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Using as inspiration the well known chiral effective Lagrangian describ-
ing the interactions of pions at low energies, in these lectures we review the
quantization procedure of Einstein gravity in the spirit of effective field the-
ories. As has been emphasized by several authors, quantum corrections to
observables in gravity are, by naive power counting, very small. While some
quantities are not predictable (they require local counterterms of higher di-
mensionality) others, non local, are. A notable example is the calculation
of quantum corrections to Newton’s law. Albeit tiny these corrections are
of considerable theoretical importance, perhaps providing information on
the ultraviolet properties of gravity. We then try to search for a situa-
tion where these non local corrections may be observable in a cosmological
context in the early universe. Having seen that gravity admits an effective
treatment similar to the one of pions, we pursue this analogy and propose a
two-dimensional toy model where a dynamical zwei-bein is generated from
a theory without any metric at all.

PACS numbers: 04.50.Kd, 04.60.–m, 98.80.–k

1. Introduction and outline

This paper summarizes the contents of a set of lectures that were deliv-
ered in the 49th Zakopane School on Theoretical Physics on the subject of
treating Einstein theory of gravitation as an effective theory and the testable
consequences of this procedure, and the possibility that gravitons emerge as
Goldstone states after some sort of symmetry breaking mechanism. The
contents can be basically divided into two parts. The first one describes the
∗ Lecture presented at the XLIX Cracow School of Theoretical Physics, “Non-pertur-
bative Gravity and Quantum Chromodynamics”, Zakopane, May 31–June 10, 2009.
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treatment of effective theories taking the chiral Lagrangian of strong interac-
tions as a starting point and proceeding to study the gravity case in parallel
to the way one sets out to quantize the pion Lagrangian. This part is not
original and we have freely drawn material from the works of Donoghue [1],
Bjerrum-Bohr [2] and Khriplovich [3] in particular.

The second part contains original work made in collaboration with
Alfaro [4], Cabrer [5], Multamäki [6] and Vagenas [6]. Some results are pre-
sented in published form for the first time here. In the lectures the subject of
explicit Lorentz breaking was treated briefly, including some potential appli-
cations to astroparticle physics [7], but this part is omitted in these written
notes for the sake of homogeneity and consistency of the presentation

We shall start with a succinct presentation of the pion chiral Lagrangian
and the chiral counting rules. We shall move to the gravity case after that,
proceeding to quantize the theory. An analogous power counting can be
implemented in this case too. The power counting turns out to be more
subtle when matter fields are present, as we shall see.

Next we will argue why non-local effects are necessarily present and,
in fact, that they provide the only unique and non-ambiguous predictions
of quantum gravity at the one-loop level. These predictions are finite and
contribute in a distinctively different way to physical observables. This shall
be exemplified by studying the first quantum corrections to Newton’s law
and also by analyzing how these corrections may affect the evolution of
a de Sitter universe (inflation).

Finally, we shall give some credence to the idea that gravitons might be
Goldstone bosons of some broken symmetry. We are certainly not the first to
entertain this idea [8], which, on the other hand may seem hopelessly flawed
due to some in-principle long-standing restrictions [9]. We shall provide a
two-dimensional toy model (that, however, can be easily extended to four
dimensions) that shows that such a mechanism is possible in a model that
very much parallels the mechanism of chiral symmetry breaking in QCD,
and how the theoretical objections might be circumvented.

2. Chiral effective theory and chiral counting

The chiral Lagrangian is a non-renormalizable theory describing accu-
rately pion physics at low energies. It has a long story, with the first for-
mal studies concerning renormalizability being due mostly to Weinberg [10]
and later considerably extended by Gasser and Leutwyler [11]. The chiral
Lagrangian contains a (infinite) number of operators organized according to
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the number of derivatives

L = f2
πTr ∂µU∂µU † + α1Tr ∂µU∂µU †∂νU∂νU †

+α2Tr ∂µU∂νU †∂µU∂νU † + . . . , (1)
L = O(p2) +O(p4) +O(p6) + . . . , (2)

U ≡ exp iπ̃/fπ , π̃ ≡ πaτa/2 . (3)

Pions are the Goldstone bosons associated to the (global) symmetry breaking
pattern of QCD

SU(2)L × SU(2)R → SU(2)V . (4)

The above Lagrangian is the most general one compatible with the symme-
tries of QCD and their breaking. Locality, symmetry and relevance (in the
renormalization group sense) are the only guiding principles to construct L.
Renormalizability is not. In fact if we cut-off the derivative expansion at
a given order the theory requires contertemps beyond that order no matter
how large.

