)]
is due to random fluctuations in the number of vortices linked to the loop.
The fact that the asymptotic string tension then depends only on N -ality
follows automatically from the fact that vortices affect large loops only by
multiplication by a center element.

There is a lot of numerical evidence in favor of this picture, based on
methods, developed in 1997–98, for locating vortices in lattice configurations.
This evidence was reviewed in quite some detail in my review article [23] on
this subject, but briefly the successes are as follows:

1. Vortex linking number is correlated with the phase of the Wilson loop;
2. Vortices by themselves give about the right string tension;
3. Plaquette action is high on vortex surfaces;
4. The vortex density scales according to asymptotic freedom;
5. When vortices are removed from Monte Carlo-generated lattice con-

figurations, both the string tension and chiral symmetry breaking dis-
appears;

6. Vortex thickness agrees with independent estimates based on adjoint
string breaking, and measurements of the vortex free energy;

7. The string tension of space-like Wilson loops at high temperatures
comes from vortices which are closed in the periodic time direction.
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It may be useful to illustrate this last point in 2+1 dimensions, where
vortices are line-like, rather than surface-like objects. Fig. 8 shows a pair
of Polyakov lines with a vortex between them; the vortex is running in a
spacelike direction. High temperature corresponds to a small extension in
the periodic time-like direction, and when this extension becomes smaller
than the thickness of the vortex, the vortex is “squeezed”. This means that
its free energy increases (cf. [25]), and vortices stop percolating in the space-
like directions. As a result, vortices cease to disorder Polyakov lines. On the
other hand, thick vortices can still propagate perfectly well in the periodic
time direction. Such vortices are not squeezed at all (Fig. 9) by a small
time extension, their free energies remain negligible at high temperature,
and they continue to furnish an area law to space-like Wilson loops. For
a more quantitative discussion, cf. [26].
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Fig. 8. Vortices running in the space-like directions disorder Polyakov lines. When
the time extension T is smaller than the diameter of the vortex (high temperature
case), then space-like vortices are “squeezed” and cease to percolate.
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Fig. 9. Vortices running in the time-like direction disorder space-like Wilson loops.
The vortex cross-section is not constrained by a small extension in the time direc-
tion.
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Although the vortex picture accounts very well for fact that asymptotic
string tensions can depend only on N -ality, there is still the question of how
to reconcile the existence of Casimir scaling at intermediate distances with
the vortex scenario. Here the finite thickness of vortices is crucial, because
vortices only multiply a Wilson loop by a center element if vortex does not
overlap the loop itself; i.e. if all of the vortex color magnetic flux passes
through the minimal area of the loop, and none is outside the loop.

A simple model (cf. [24]) may illustrate the effect of a finite thickness.
Consider the projection of a vortex onto the plane of a planar Wilson loop;
we will refer to this projection as a vortex “domain” in the plane. In this
model, it is assumed that the effect of a domain (2D cross-section of a vortex)
on a planar Wilson loop holonomy is to multiply the holonomy by a group
element

G(αn, S) = S exp
[
i ~αn · ~H

]
S† , (4.3)

where the {Hi} are generators of the Cartan subalgebra, S is a random
group element, ~αn depends on the location of the domain relative to the
loop, and n indicates the domain type. If the domain lies entirely within the
planar area enclosed by the loop, then

exp
[
i ~αn · ~H

]
= znI , (4.4)

where
zn = e2πin/N ∈ ZN (4.5)

and I is the unit matrix. At the other extreme, if the domain is entirely
outside the planar area enclosed by the loop, then

exp
[
i ~αn · ~H

]
= I . (4.6)

For a Wilson loop in representation r, the average contribution from a do-
main will be

Ḡr[αn]Idr =
∫
dS S exp

[
i~αn · ~H

]
S†

=
1
dr
χr

[
exp

[
i~αn · ~H

]]
Idr , (4.7)

where dr is the dimension of representation r, Idr is the unit matrix, and χr
is the group character in representation r.

Consider, e.g., SU(2) lattice gauge theory, choosing H = L3. The center
subgroup is Z2, and there are two types of domains, corresponding to z0 = 1
and z1 = −1. Let f1 represent the probability that the midpoint of a z1
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domain is located at any given plaquette in the plane of the loop, with f0

the corresponding probability for a z0 = 1 domain. Let us also assume
that the probabilities of finding domains of either type centered at any two
plaquettes x and y are independent. Then

Wj(C) ≈
∏
x

{
(1− f1 − f0) + f1Ḡj

[
α1
C(x)

]
+ f0Ḡj

[
α0
C(x)

]}
W pert
j (C)

= exp

[∑
x

log
{

(1− f1 − f0) + f1Ḡj
[
α1
C(x)

]
+ f0Ḡj

[
α0
C(x)

]}]
W pert
j (C) , (4.8)

where the product and sum over x runs over all plaquette positions in the
plane of the loop C, and αnC(x) depends on the position of the vortex mid-
point x relative to the location of loop C. The expressionW pert

j (C) contains
the short-distance, perturbative contribution to Wj(C); this will just have
a perimeter-law falloff.

The question is what to use as an ansatz for αnR(x). The ansatz of
Ref. [24] was motivated by the idea that the magnetic flux in the interior of
vortex domains fluctuates almost independently, in subregions of extension l,
apart from the restriction that the total flux results in a center element. For
the SU(2) gauge group, this leads to

(
α1
C(x)

)2
=

Av
2µ

[
A

Av
− A2

A2
v

]
+
(

2π
A

Av

)2

,(
α0
C(x)

)2
=

A′v
2µ

[
A

A′v
− A2

A′2v

]
, (4.9)

where Av, A′v are the cross-sectional areas of the n = 1 and n = 0 domains,
respectively, and A is the area of the domain which is contained within the
interior of the minimal area of the loop. The result is a vortex-induced po-
tential which is proportional to the quadratic Casimir of the representation
at small R (compared to the vortex thickness), and depends only on the
N -ality at large R. A sample calculation for the j = 1

2 , 1,
3
2 representations

is shown in Fig. 10. Details of the calculation are found in Ref. [24].
In G(2) gauge theory there would be only one type of vortex domain,

corresponding to the single element of the trivial center group. Therefore, in
this theory, one would expect all color representations to give rise to Casimir
scaling in the intermediate distance regime, and flatten out asymptotically.
Casimir scaling in this theory has in fact been observed, cf. Ref. [27].
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Fig. 10. The static potential for j = 1
2 , 1,

3
2 static sources, for vortex width = 100,

in the distance range: (a) R ∈ [0, 200]; and (b) R ∈ [0, 50]. From Ref. [24].