Note that, although the symmetry has been spontaneously broken, the
effective Lagrangian still has the full symmetry

U → LUR† (5)

i.e. the underlying symmetry is not lost in spite of the (partial) breaking.
Next let us see how a simple power counting in derivatives can be estab-

lished at the level of quantum corrections. Let ANπ be the amplitude for
the scattering of Nπ pions. At lowest order in the derivative expansion it
will be of the form

ANπ ∼ p2

f2
π

, (6)

where p2 represents a generic kinematic invariant constructed with external
momenta. At the next order

ANπ(pi) ∼
∫

d4k

(2π)4

(
1
fπ

)Nπ

(k2)NV

(
1
k2

)NP

, (7)

where NV and NP are the number of vertices and propagators, respectively.
Consider e.g. ππ → ππ scattering. Then Nπ = 4, NV = 2 and NP = 2. The
integral is divergent and it yields a result of the form

ANπ ∼ 1
16π2f2

π

p4 × 1
ε
. (8)
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Dimensional regularization has been assumed. The divergence can thus be
absorbed by redefining the coefficient of the operators at O(p4) assuming
that the regularization preserves chiral invariance.

This counting works to all orders and IR divergences, that potentially
could spoil it, are absent (Weinberg). At each order in perturbation theory
the divergences that arise can be eliminated by redefining the coefficients in
the higher order operators, e.g.

αi → αi +
ci
ε
. (9)

Note that, in addition to the pure pole in ε, logarithmic non-local terms
necessarily appear. For instance in a two-point function they appear in the
combination

1
ε

+ log
−p2

µ2
. (10)

This comes about because pions are strictly massless in the chiral limit
and thus a combination of momenta must necessarily normalize the µ2 that
appears for dimensional consistency in dimensional regularization.

The cut provided by the log is absolutely required by unitarity. Let us
split the scattering matrix S in the usual way

S = I + iT . (11)

The identity corresponds, obviously, to having no interaction at all.
Unitarity implies

S†S = I = I + i(T − T †) + T †T ,

i(T − T †) = −T †T . (12)

Thus T must necessarily have an imaginary part. Pure powers of momenta
are real by construction. Thus the logs, that bring about a cut and an
imaginary part, are needed. Loops are essential, even for effective theories.
There is no such thing as a ‘classical effective theory’ in a quantum theory.

To recapitulate, the lowest-order, tree level contribution to pion–pion
scattering is ∼ p2

f2
π
. The one-loop chiral corrections are ∼ p4

16π2f4
π
. Thus the

counting parameter in the loop (chiral) expansion is clearly

p2

16π2f2
π

. (13)

Each chiral loop gives an additional power of p2.
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The counting can actually be extended to include small departures from
the chiral limit, i.e. allowing for non-zero quark (hence pion) masses. If
O(p2n) counts as p2n, soft breaking terms such as

µmTr
(
U + U †

)
(14)

give the pion a mass m2
π ∼ m. Therefore m counts as p2 too.

Note that all coefficients in the chiral Lagrangian are nominally ofO(Nc).
Loops are automatically suppressed by powers of Nc, because f2

π ∼ Nc

appears in the denominator, but they are enhanced by logs at low momenta
as we just saw.

Fig. 1. Recent fits to lattice data for light masses using chiral perturbation theory
at the NLO. Extracted from reference [12].

Chiral Lagrangians are extremely successful. Their application to low-
energy phenomenology is nowadays standard and quite relevant. At any
given order in the derivative expansion a finite number of coefficients have to
be determined from experiment (or eventually lattice simulations), but then
everything else is known (with the precision given by the order retained in
the derivative expansion). Even without knowing these coefficients one can
find combinations of observables where the unknown coefficients drop. As an
illustration we show recent fits to lattice data [12] using chiral Lagrangians
showing excellent agreement between their predictions and the numerical
results; the point of course being that one can then use the chiral Lagrangian
to extrapolate to a mass/energy regime unattainable by current numerical
simulations.
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3. The gravity analogy

The Einstein–Hilbert action shares several aspects with the pion chiral
Lagrangian. Like the effective chiral Lagrangian it is also a non-renormaliz-
able theory (more on this latter). It is also described, considering the most
relevant operator, by a dimension two operator containing in both cases two
derivatives of the dynamical variable. Both Lagrangians contain necessarily
a dimensionful constant in four dimensions; the counterpart of fπ in the
pion Lagrangian is the Planck mass MP. Both theories are non-linear and,
finally, both describe the interactions of massless quanta. The Einstein–
Hilbert action is

L = M2
P

√
−gR+ Lmatter , (15)

where
κ2 ≡ 2

M2
P

= 32πG . (16)

Indeed a cursory comparison with the expressions in the previous section
shows that MP plays a role very similar to fπ.

As just mentioned R contains two derivatives of the dynamical variable
which is the metric gµν

Rµν = ∂νΓα
µα − ∂αΓα

µν + Γα
βνΓ

β
µα − Γα

βαΓ
β
µν , (17)

Γ γ
αβ = 1

2g
γρ (∂βgρα + ∂αgρβ − ∂ρgαβ) , (18)

R ∼ ∂∂g . (19)

In the chiral language, the Einstein–Hilbert action would be O(p2) i.e. most
relevant, if we omit for a second the presence of the cosmological constant
which accompanies the identity operator.

Arguably, locality, symmetry and relevance in the RG sense (and not
renormalizability) are the ones that single out Einstein–Hilbert action in
front of e.g. R2.

Unlike the chiral Lagrangian, the Einstein–Hilbert Lagrangian (or ex-
tensions thereof including higher derivatives) has a local gauge symmetry.
Indeed, gravity can be (somewhat loosely) described as the result of pro-
moting a global symmetry (Lorentz)

x′a = Λabx
b , (20)

ηab = ΛcaΛ
d
bηcd , (21)

to a local one

x′µ = x′µ(x) → dx′µ = Λµν(x)dxν , (22)
Λ̄ ν
µ (x) ≡ [Λµν(x)]−1 , (23)

ΛµνΛ̄
ν
ρ = δµρ . (24)
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This can be accomplished if the basic field, the metric, is allowed to be a
coordinate dependent field transforming as

g′µν(x′) = Λ̄ α
µ Λ̄ β

ν gαβ(x) , (25)

dτ2 = g′µν(x′)dx′µdx′ν = gαβ(x)dxαdxβ . (26)

Fields transform as scalars, vectors, etc., under this change

φ′(x′) = φ(x) ,
A′µ(x′) = Λµν(x)Aν(x) . (27)

This means that the gauge symmetry that is present in gravity, unlike in the
chiral Lagrangian, will in practice reduce the number of degrees of freedom
that are observable at low energies for two reasons. One of the reasons
of course is the very existence of the gauge symmetry itself. For instance,
describing a spin one particle (such as a massive photon) with a four-vector
is redundant; one of the four degrees of freedom completely decouples.

The other reason is easily understood just remembering what happens in
the Standard Model of electroweak interactions where the global symmetry
is spontaneously broken down to U(1)em, but because of the SU(2)L×U(1)Y

gauge invariance originally present, all Goldstone bosons disappear yielding,
in turn, some massive modes that were previously massless. The natural
value for such masses is the Fermi scale (∼ 250 GeV), but in gravity it
would undoubtedly be the Planck mass, disappearing in practice from the
low energy dynamics.

Einstein–Hilbert action has thus all the ingredients for being an effective
theory describing the long distance properties of some unknown dynamics.

It is also natural to go one step further and ask whether gravitons are
just Goldstone bosons of some broken symmetry. We will have more to say
about this possibility in the coming sections.