5. Monopoles, vortices, and calorons

Lattice U(1) gauge theory has monopole as well as photon excitations.
A Dirac monopole on a three dimensional lattice (or a time-slice of a four
dimensional lattice) can be visualized as shown in Fig. 11. If we write the
product of links around a plaquette p as U(p) = exp[iθ(p)], then a Dirac
string corresponds to a line piercing a set of plaquettes with θ(p) = 2π,
and has no cost in action. The line ends at the center of some cube, where
the monopole itself is located, and the 2π magnetic flux, which entered
through the invisible Dirac line, exits through the six plaquettes forming
the cube. The position of the Dirac line can be changed via U(1) gauge
transformations, but the monopole position is gauge invariant.

Monopole

Dirac line

Fig. 11. In compact QED3, a Dirac line is a line piercing the middle of plaquettes
with flux ΦB = 2π/e. The line is bounded at one end by a Dirac monopole, and
at the other by an antimonopole.

Polyakov, in a classic calculation [28], showed that lattice U(1) gauge
theory (also known as “compact QED”) could be expressed as a monopole
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Coulomb gas, with a partition function

Zmon =
∞∑

m(r)=−∞

exp
[
−2π2

g2a

∑
r,r′

m(r′)G(r − r′)m(r)
]
, (5.1)

where m(r) is the monopole charge at site r, and G(r) is the lattice propa-
gator in D = 3 dimensions, going like 1/r at large separations. The Wilson
loop can be thought of as a loop of current, interacting with the monopole
background∮

C

drµAµ(r) =
∫

S(C)

dSµ(r) Hµ(r) =
∫
d3r ηS(C)(r) m(r) , (5.2)

where
ηS(C)(r) = −1

2
∂

∂rµ

∫
S(C)

dSµ(r′)
1

|r − r′| . (5.3)

Everything can be calculated explicitly in D = 3 dimensions, and the result
is that for a Wilson loop associated with n units of electric charge [28,30]

〈Un(C)〉 ≈ exp
[
−nσ area (C)

]
, (5.4)

where string tension σ is a calculable function of coupling β.
A very rough image of whats going on is this: A Wilson loop can be

thought of as a current loop which itself is the source of a magnetic field.
In a monopole plasma, the free magnetic charges, i.e. monopoles and an-
timonopoles, will tend to line up along the minimal area of the loop, and
screen out the magnetic field that would have been generated by the Wilson
(current) loop source (cf. Fig. 12). The area law falloff for Wilson loops is
associated with the screening sheet of monopoles and antimonopoles along
the minimal loop area.
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Fig. 12. Monopoles and antimonopoles near the minimal surface of a Wilson loop.
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The monopole confinement mechanism can also be related [29] to the
’t Hooft–Mandelstam theory of dual superconductivity. A relativistic version
of a superconductor is provided by the Abelian Higgs model, described by
the action

S = −
∫
d4x

(
1
4
FµνF

µν − |(∂µ + ieAµφ|2 +
λ

4
(
φφ∗ − v2

)2)
. (5.5)

This theory has both a massive and a Coulomb phase. The massive phase is
the superconducting phase, and in this phase magnetic flux is collimated into
Nielsen–Olesen vortices, which are the analog of Abrikosov vortices in an or-
dinary type II superconductor. Magnetic charges, in this phase, are confined
by a linear potential, which is the energy stored in the Nielsen–Olesen flux
tube running between the positive and negative magnetic charges.

According to the dual superconductor idea, the Higgs field is magneti-
cally, rather than electrically charged, and couples to a dual “photon” field.
Electric, rather than magnetic fields are squeezed into flux tubes, and elec-
tric, rather than magnetic, charges are confined.

Since this picture is essentially Abelian, its application to a non-Abelian
gauge theory involves the selection of an Abelian subgroup of the non-
Abelian group, generated by a Cartan subalgebra. The subgroup is identified
either via a Higgs field in the adjoint representation, or by the imposition of
an “Abelian projection” gauge, which leaves the subgroup unfixed. For an
SU(N) gauge theory, gauge-fixing to an Abelian projection gauge leaves a
residual U(1)N−1 Abelian gauge symmetry. The most common such gauge
is the “maximal Abelian gauge”, which makes the gauge fields as Abelian as
possible. In lattice SU(2) gauge theory, the gauge condition is to maximize
the quantity

R =
∑
x

4∑
µ=1

Tr
[
Uµ(x)σ3U

†
µ(x)σ3

]
. (5.6)

In lattice simulations, the SU(2) link variables are gauge-fixed to maximal
Abelian gauge, and then projected to the U(1) subgroup by dropping the
off-diagonal elements of the link variables (which are SU(2) matrices), and
rescaling the links to restore unitarity. The location of monopole currents
can then be identified from the Abelian projected lattice.

Monopole confinement mechanisms, at least in their simplest versions,
have difficulties with N -ality for Wilson loops constructed in the Abelian
subgroup. For example, in the SU(2) → U(1) case, consider the double-
charged Wilson loop

W2[C] =
〈

exp
[
2i
∮
dxµ

1
2
A3
µ

]〉
. (5.7)
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On the lattice, where we may write Uabµ (x) = exp[iθµ(x)σ3] for the Abelian-
projected links, the double-charged loop is

W2[C] =

〈 ∏
(x,µ)∈C

exp[2iθµ(x)]

〉
. (5.8)

This loop has an area law in the monopole Coulomb gas and dual super-
conductor pictures. But in fact, the loop can be screened by gluons which
are charged with respect to the U(1) subgroup, and the asymptotic string
tension of such loops must vanish asymptotically. What this means is that
the distribution of U(1) flux cannot be that of a monopole Coulomb gas,
at least on large scales. The spatial distribution of monopole field strength
must be altered, in such a way that W2[C] follows an asymptotic perimeter-
law falloff. This can be achieved, in ’t Hooft’s Abelian projection picture, if
the Abelian monopole worldlines, and monopole fields, lie on vortex sheets.

The way this works is illustrated in Figs. 13–15. Let us consider a vortex
at some fixed time, where the vortex appears as a tube of color magnetic flux.
In the absence of gauge fixing, the field strength pointing along the vortex
is oriented in a random direction in color space. For the SU(2) gauge group,
upon fixing to maximal Abelian gauge, the field strength tends to line up
in the ±σ3 direction in color space, but there will still be transition regions
where the field rotates in color space from the +σ3 to the−σ3 direction. If we
then project the configuration to the U(1) subgroup, then the center vortex
appears as a monopole–antimonopole chain, with collimated flux running
from monopole to neighboring antimonopole. This is the picture which has
emerged from lattice simulations (cf. [31]), and the collimation of magnetic
flux explains why, e.g., a double-charged Abelian loop must have a perimeter
law, rather than an area law asymptotically.

Fig. 13. Vortex field strength before gauge fixing. The arrows indicate direction in
color space.

Fig. 14. Vortex field strength after maximal Abelian gauge fixing. Vortex strength
is mainly in the ±σ3 direction.
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Fig. 15. Vortex field after Abelian projection.