3.1. Quantizing gravity

Quantum corrections in gravity are analogous to the weak field expansion
in pion physics

U = I + i
π̃

fπ
+ . . . . (28)

One writes

gµν ≡ ηµν + κhµν , (29)

gµν = ηµν − κhµν + κ2hµλh ν
λ + . . . , (30)

so in fact κ plays the same role as f−1
π .
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The curvatures can likewise be expanded around a given background,
say gµν = ηµν ,

Rµν =
κ

2

[
∂µ∂νh

λ
λ + ∂λ∂

λhµν − ∂µ∂λhλν − ∂λ∂νhλµ
]

+O(h2) , (31)

R = κ
[
2hλλ − ∂µ∂νhµν

]
+O(h2) . (32)

Indices are raised and lowered with ηµν . This can be done around any fixed
background space time metric.

Green’s functions do not exist without a gauge choice and it is most
convenient to use the so-called harmonic gauge where the Green functions
obey Poisson-like equations

∂λhµλ = 1
2∂µh

λ
λ . (33)

The well-known field equations

Rµν − 1
2gµνR = −8πGTµν ,

√
gTµν ≡ −2

δ

δgµν
(
√
gLm) (34)

reduce in this gauge to

2hµν = −16πG
(
Tµν − 1

2ηµνT
λ
λ

)
. (35)

The momentum space propagator is relatively simple in this gauge.
Around Minkowski space-time we obtain

iDµναβ =
i

q2 + iε
Pµν,αβ , Pµν,αβ ≡ 1

2 [ηµαηνβ + ηµβηνα − ηµνηαβ] .

(36)
In addition one needs to include the gauge-fixing and ghost part. Around
an arbitrary background ḡµν

Lgf =
√
ḡ
{(
Dνhµν − 1

2Dµh
λ
λ

) (
Dσh

µσ − 1
2D

µhσσ
)}
, (37)

Lgh =
√
ḡη∗µ

[
DλD

λḡµν −Rµν
]
ην . (38)

It is plain that perturbative calculations in quantum gravity are quite diffi-
cult due to the proliferation of indices.
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3.2. Counterterms

The following two results are well known and often quoted. The first
one is due to ’t Hooft and Veltman, who computed the divergences in pure
gravity at the one loop level [13]. Without making use of the equations of
motion, the counterterms found by ’t Hooft and Veltman in the harmonic
gauge are

L(div)
1 loop = − 1

16π2ε

{
1

120
R2 +

7
20
RµνRµν

}
. (39)

The second one is due to Goroff and Sagnotti [14] who performed a sim-
ilar calculation at two loops. After using the equations of motion

L(div)
2 loop = − 209κ2

5760(16π2)
1
ε
RαβγδR

γδ
ησR

ησ
αβ . (40)

It is less appreciated that the two results are on a different footing. The
result of ’t Hooft and Veltman is gauge dependent (it was computed in
a particular gauge — the harmonic gauge — and it does not correspond to
any physical observable, in particular the equations of motion have not been
used). The counterterm actually vanishes when the field equations in empty
space are used Rµν = 0. The counterterm does give a net divergence when
Tµν 6= 0 and, therefore Rµν 6= 0, but the result is in principle incomplete as
we will see below [15].

The one-loop counterterms computed by ’t Hooft and Veltman, although
historically quite relevant, are thus largely irrelevant from the point of view
of effective Lagrangians because they vanish on shell.

In de Sitter space, described by the action

S =
1

16πG

∫
dx
√
−g(R− 2Λ) (41)

the counterterm structure was computed by Christensen and Duff [16] in
the 80s. A more detailed analysis was performed later in [17,18], where the
gauge dependence of the counterterms was clearly exposed

Γ (div)
eff = − 1

16π2ε

∫
dx
√
−g
[
c1RµνRµν + c2Λ2 + c3RΛ + c4R2

]
. (42)

The constants ci are actually gauge dependent and only a combination of
them is gauge invariant.

If we are interested in observables, the on-shell condition is to be imposed
on the counterterms of the effective theory (as in a derivative expansion they
will appear only at tree-level, see e.g. [11] for a discussion on this).