5.1. Calorons

The most recent version of the monopole Coulomb gas mechanism, which
has emerged in the last few years, is a picture of confinement based on
the caloron configurations introduced by Kraan and van Baal [32] and Lee
and Lu [33]. Calorons are instanton configurations at finite temperature
(represented, on a Euclidean volume, by a finite extent in the time direction),
and they have the important feature that Polyakov lines, away from the
center of the vortex, can take on values that are not in the center of the
gauge group. In particular, one type of caloron is associated with a vanishing
trace for the Polyakov lines.

What is particularly interesting about calorons is they have monopole
constituents which may, depending on the type of caloron, be distant from
one another5. In fact, the positions of these constituents are set by the
parameters (“moduli”) of the solution. The constituents can be widely sep-
arated; in fact they can be placed anywhere, depending on the choice of
moduli. An example for the SU(2) group is shown in Fig. 16, which displays
the action density of two SU(2) caloron solutions in a timeslice at t = 0.
Because the caloron is an instanton solution, one might think that the dyon
constituents appear and then disappear in a certain time interval. In fact,
this is true for small dyon separations. When the dyons are widely sepa-
rated, however, they persist throughout the entire periodic time interval.

Fig. 16. Action density of an SU(2) caloron in a timeslice t = 0, with eigenvalues
of the Polyakov line holonomy µ2 = −µ1 = 0.125. The parameter ρ determines
the separation of the consituent dyons; the figure on the left is at ρ = 0.8, and the
figure on the right has ρ = 1.6. From van Baal [34].

5 The monopoles in this theory are also referred to as “dyons” because they are elec-
trically, as well as magnetically, charged.
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The relevance for confinement is the possibility that at low temperatures
the monopole constituents of calorons are widely separated, and form the
sort of monopole Coulomb gas which is known, from Polyakov’s work, to
lead to confinement. A model calculation, due to Diakonov and Petrov [35],
gives just this result, with sine-law scaling of the k-string tensions, and
an ensemble of calorons with vanishing Polyakov lines. Their calculation
involves a particular suggestion for the appropriate measure of the caloron
collective coordinates.

The caloron proposal can, however, be critiqued on a number of grounds.
In the first place, since the confinement mechanism is essentially Abelian,
and closely analogous to that of a monopole Coulomb gas, there is no ob-
vious reason why, in an appropriate gauge where the constituent monopole
fields are asymptotically Abelian, a double-charged Abelian loop would not
end up with an area law, in violation of color screening and N -ality. In G(2)
gauge theory the Diakonov–Petrov calculation also leads to the vanishing of
Polyakov lines, in contradiction to the requirement of color screening in that
theory6. Another point is that if we take seriously the idea that the distribu-
tion of Polyakov loop holonomies are peaked at zero trace, as in the dyon gas
calculations, this would then imply that the expectation value of Polyakov
lines in the adjoint representation are negative. That prediction appears
to contradict the existing numerical evidence, which indicates that adjoint
Polyakov lines have a positive expectation value below the deconfinement
transition [36].

6. Gribov horizon and Dyson–Schwinger equations

The BRST quantization presented in most textbooks is problematic at
the non-perturbative level due to a theorem by Neuberger [37]. Let Q be
any gauge or BRST invariant operator, c, c the ghost and antighost fields,
and Sgf the gauge-fixing part of the action. Then, according to Neuberger’s
theorem, the expression for the vacuum expectation value of Q is ambiguous
when formulated non-perturbatively on the lattice, i.e.

〈Q〉 =
∫
DUDcDcQ[U ]e−(S+Sgf )∫
DUDcDce−(S+Sgf )

=
0
0
. (6.1)

6 Since it takes three gluons to screen a quark in G(2) gauge theory, the “gluelump”
state is so massive that Polyakov line expectation values are expected to be tiny. It is
not surprising that it is difficult to extract a non-zero value by numerical simulation;
this is difficult (below the deconfinement temperature) even for adjoint Polyakov lines
in SU(2) gauge theory, where only one gluon is required to screen a static adjoint
charge. But unless all current ideas about string-breaking are mistaken, the Polyakov
line expectation value in G(2) gauge theory must have a non-zero, albeit very small
value, and this is qualitatively different from a zero value.
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The underlying reason for this ambiguity is that in covariant gauges and
Coulomb gauge the gauge condition does not completely fix the gauge, even
disregarding the residual global symmetries mentioned previously. The point
is that there are many gauge copies (known as “Gribov copies”, unrelated by
the residual symmetry, all of which satisfy the gauge condition. In a lattice
regularization it turns out that there are even numbers of Gribov copies
on a gauge orbit, half having a positive sign for the Faddeev–Popov (F–P)
determinant, and half negative, so that the sum over all copies in both the
numerator and denominator of (6.1) vanishes.

Because of the indefinite sign of the F–P determinant, it was suggested
by Gribov that the functional integral should be restricted to be inside the
first Gribov horizon, which is the manifold in configuration space where the
lowest non-trivial eigenvalue of the F–P operator becomes zero. The interior
of the region, where all non-trivial eigenvalues are positive, is known as the
Gribov region. In fact, in order to count the contribution of each gauge orbit
only once, the functional integration should really be restricted to a subvol-
ume of the Gribov region, known as the “Fundamental Modular Region”,
where the norm of the gauge field vector potential is minimized. Gribov and
Zwanziger argued that most of the volume of configuration space within the
Gribov region (and the fundamental modular region) is concentrated near
the first Gribov horizon, where the F–P operator develops a zero non-trivial
eigenvalue7.

6.1. Coulomb confinement

The connection of the Gribov horizon to confinement is most direct in
Coulomb gauge, because the Coulomb potential in that gauge depends ex-
plicitly on the inverse F–P operator M−1

VCoul(|x− y|) ∝ −
〈(
M−1

)ab
xz

(−∇2
z)
(
M−1

)ba
zy

〉
, (6.2)

where
M = −∇ ·D (6.3)

is the F–P operator, and D is the covariant derivative in the adjoint rep-
resentation of the gauge group. At the first Gribov horizon, M develops
a non-trivial zero eigenvalue. Then if

1. there is a concentration of small eigenvalues for configurations near
the horizon; and

2. the configurations which dominate the functional integration lie very
close to the horizon;

7 The trivial zero eigenvalues are associated with the global residual gauge symmetry.
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then this could lead to an enhancement of the inverse F–P operator, leading
to a confining Coulomb potential. In fact, something like this must be true,
because it can be shown rigorously that the Coulomb potential is an upper
bound on the static quark potential [38] , i.e.

V (R) ≤ Vcoul(R) (6.4)

which means that Coulomb confinement is a necessary (although not suffi-
cient) condition for confinement.