3418 D. Espriu, D. Puigdomènech

Using the equations of motion (in absence of matter) Rµν = gµνΛ, the
previous equation reduces to the (gauge-invariant) on-shell expression [18]

Γ (div)
eff =

1
16π2ε

∫
dx
√
−g29

5
Λ2. (43)

On the contrary, if we set Λ = 0 above, in (42), and particularize to the
harmonic gauge, we reproduce the well-known ’t Hooft and Veltman diver-
gence (39).

Let us recapitulate. Exactly as the chiral Lagrangian, the Einstein–
Hilbert action requires an infinite number of counterterms

L = M2
P

√
−gR+α1

√
−gR2 +α2

√
−g(Rµν)2 +α3

√
−g(Rµναβ)2 + . . . . (44)

The divergences can be absorbed by redefining the coefficients just as done
in the previous section for the pion effective Lagrangian

αi → αi +
ci
ε
. (45)

Power counting in gravity appears, at least superficially, quite similar to
the one that can be implemented in pion physics. Of course, the natural
expansion parameter is a tiny number in normal circumstances, namely

p2

16π2M2
P

or
∇2

16π2M2
P

,
R

16π2M2
P

. (46)

Because of this, Donoghue has termed the effective action of gravity the
most effective of all effective actions!

4. Why we need genuine loop effects and power counting

Consider the following generic R2 correction to the Einstein–Hilbert ac-
tion

L =
2
κ2
R+ cR2 + Lmatter . (47)

The corresponding equation of motion for a perturbation around Minkowski
is (recall that we write g = η + h)

2h+ κ2c222h = 8πGT . (48)

The Green function for this equation has the form

G(x) =
∫

d4q

(2π)4

e−iq·x

q2 + κ2cq4

=
∫

d4q

(2π)4

[
1
q2
− 1
q2 + 1/κ2c

]
e−iq·x. (49)
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Taken at face these higher order terms would lead to a correction to
Newton’s law

V (r) = −Gm1m2

[
1
r
− e−r/

√
κ2c

r

]
. (50)

Experimental bounds indicate c < 1074; that is, no bound at all in practice.
This is of course a consequence of the ’effectiveness’ of the effective action
of gravity. If c was a reasonable number there would be no effect on any
observable physics at terrestrial scales. Note that if c ∼ 1,

√
κ2c ∼ 10−35m.

The curvature is so small thatR2 terms are completely irrelevant at ordinary
scales.

However using the full solution of the wave equation is not compatible
with the effective Lagrangian philosophy and the power counting it embodies
because higher orders in κ are sensitive to higher curvatures we have not
considered.

The leading behaviour of the correction is

e−r/
√
κ2c

r
→ 4πκ2cδ3(~r) . (51)

In momentum space this translates into
1

q2 + κ2cq4
=

1
q2
− κ2c+ · · · . (52)

Thus the ‘correction’ to Newton’s law coming from the R2 correction is

V (r) = −Gm1M2

[
1
r

+ 128π2Gcδ3(~x)
]
, (53)

which is totally unobservable, even as a matter of principle.
Of course, apart from the divergences, there are finite pieces (not univer-

sal, due to the renormalization ambiguities, choice of different substraction
methods, etc.) and, most importantly, non-local pieces. Indeed in dimen-
sional regularization we get at the one-loop level

1
ε

+ log
−p2

µ2
(54)

or, in position space,
1
ε

+ log
∇2

µ2
, (55)

where ∇ has to be the covariant derivative on symmetry grounds, ∇2 reduc-
ing to −p2 in flat space-time. These non-localities are due to the propagation
of strictly massless non-conformal modes, such as the graviton itself. There-
fore they are unavoidable in quantum gravity. Notice that the coefficient is
predictable; it depends entirely on the infrared properties of gravity.