Let
Mabφbn = λnφ

a
n (6.5)

be the eigenvalue equation for the F–P operator, and let ρ(λ) be the eigen-
value density. Then the Coulomb self energy of a static charge (with some
appropriate, e.g. lattice, ultraviolet cutoff) is given by [39]

Eself ∝
〈(
M−1

)ab
xz

(−∇2
z

) (
M−1

)ba
zx

〉
=

λmax∫
0

dλ

〈
ρ(λ)

(
φλ|
(−∇2

) |φλ)
λ2

〉
(6.6)

so that the Coulomb confinement criterion, which says that the Coulomb
self energy of an isolated color charge is infinite, is

lim
λ→0

〈
ρ(λ)

(
φλ|
(−∇2

) |φλ)
λ

〉
> 0 (6.7)

and this condition has been verified numerically [39].
An easy way to compute the Coulomb potential on the lattice was sug-

gested in Ref. [40]. Define, in Coulomb gauge, the physical state

Ψqq = qa(0)qa(R)Ψ0 , (6.8)

where Ψ0 is the ground state. Then, defining also

G(R, T ) = 〈Ψqq|e−(H−E0)T |Ψqq〉 (6.9)

we have the excitation energy

VC(R) =
〈Ψqq|H − E0|Ψqq〉
〈Ψqq|Ψqq〉

= − lim
T→0

d

dT
log[G(R, T )] . (6.10)
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This energy includes both an R-dependent Coulomb interaction energy, plus
R-independent self-energies. It is not hard to see that for heavy quarks

G(R, T ) =
〈

Tr
[
L†(0, T )L(R, T )

]〉
, (6.11)

where L(x, T ) is a time-like Wilson line

L(x, T ) = P exp

i T∫
0

dt A0(x, t)

 . (6.12)

Note that L(x, T ) is not a Polyakov line holonomy, since T is taken to be
smaller than the extent of the lattice in the time direction.

On the lattice, these lines are products of time-like link variables, and
time derivatives are replaced by finite differences. The upshot, on the lattice,
is that the Coulomb potential can be extracted from the correlator of time-
like link variables

VC(R) = − log
〈

Tr
[
U †0(x, t)U0(x +R, t)

]〉
(6.13)

and the result of this calculation, for SU(2) lattice gauge theory at lat-
tice coupling β = 2.5, is displayed in Fig. 17. Here the upper line is the
Coulomb energy, which is clearly rising linearly, and the lower line is the re-
sult when center vortices are removed from the lattice configurations by the
de Forcrand–D’Elia procedure [41]. The Coulomb string tension obtained in
this way is found to be about three times as large usual asymptotic string
tension, and it vanishes when vortices are removed.

-0.5

0

0.5

1

1.5

2

0 2 4 6 8 10

V
(R

,0
)

R

V(R,0)=-log[G(R,1)], β=2.5, 24
4

with vortices
0.483 - π/(12 R) + 0.098 R
0.392 + 0.105 R
without vortices

Fig. 17. V (R, 0) at β = 2.5, which is equal, up to a constant self-energy term, to
the Coulomb potential. The solid (dashed) line is a fit to a linear potential with
(without) the Lüscher term. The result from vortex-removed lattices is also shown.
From Ref. [40].
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6.2. Dyson–Schwinger equations

The Dyson–Schwinger approach to non-Abelian gauge theories has been
under very active development in the last decade; the hope is that the
Dyson–Schwinger equations (DSEs) for n-point quark–gluon Green’s func-
tions may be soluble in certain kinematic regimes (for a review, cf. [42]).

Dyson–Schwinger equations for the ghost propagator and ghost-gluon
vertex are displayed diagramatically in Figs. 18, 19. In these figures the filled
circles along lines denote dressed propagators, and the large filled circles at
vertices denote the full vertex (the “−1” indicates the inverse propagator).

−1

=

−1

−

Fig. 18. Diagrammatic representation of the Dyson–Schwinger equation for the
ghost propagator. Lines with (without) filled circles represent dressed (bare) prop-
agators, the dashed lines are ghost propagators (or inverse propagators), and the
wavy line is a dressed gluon propagator. The loop diagram contains one bare and
one dressed ghost-gluon vertex. From Fischer [42].

= +

q

l

q − l

p

Fig. 19. Diagrammatic representation of the Dyson–Schwinger equation for the
ghost-gluon vertex, with the same conventions as the previous figure. From
Fischer [42].

Writing, for the full ghost and gluon propagators

Dµν(p) =
Z(p2)
p2

(
δµν − pµpν

p2

)
,

Dghost(p) = −G(p2)
p2

(6.14)

it has been shown that the relevant Dyson–Schwinger equations have a so-
lution known as the “scaling solution” [43], in which the ghost and gluon
dressing functions Z and G, respectively, have the behavior

Z(p2) ∼ (p2)2κ and G(p2) ∼ (p2)−κ (6.15)
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with
κ = 0.595353 . (6.16)

Thus the gluon propagator is less singular (tending, in fact, to zero), and the
ghost propagator more singular than the perturbative behavior, as p2 → 0.
These results tie in very nicely with both the Zwanziger horizon conditions,
which predict that the gluon propagator vanishes in the infrared, and the
Kugo–Ojima criterion, which predicts that G(p2)→∞ as p2 → 0.

But although the gluon propagator vanishes in the infrared, according
to the scaling solution, in one-particle exchange this dressed propagator
is accompanied by a dressed vertex which has singular infrared behavior.
The upshot is that in the ladder expansion of the four-quark one-particle
irreducible Green’s function shown in Fig. 20, the propagator and vertex
combine to give a 1/p4 ladder exchange, leading to a linear potential between
the quark and antiquark.

= + + (..)

Fig. 20. The four quark one-particle irreducible Green’s function. From Alkofer
et al. [44].

All of this seems very promising. Unfortunately, the prediction of a
vanishing gluon propagator and singular ghost dressing function has not
been born out by large volume lattice simulations, carried out Cucchieri and
Mendes [45], and by the Berlin group [46]. It has since been shown [47–49]
that the scaling solution is a rather special solution of the Dyson–Schwinger
equations, and there also exists a more generic “decoupling” solution in which
the gluon propagator tends to a constant in the infrared, and the ghost
dressing function is non-singular. This decoupling solution appears to be
more compatible with the lattice Monte Carlo data.

7. Vacuum wavefunctionals

In recent years there have been renewed efforts to solve for the ground
state of the Yang–Mills Schrödinger equation HΨ0 = E0Ψ0, to see if any-
thing can be learned about the origin of confinement and the mass gap.

There are several approaches. In Coulomb gauge, Szczepaniak and co-
workers [50], and Reinhardt and co-workers [51], have put forward a Gaus-
sian ansatz for the vacuum wavefunctional

Ψ0 = exp
[
−
∫
d3xd3yAai (x)Kij

xyA
a
j (y)

]
(7.1)
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with a field-independent kernel K, determined by minimizing 〈H〉. While
this approach has been pushed quite far, it is not clear how a vacuum of this
type gives rise to an area-law falloff for Wilson loops8.

A quite different approach has been pursued by Karabali, Kim, and
Nair [52], and Leigh et al. [53], in D = 2 + 1 dimensions. The idea is to
change variables from the gauge potential Aak in temporal gauge, to new,
gauge-invariant variables. The tradeoff is the replacement of local gauge
invariance with a local invariance under holomorphic transformations.