3420 D. Espriu, D. Puigdomènech

5. Quantum corrections to Newton law

Let us use the ‘chiral counting’ arguments to derive the relevant quantum
corrections to Newton’s law (up to a constant). The propagator at tree level,
that we symbolically write as

1
p2
, (56)

gets modified by the one-loop ‘chiral-like’ corrections to

1
p2

(
1 +A

p2

M2
P

+B
p2

M2
P

log p2

)
. (57)

Of course the last expression is also symbolic.
Consider now the interaction of a point-like particle with an static source

(p0 = 0) and let us Fourier transform the previous expression for the loop-
corrected propagator in order to get the potential in the non-relativistic
limit. We use∫

d3x exp(i~p ~x)
1
p2
∼ 1
r
,

∫
d3x exp(i~p ~x) 1 ∼ δ(~x) , (58)

∫
d3x exp(i~p ~x) log p2 ∼ 1

r3
. (59)

Thus the quantum corrections to Newton’s law are of the form

GMm

r

(
1 + C

G~
r2

+ . . .

)
. (60)

We have restored for a moment ~. Let us check dimensions. We note that[
Gm

c2

]
= L ,

[
G~
c3

]
= L2 (61)

so C is a pure number. In addition there are post-Newtonian (but classical)
corrections that are not discussed here.

A long controversy regarding the value of C exists in the literature.
Donoghue, Muzinich, Vokos, Hamber, Liu, Bellucci, Khriplovich, Kirilin,
Holstein, Bjerrum-Bohr and others have contributed [3,19,20] to the deter-
mination of C. The result widely accepted as the correct one [2] is obtained
by considering the inclusion of quantum matter fields (a scalar field actually)
and considering all types of loops.
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The relevant set of Feynman rules is

τµν = − iκ
2
(
pµp
′
ν + p′µpν − gµν

[
p · p′ −m2

])
, (62)

τηλ,ρσ =
iκ2

2

{
Iηλ,αδI

δ
β,ρσ

(
pαp′β + p′αpβ

)
−1

2
(ηηλIρσ,αβ + ηρσIηλ,αβ) p′αpβ

−1
2

(
Iηλ,ρσ −

1
2
ηηληρσ

)
[p · p′ −m2]

}
, (63)

with
Iµν,αβ ≡

1
2

[ηµαηνβ + ηµβηνα] . (64)

The first Feynman rule corresponds to a matter–matter–1-graviton vertex,
while the second one describes the matter–matter–2-graviton interaction.
Actually the interaction with matter always takes place via the energy-
momentum tensor. Note that (quantum) matter does propagate inside loops.
Please note that very heavy (matter) degrees of freedom do not necessarily
decouple from quantum corrections as the coupling itself to gravity depends
on the mass.

In addition one needs the 3-graviton interaction vertex which is described
by quite a lengthy expression and shall not be given here. It can be found
in [1].

Then, in a rather informal but otherwise obvious notation, the calcula-
tion of the local counterterms gives [3]

LRR =
1

3849π3r3
(42RµνRµν +R2) , (65)

LRT = − κ

8π2r3
(3RµνTµν − 2RT ) , (66)

LTT =
κ2

60πr3
T 2 . (67)

At this point one can make use of the lowest order equations of motion
to simplify the counterterm structure

Rµν −
1
2
gµνR = −8πGTµν (68)

⇒ Ltotal = − κ2

60πr3
(138TµνTµν − 31T 2) . (69)

Particularizing now to the case of a point-like mass, we get the final result for
C, which is positive in sign: gravity is more attractive at long distances than
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predicted by Newton’s law (although the difference is of course extremely
tiny)

C =
41

10π
. (70)

What happens for classical matter, e.g. a cloud of dust, is in our view still
an open problem.

There are in the literature definitions of an “effective” or “running” New-
ton constant [21,22]. A class of diagrams is identified that dresses up G and
turns it into a distance (or energy)-dependent constant G(r). Unfortunately
it is not clear to us that these definitions are gauge invariant; only physical
observables (such as a scattering matrix) are guaranteed to be. So caution
should be adopted here, although the renormalization-group analysis derived
from this “running” coupling constant are, of course, very interesting.

5.1. Power counting in gravity

Let us try to establish a counting analogous to the one we did for the pion
chiral Lagrangian. Some of the counting rules are obvious, others require
a little thought. Let us indicate them, again symbolically

— 3-graviton coupling: ∼ κq2 ;

— 4-graviton coupling: ∼ κ2q2 ;

— (On-shell) matter– 1-graviton coupling: ∼ κm2 ;

— (On-shell) matter– 2-graviton coupling: ∼ κ2m2 ;

— Graviton propagator: ∼ 1
q2

;

— Matter propagator ∼ 1
q2−m2 .

If we iterate, for example, the 4-graviton vertex to produce a one loop
diagram we shall obtain (pi are external momenta and q = p1 + p2)

Mloop ∼ κ4

∫
d4l

(2π)4

(l − p1)2(l − p2
2)2

l2(l − q)2
. (71)

If this loop integral is regularized dimensionally, which does not introduce
powers of any new scale, the integral will be represented in terms of the
exchanged momentum to the appropriate power. Thus we have

Mloop ∼ κ4 q4 . (72)
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When matter fields are included in loops the situation is more subtle, in
particular for large masses in the non-relativistic limit. Let us see why. If
we compute the tree level result for matter–matter scattering the result is

Mtree = κ2m
2
1m

2
2

q2
. (73)

Note that this is not yet the potential, hence the unfamiliar power of the
masses in the numerator. Iterating this expression to form a loop one en-
counters internal lines where a matter field propagates. This propagator has
a denominator of the form (k − q)2 −m2 that on shell and for large masses
in the non-relativistic limit will behave as mq. Therefore one gets

Mloop ∼ κ4m4
1m

4
2

∫
d4l

1
m1(l + p)

× 1
m2(l + p′)

× 1
(l + q′)2

× 1
(l + q)2

(74)

which by the same reasoning as before is

Mloop ∼ κ4m
3
1m

3
2

q2
∼ κ2m

2
1m

2
2

q2
× κ2m1m2 . (75)

Here the expansion parameter appears to be κ2m2 that does not seem com-
patible with the ‘chiral’ expansion arguments.

This issue has been studied by some detail by Donoghue and Torma [23]
who concluded that

M(Nm
E ,Ng

E) ∼ qD , (76)

where

D = 2−
Nm

E

2
+ 2NL −Nm

V +
∑
n

(n− 2)Ng
V[n] +

∑
l

l ·Nm
V [l] , (77)

being NE, NL and NV the number of external fields, loops and vertices, re-
spectively, and the superindex referring to whether they are matter or gravity
fields. If we disregard matter vertices this is identical to Weinberg’s result
for chiral theories [10], who concluded that the power counting expansion is
sound for the pion effective Lagrangian.

However the negative Nm
V term appearing in D is potentially dangerous.

Although no general proof exists yet, Donoghue has been able to prove
cancellation of the dangerous terms at the one-loop level except for the
terms leading to 1/r corrections (classical, non-linear). The issue is, to our
knowledge, still not fully solved.

We conclude with a final comment concerning the use of the equations
of motion. In chiral Lagrangians they allow us to get rid of redundant
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operators. For instance, taking into account that from the lowest order
Lagrangian results the following Euler–Lagrange equation

U2U † − (2U)U † = 0 (78)

we can set, at the next order in the chiral expansion,

Tr U2U † → 0 . (79)

However, note that in gravity, the equation of motion mixes terms of
different ‘chiral’ order

Rµν − 1
2gµνR = −8πGTµν − gµνΛ . (80)

For instance, it is incorrect to use

Rµν = gµνΛ (81)

in ’t Hooft and Veltman calculation, even if Λ is generated by the v.e.v. of
some scalar field (as long as is spatially constant and does not vary with
time) which is induced by some (dimension four) matter sector. It just does
not reproduce the de Sitter result.

6. Cosmological implications

The quantum corrections to Newton’s law emerge from the universal
non-local corrections to the effective action. They constitute a direct test of
the quantum nature of gravitation, putting this theory on an equal footing
to other quantum field theories. They are thus conceptually extremely im-
portant, but it is hard to imagine how one could measure such a tiny effect.
Can these non-local quantum corrections be relevant, or at least observable,
in a cosmological setting?