Karabali, Kim, and Nair begin by defining a complexified gauge potential

A = A1 +A2 and z = x1 − x2 (7.2)

and define a new complex, matrix-valued variable M ∈ SL(2, C) such that

A = −∂M
∂z

M−1 ,

H = M †M ,

J =
CA
π

∂H

∂z
H−1 . (7.3)

In terms of these gauge invariant variables, the Hamiltonian becomes

HKKN = T + V , (7.4)

where T is derived from the E2 term in the standard Hamiltonian

T = m

(∫
d2u Ja(u)

δ

δJa(x)
+ δ2u

∫
d2vΩab(u, v)

δ

δJa(u)
δ

δJb(v)

)
, (7.5)

where
Ωab(u, v) =

CA
π2

δab
(u− v)2

− ifabc Jc(v)
π(u− v)

(7.6)

and
V =

1
2g2

∫
B2(x) =

π

mCA

∫
d2x ∂Ja∂Ja , (7.7)

where, in this case,

m =
g2CA

2π
(7.8)

and CA is the quadratic Casimir of the adjoint representation. It is impor-
tant to note that although the theory is now expressed in terms of gauge-
invariant variables J , a new local invariance — holomorphic invariance —
has appeared in the problem. This is the transformation

M(z, z)→M(z, z)h†(z) , M †(z, z)→ h(z)M †(z, z) (7.9)
8 In very recent work Szczepaniak has proposed a modified version of the ansatz, which
inserts monopole configurations to overcome this problem.
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under which

H(z, z) → h(z)H(z, z)h†(z) ,

J → hJh−1 +
CA
π
∂hh−1 . (7.10)

It can be seen that J transforms under a holomorphic transformation h(z)
much like a gauge field vector potential under a gauge transformation. The
Hamiltonian HKKN is invariant under these local transformations, and it
is crucial that the eigenstates of HKKN are also invariant. In effect, by
going to the new variables one trades gauge invariance (in temporal gauge
formulation) for holomorphic invariance.

In these new variables, it is possible to carry out a systematic strong-
coupling expansion. Karabali, Kim and Nair were able to sum up all terms
bilinear in J , with the result

Ψ0[J ] = exp

[
− 2π2

g2C2
A

∫
d2xd2y ∂Ja(x)

(
1√−∇2 +m2 +m

)
xy

∂Ja(y)

]
.

(7.11)
In terms of the usual variables, this wavefunctional becomes

Ψ0[A] = exp

[
− 1

2g2

∫
d2xd2y Ba(x)

(
1√−∇2 +m2 +m

)
xy

Ba(y)

]
.

(7.12)
If we disregard ∇2, then this ground state becomes

Ψ0[A] = exp
[
− 1

4mg2

∫
d2x Ba(x)Ba(x)

]
(7.13)

which can be used to calculate the string tension of space-like Wilson loops.
The result is

σ =
g4

8π
(N2 − 1) (7.14)

which in fact agrees quite closely with the known lattice results in 2+1
dimensions.

The difficulty here, in my opinion, is that the wavefunctional Ψ0[J ] is
not holomorphic invariant, and the equivalent form Ψ0[A] of Eq. (7.12) is
not gauge-invariant, and therefore not a physical state. It is not so clear,
then, whether it is allowable to use such states to extract a string tension,
but one can still ask whether trilinear and higher contributions in J would
improve the situation regarding gauge and holomorphic invariance. I will
return to this issue shortly.
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A third approach, again in 2+1 dimensions, has been followed by Olejnik
and myself in temporal gauge [54]. In temporal gauge, the problem is to find
the ground state of the Hamiltonian operator

H =
∫
d2x

{
−1

2
δ2

δAak(x)2
+

1
2
Ba(x)2

}
, (7.15)

where B = F12 subject to the Gauss Law constraint(
δac∂k + gεabcAbk

) δ

δAck
Ψ = 0 (7.16)

which is equivalent to requiring the invariance of Ψ [A] under infinitesimal
gauge transformations. In the free-field, g2 = 0 limit, it is easy to solve for
the ground state, which is

Ψ0[A] = exp

[
−
∫
d2xd2y Ba(x)

(
δab√−∇2

)
xy

Bb(y)

]
. (7.17)

One can also solve for the ground state in a quite different limit, where we
throw away all degrees of freedom except the zero mode of the A-field. In
that case the Lagrangian is

L =
1
2

∫
d2x

[
∂tAk · ∂tAk − g2(A1 ×A2) · (A1 ×A2)

]
=

1
2
V
[
∂tAk · ∂tAk − g2(A1 ×A2) · (A1 ×A2)

]
(7.18)

with corresponding Hamiltonian

H = −1
2

1
V

∂2

∂Aak∂A
a
k

+
1
2
g2V (A1 ×A2) · (A1 ×A2) , (7.19)

where V is the volume of 2-space. In this case it can be shown that the
ground state wavefunction, to leading order in V , is

Ψ0 = exp

[
−1

2
gV

(A1 ×A2) · (A1 ×A2)√|A1|2 + |A2|2

]
. (7.20)

Now we observe that the following wavefunctional

Ψ0[A] = exp

[
−1

2

∫
d2xd2y Ba(x)

(
1√−D2 − λ0 +m2

)ab
xy

Bb(y)

]
(7.21)
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agrees with both soluble limits of the Yang–Mills Schrodinger equation, and
also (since it is gauge invariant) satisfies the Gauss Law constraint. Here
−D2 is minus the covariant Laplacian, λ0 is the lowest eigenvalue of −D2,
andm2 is a parameter which vanishes as g → 0. If we consider the zero-mode
strong-field limit of the covariant derivative(−D2

)ab
xy

= g2δ(x− y)
[(
A2

1 +A2
2

)
δab −Aa1Ab1 −Aa2Ab2

]
, (7.22)

where m2 is negligible, then we find, after some algebra, that

Ψ0[A] = exp

[
−
∫
d2xd2y Ba(x)

(
1√−D2 − λ0 +m2

)ab
xy

Bb(y)

]

=⇒ exp

[
−1

2
gV

(A1 ×A2) · (A1 ×A2)√
A2

1 +A2
2

]
(7.23)

which is the ground state of the zero-mode Hamiltonian.

7.1. Dimensional reduction

A long time ago it was suggested [55] that at large distance scales, the
vacuum state of pure Yang–Mills theory has the following form

Ψ0[A] ≈ Ψ eff
0 [A] = exp

[
−1

2
µ

∫
d3x Tr

[
F 2
ij

]]
. (7.24)

This vacuum state has the property of “dimensional reduction”: The com-
putation of a large space-like Wilson loop in d+ 1 dimensions reduces to the
calculation of a Wilson loop in Yang–Mills theory in d Euclidean dimensions.
Suppose Ψ (3)

0 is the ground state of the 3+1 dimensional theory, and Ψ (2)
0 is

the ground state of the 2+1 dimensional theory. If these ground states both
have the dimensional reduction form, and W (C) is a large, planar Wilson
loop, then

W (C) = 〈Tr[U(C)]〉D=4 =
〈
Ψ (3)

0

∣∣∣Tr[U(C)]
∣∣∣Ψ (3)

0

〉
≈ 〈Tr[U(C)]〉D=3 =

〈
Ψ (2)

0

∣∣∣Tr[U(C)]
∣∣∣Ψ (2)

0

〉
≈ 〈Tr[U(C)]〉D=2 . (7.25)

In D = 2 dimensions the Wilson loop can be calculated analytically, and we
know there is an area law falloff, with Casimir scaling of the string tensions.
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Let us now introduce a mode number cutoff in the proposed ground
state wavefunctional (7.21). Expand B(x) in eigenmodes of the covariant
Laplacian, i.e.

(−D2)abφbn(x) = λnφ
a(x) ,

Ba(x) =
∞∑
n=0

bnφ
a
n(x) ,

Ba,slow(x) =
nmax∑
n=0

bnφ
a
n(x) . (7.26)

The cutoff mode sum defines the “slowly varying” B-field. Choosing nmax

such that λnmax − λ0 � m2, we have∫
d2xd2y Ba,slow(x)

(
1√−D2 − λ0 +m2

)ab
xy

Bb,slow(y)

≈ 1
m

∫
d2xBa,slow(x)Ba,slow(x) . (7.27)

This gives us a dimensional reduction wavefunctional, since the right-hand
side is simply the Euclidean action of a two-dimensional gauge theory, and
the string tension can be computed, in terms of m, analytically:

σ =
3
16
mg2 (7.28)

or, in terms of the lattice coupling β = 4/g2, σ = 3m/(4β). If we turn this
around, and write m = 4βσ/3, then we have a complete proposal for the
Yang–Mills vacuum wavefunctional, in 2 + 1 dimensions.

7.2. Numerical tests

We would like to test this proposal by calculating, e.g., the mass gap
of the theory, or the Coulomb potential. To get the mass gap, we need to
compute the connected correlator

G(x− y) = 〈(BaBa)x(BbBb)y〉 − 〈(BaBa)x〉2 (7.29)

in the probability distribution

P [A] = |Ψ0[A]|2 = exp
[
−
∫
d2xd2y Ba(x)Kab

xy[A]Bb(y)
]
, (7.30)
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where

Kab
xy[A] =

(
1√−D2 − λ0 +m2

)ab
xy

. (7.31)

Numerically, this looks hopeless! Not only is the kernel Kab
xy[A] non-local, it

is not even known explicitly for arbitrary Aai (x), which would seem to rule
out any lattice Monte Carlo approach. But suppose, after eliminating the
variance along gauge orbits by a gauge choice, that K[A] has very little vari-
ation among thermalized configurations. Then things are more promising.

Define

P
[
A;K[A′]

]
= exp

[
−
∫
d2xd2y Ba(x)Kab

xy[A
′]Bb(y)

]
, (7.32)

where B is computed from A, not A′, and P [A] = P [A,K[A]]. Then, as-
suming the variance of K is small,

P [A] ≈ P
[
A, 〈K〉

]
= P

[
A,

∫
DA′ K[A′]P [A′]

]
≈
∫
DA′ P

[
A,K[A′]

]
P [A′] . (7.33)

We can then solve this equation iteratively

P (1)[A] = P
[
A;K[0]

]
,

P (n+1)[A] =
∫
DA′ P

[
A;K[A′]

]
P (n)[A′] . (7.34)

The procedure is to work in an axial A1 = 0 gauge, introduce a lattice
regularization, and change integration variables from A2 to B. Initially, set
also A2 = 0. Then

1. Set A′2 = 0.

2. P [A;K[A′]] is Gaussian in B. Diagonalize Kab
xy[A

′], and generate a
new B-field stochastically.

3. Given B, calculate A2 in the A1 = 0 gauge, and compute observables.

4. Return to step 1, repeat as many times as necessary.

Observables of interest include the eigenvalue spectrum {λn} of the co-
variant Laplacian, and the connected field strength correlator〈

B2(x)B2(y)
〉

conn
∝ G(x− y) , (7.35)
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where
G(x− y) =

〈(
K−1

)ab
xy

(
K−1

)ba
yx

〉
,

K−1 =
√
−D2 − λ0 +m2 . (7.36)

From G(R) we can extract the mass gap.
We can also compute these same observables on two-dimensional slices

of lattices generated in a D = 3 dimensional lattice Monte Carlo simulation.
This is essentially simulating the ground state of the transfer matrix of
the Euclidean theory. The results obtained from two-dimensional “MC”
lattices, generated by ordinary lattice Monte Carlo, can be compared with
the results obtained from “recursion” lattices, generated by steps described
above. The recursion lattices are generated from the probability distribution
P [U ] = Ψ2

0 [U ], where Ψ0[U ] is the latticized version of Eq. (7.21).
Fig. 21 is a plot of the eigenvalue versus mode number of the
• zero-field operator −∇2 +m2; and the
• covariant operator −D2 − λ0 +m2

calculated on 10 recursion lattices at β = 18 on a 50× 50 lattice area. Note
that these values are not averaged; the values for each lattice are plotted,
and (almost) fall on top of one another for each mode number. This means
that there is very little variance in the spectrum of −D2−λ0 from one lattice
to the next.

Fig. 22 plots the data for the observable G(R) in Eq. (7.36). The data
is obtained from ten recursion lattices, and ten MC lattices. The recursion
and MC values obviously agree to high accuracy. Note the tiny values of
G(R) obtained at the larger R values, and the smoothness of the data.
This clearly implies a near-absence of fluctuations in the K−1 operator,
among thermalized lattices, which is a check of the assumption underlying
our simulation procedure. The mass gap is obtained by fitting the data for
G(R) to extract the exponential falloff. Define

G(R) = δabδba
[(√

−∇2 + (M/2)2
)
xy

]2

=
3

4π2

(
1 +

1
2
MR

)2 e−MR

R6
. (7.37)

Fig. 23 is a plot of the recursion lattice data for G(R), compared to G0(R)
with a best-fit value forM. This value is our estimate for the mass gap.

Fig. 24 shows our values for the mass gapM (0+ glueball mass) versus
coupling β, extracted from the recursion lattice data. The points labeled
“expt” are the lattice Monte Carlo results for the 0+ glueball mass, reported
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Fig. 21. Ten sets of eigenvalue spectra of the operator −D2 − λ0 +m2, at β = 18,
from ten independent 50×50 recursion lattices. Also plotted, but indistinguishable
from the other spectra, is the rescaled spectrum of the large-volume zero-field
operator −∇2 +m2.
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generated by the usual lattice Monte Carlo method. Lattices generated by the
first method are denoted “recursion”, and by the second as “MC”. In each case, the
lattice extension is 50 sites at β = 18.
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by Meyer and Teper in Ref. [56]. It appears that, given the asymptotic string
tension as input, we can determine fairly the mass gap fairly accurately from
our vacuum wavefunctional.
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Fig. 24. Mass gaps extracted from recursion lattices at various lattice couplings,
compared to the 0+ glueball masses in 2+1 dimensions obtained in Ref. [56]
(denoted “expt”) via standard lattice Monte Carlo methods. Error-bars are smaller
than the symbol sizes.
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Fig. 25. The Coulomb ghost propagator evaluated on both recursion and MC lat-
tices, at lattice coupling β = 6.

Another observable that we have looked at is the Coulomb gauge ghost
propagator. This is evaluated by transforming each lattice to Coulomb
gauge, and then evaluating

Gghost(R) =
〈
(M−1)aaxy

〉
, (7.38)

where R = |x − y|. The result obtained on MC and recursion lattices is
shown in Fig. 25. Once again, the points essentially overlap.

We can also compute the Coulomb potential, Eq. (6.2). It turns out that
this observable (which involves two powers of the inverse F–P operator) is
highly sensitive to “exceptional” configurations with unusually low values of
λ0, and this sensitivity leads to very large statistical fluctuations. In order
to compare MC and recursion lattice values, which is our main aim, we have
imposed cuts on the data, throwing away the rare configurations with very
low λ0. The result, at β = 6 and lattice extension L = 24, is shown in Fig. 26,
where we have excluded lattices giving rise to V (0) < −10,−20,−100,−200.
Agreement between MC and recursion lattices is still good, although the
error-bars grow systematically as the cutoff is removed.

At this point it is interesting to return to the Karabali–Kim–Nair pro-
posal for the ground state. Although Eq. (7.12) is not a physical state, it
was pointed in Ref. [52] that terms which are higher order than bilinear in
J could sum up to change the ∇2 operator into a covariant Laplacian D2.
A state of that form is then amenable to our methods of simulation, and
it is found that the error in the string tension is at least 50%, and may
even become infinite in the continuum limit [54]. The reason is that the
−D2 is positive definite and (unlike −∇2) its lowest eigenvalue cannot be
approximated by zero, even when calculating observables at large scales.



Some Current Approaches to the Confinement Problem 3397

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0  2  4  6  8  10  12

V
(R

)

R 

β=6, L=24, ε<10

MC
recursion

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0  2  4  6  8  10  12

V
(R

)

R 

β=6, L=24, ε<20

MC
recursion

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0  2  4  6  8  10  12

V
(R

)

R 

β=6, L=24, ε<100

MC
recursion

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  2  4  6  8  10  12

V
(R

)

R 

β=6, L=24, ε<200

MC
recursion

Fig. 26. Coulomb potential evaluated from data sets with cuts at V (0) < −10,
−20,−100,−200, respectively, at β = 6 and lattice extension L = 24. Results are
shown for both MC and recursion lattices.

8. Constituent gluons and the gluon chain model

We have seen that the color Coulomb potential is linear in pure SU(2)
gauge theory, but there are (at least) two serious objections to claiming that
the Coulomb potential explains confinement. First, the Coulomb string
tension seems to be about three times larger than the asymptotic string
tension of the static quark potential. Secondly, a Coulombic electric field,
which depends on the charge distribution ρ in this way:

~EL = g∇ 1
∇ ·Dρ (8.1)

will result in long-range Coulomb dipole fields, and long-range van der Waals
forces among hadrons. This problem is really generic to any model of confine-
ment based on ladder diagrams or (dressed) one-gluon exchange, as found,
e.g., in the Dyson–Schwinger approach.
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The underlying problem is that Coulomb confinement, while providing
a linear potential, does not involve the collimation of the color-electric field
into a flux tube. This raises the question, given the existence of a linear
Coulomb potential, of how a flux tube forms in Coulomb gauge.

Let us recall that the Coulomb potential is simply the R-dependent part
of the energy VC(R) of the quark–antiquark physical state

Ψqq = qa(0)qa(R)Ψ0 . (8.2)

But there is no reason that this state should be the minimal energy state
out of all states containing a static quark–antiquark pair of separation R,
and it should be possible to construct lower-energy states with the help of
additional gluon operators, creating “constituent” gluons. Schematically, we
are looking for lower energy states of the form

Ψ ′qq = qa(0)
{
c0 + c1A

ab + c2A
acAcb + . . .

}
qb(R)Ψ0 . (8.3)

The idea that a quark–antiquark pair, as they separate, pull out a chain
of gluons between them (Fig. 27), is known as the “gluon-chain model”
(cf. [57] and references therein, and Ref. [58]). In its original form, it was
supposed that as the quark and antiquark separate, the field energy increases
faster than linearly, and at some point it is energetically favorable to insert
a gluon between the quark–antiquark charges to reduce the effective charge
separation. In fact it is now known that the Coulomb energy grows only lin-
early, but it may still be the case that physical states with widely separated
constituent gluons are lower in energy than the corresponding states with
no constituent gluons.

One of the motivations of the gluon chain model is that a gluon chain
can be regarded as a time-slice of a high-order planar Feynman diagram, as
indicated in Fig. 28. The gluon chain also has string-like properties (e.g.
a Lüscher term) due to fluctuations in the position of its gluon constituents,
it features Casimir scaling at large N , and also has the right N -ality prop-
erties due to string-breaking [57]. For example, at large N there are two
chains between heavy sources in the adjoint representation, giving rise to
twice the string tension as in the fundamental representation, which is the
correct Casimir ratio at large N . Interaction between the two chains is 1/N2

suppressed, but at finite N the chains can interact and rearrange themselves
(Fig. 29) into two “gluelumps”, having negligible energy dependence on the
quark separation R.

In Euclidean lattice gauge theory, the transfer matrix T = exp[−Ha] is
the Euclidean time version of the Minkowski space time evolution operator,
where a is lattice spacing in the time direction. It is useful to define the
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Fig. 27. Formation of a gluon chain, as a quark–antiquark pair separates.
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Fig. 28. The gluon chain as a time slice of a planar diagram (shown here in double-
line notation). A solid hemisphere indicates a quark color index, open hemisphere
an antiquark color index.

rescaled transfer matrix

T = exp[−(H − E0)a] , (8.4)

where E0 is the vacuum energy.
To compute the static quark potential of a quark–antiquark pair sep-

arated by a distance R, one would ideally diagonalize the transfer matrix
in the infinite-dimensional subspace of states which contain a single mas-
sive quark, and a single massive antiquark, located at sites x and y with
R = |x − y|. The minimal energy eigenstate of the transfer matrix, in this
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Fig. 29. Adjoint string-breaking in the gluon chain model. Two gluons in separate
chains (I) scatter by a contact interaction, resulting in the re-arrangement of color
indices indicated in II. This corresponds to chains starting and ending on the same
heavy source. The chains then contract down to smaller “gluelumps” (III).

subspace, is the state with the largest eigenvalue λmax of T , and the energy
of the state in lattice units is given by

V (R) = − log(λmax) . (8.5)

In practice, we seek to diagonalize T in the subspace spanned by a finite
number of qq states of the form

|k〉 = ψa(x)Qabk ψ
b(y)|Ψ0〉 k = 1, 2, . . . ,M , (8.6)

where theQk operators are functionals of the lattice link variables. In general
the set of |k〉 states are not orthonormal, but they can used to construct
an orthonormal set {φk} of states via the Gram–Schmidt orthogonalization
procedure, and then the matrix elements of the rescaled transfer matrix

Tij ≡ 〈φi|T |φj〉 (8.7)

are computed between these orthonormal states. In practice, it is only nec-
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essary to compute, via lattice Monte Carlo, the quantities

Omn = 〈m|n〉
=
〈

1
2Tr[Q

†
m(t)Qn(t)]

〉
,

tmn = 〈m|T |n〉 ,
=
〈

1
2Tr[Q

†
m(t+ 1)U †0(x, t)Qn(t)U0(y, t)]

〉
. (8.8)

The matrix elements Tij can be derived from the {Omn, tmn}, as explained
in Ref. [59].

To construct the Qk constituent gluon operators, define the lattice vector
potential (in a lattice gauge fixed to Coulomb gauge)

Ak(x, t) =
1
2i

(
Uk(x, t)− U †k(x, t)

)
. (8.9)

These potentials are Fourier-transformed, and we suppress the high-momen-
tum components in directions transverse to direction j of the line joining a qq
pair, i.e.

Ai(k, t) → exp
[
−ρ (k2 − k2

j

)]
Ai(k, t)

→ exp
[
−ρk2

⊥

]
Ai(k, t) , (8.10)

where ρ is a variational parameter. Transform this vector potential back
to position space, and denote the resulting “transverse-smoothed” operator
as Ai(x, t, j). This is the A-field operator which is smeared in directions
transverse to the direction j. We also define

Bi(x, t) = 1− 1
2Tr[Ui(x, t)] (8.11)

which is transverse-smoothed in the same way. It is also convenient to define
for i 6= j, the average

Ai(x, t, j) = 1
2(Ai(x, t, j) +Ai(x− ei, t, j) ,

Bi(x, t, j) = 1
2(Bi(x, t, j) +Bi(x− ei, t, j) (8.12)

derived from two links in the i direction which touch the line, in the j
direction, running from quark to antiquark.
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Then, for an antiquark at site x0 and a quark at site x0 +Rej , Ref. [59]
adopts the following set of Qk

Q1(t) = 12 ,

Q2(t) =
R−1∑
n=0

Aj(x0 + nej , t, j) ,

Q3(t) =
R+1∑
n=−2

R+1∑
n′=n

Aj(x0 + nej , t, j)Aj(x0 + n′ej , t, j) ,

Q4(t) =
R+2∑
n=−2

R+2∑
n′=n

∑
i 6=j

Ai(x0 + nej , t, j)Ai(x0 + n′ej , t, j) ,

Q5(t) =
R−1∑
n=0

Bj(x0 + nej , t, 1)12 ,

Q6(t) =
R−1∑
n=0

∑
i 6=j

Bi(x0 + nej , t, j)12 . (8.13)

Q1 is the zero constituent gluon operator, Q2 is the one gluon operator (one
power of A), and the Q3−6 are two-gluon operators, containing two powers
of the A-field. The corresponding set of states {|k〉} are not orthogonal, but
this is taken care of by the Gram–Schmidt orthogonalization procedure.

For each choice of ρ there is a transfer matrix, and the strategy is to
choose the particular value of ρ, at each R, which maximizes the largest
eigenvalue λmax of Tij . Denote the corresponding eigenstate

|ψ(R)〉 =
6∑

k=1

ak(R)|φk〉 . (8.14)

Then a2
1 is the fraction of the norm of ψ(R) due to the zero (constituent)

gluon component |φ1〉 = |1〉; a2
2 is the fraction of the norm ψ(R) from the

one-gluon component |φ2〉 ∝ |2〉; and 1− a2
1− a2

2 is the fraction of the norm
due to the remaining two-gluon component states. The energy of this state is

Vchain(R) = − log(λmax) (8.15)

which can be compared to the Coulomb (self+interaction) energy

VC(R) = − log(T11) . (8.16)
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Fig. 30. The color Coulomb potential VCoul(R), the “gluon-chain” potential
Vchain(R) derived from the variational state, and the static quark potential Vtrue(R)
extracted from “fat-link” Wilson loops. Results are shown at lattice couplings
β = 2.2, 2.3, 2.4. Continuous lines are from a fit of data points to Eq. (23).

The resulting potentials, for SU(2) lattice gauge theory at values of
β = 2.2, 2.3, 2.4 are shown in Fig. 30, where the static quark potential,
computed by standard methods, is also displayed. Two features worth em-
phasizing in these figures is that Vchain(R) remains linear, and its slope is
much closer to that of the asymptotic string tension, as compared to the
Coulomb string tension. Fig. 31 is a comparison of the zero, one, and two
constituent-gluon content of the minimal energy state at each R, where by
“content” is meant the fraction of the norm of the minimal energy state. The
zero gluon content obviously dominates at small qq separation. This is of
course expected, because placing a gluon between the quark and antiquark
comes with a price in kinetic energy. Around R ≈ 1 fm, however, the zero
and one-gluon contributions to the minimal energy state are about equal.
It is important to note also that the gluon content versus R in physical
units is almost coupling independent, which serves as a check of the whole
procedure.
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state) versus quark separation R in fermis, at β = 2.2, 2.3, 2.4.

As already mentioned, the color Coulomb field is not expected to be col-
limated into a flux tube. This means that there should be strong sensitivity
to lattice volume, on a lattice of spatial extension L, for quark–antiquark
separations close to R = L/2. The reason is that for separations of that size,
the finite volume cuts off a region where the field energy is still significant.
If, instead, the field energy were collimated into a flux tube of diameter d,
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Fig. 32. Sensitivity of the Coulomb potential VCoul(R) (solid symbols), and insen-
sitivity of the chain potential Vchain(R) (open symbols), to lattice volume. Data
is for the gauge coupling β = 2.4, and lattice volumes L4 = 124, 164, 224. Quark-
antiquark separation R is in lattice units.
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then so long as L > d, there would not be a similar sensitivity to the finite
volume. Fig. 32 shows the Coulomb energy VC(R), and the multi-gluon vari-
ational state energy Vchain(R) computed at β = 2.4, at a variety of lattice
sizes. The Coulomb energy shows a strong sensitivity to lattice extension,
with the potential flattening out as R→ L/2. In contrast, Vchain(R) appears
to be rather insensitive to the lattice size. This suggests that the chain state
has no long-range dipole field, or at least that the long-range field is greatly
suppressed relative to the color dipole field of the zero-gluon state. It is pos-
sible that, in the multi-gluon state, we are beginning to see the formation of
a color electric flux tube.
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