We are concerned here about universal non-local quantum corrections to
the Einstein–Hilbert Lagrangian that take the form (again symbolically)

1
16π2M2

P

R
[
log∇2

]
R . (82)

There are two reasons why such apparently hopelessly small corrections
might be relevant in a cosmological setting

— Curvature was much larger at early stages of the universe: in a de
Sitter universe R ∼ H2, H2 = 8πGV0/3, H ≤ 1013 GeV (present
value is 10−42 GeV).
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— Logarithmic non local term corresponds to an interaction between ge-
ometries that is long-range in time, an effect that does not have an
easy classical interpretation.

Please note that the above non-local contributions are totally unrelated
to the so-called f(R) models. They are present and unambiguously calcula-
ble in the quantum theory. It should be mentioned here too that somewhat
related non-localities (but at the two loop level) were studied by Tsamis and
Woodard long ago [24]. They turn out to slow down the rate of inflation.

For the purpose of the present discussion let us spell out our conventions

S =
1

16πG

∫
dx
√
−g(R−2Λ)+Smatter , Rµν− 1

2Rgµν = −8πGTµν−Λgµν .

(83)
Quantum corrections to the Einstein–Hilbert action were originally com-

puted by ’t Hooft and Veltman in the case of vanishing cosmological con-
stant [13], and by Chistensen and Duff for a de Sitter background [16]. The
key ingredient we shall need is the divergent part of the one-loop effective
action. Setting d = 4 + 2ε

Γ div
eff = − 1

16π2ε

∫
dx
√
−g
[
c1RµνRµν + c2Λ2 + c3RΛ + c4R2

]
. (84)

The constants ci are actually gauge dependent as has already been mentioned
and only a combination of them is gauge invariant. This is clearly discussed
in [17,18].

Using the equations of motion (in absence of matter) Rµν = gµνΛ, the
previous equation reduces to the (gauge-invariant) on-shell expression

Γ div
eff =

1
16π2ε

∫
dx
√
−g 29

5
Λ2 . (85)

If we set Λ = 0 above, we get the well-known ’t Hooft and Veltman
divergence, that in the so-called minimal gauge is

Γ div
eff = − 1

16π2ε

∫
dx
√
−g
[

7
20
RµνRµν +

1
120
R2

]
. (86)

If the equations of motion are used in the absence of matter this divergence
is absent.

Let us now try to investigate to what extent the non-local quantum cor-
rections to the effective action, represented by (82) can modify the evolution
of the cosmological scale factor in a Friedman–Robertson–Walker universe.
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In what follows we summarize the results presented in [5,6]. For the sake
of discussion, we shall begin by considering here a simplified effective action
that includes only terms containing the scalar

S = κ2

(∫
dx
√
−gR+ α̃

∫
dx
√
−gR ln

(
∇2/µ2

)
R+ β̃

∫
dx
√
−gR2

)
≡ κ2

(
S1 + α̃S2 + β̃S3

)
, (87)

where κ2 = M2
P/16π = 1/16πG and µ is the subtraction scale. The coupling

β̃ is µ dependent in such a way that the total action S is µ-independent.
Note that

— The value of β̃ is actually dependent on the UV structure of the theory
(it contains information on all the modes — massive or not — that
have been integrated out).

— The value of α̃ is unambiguous: it depends only on the IR structure of
gravity (described by the Einstein–Hilbert Lagrangian) and the mass-
less (nonconformal) modes.

In conformal time

gµν = a2(τ)ηµν , R = 6
a′′(τ)
a3(τ)

,
√
−g = a4(τ) . (88)

We first obtain the variation of the local part

δS1

δa(τ)
= 12a′′,

δS3

δa(τ)
= 72

(
−3

(a′′)2

a3
− 4

a′a′′′

a3
+ 6

(a′)2a′′

a4
+
a(4)

a2

)
.

(89)
In order to obtain the variation of the non-local (logarithmic piece) we

need to compute
〈x| log∇2|y〉 , (90)

where in conformal coordinates

∇2 = a−32 a+ 1
6R . (91)

To the order we are computing we can neglect the R term in the previous
equation and commute the scale factor a with the flat d’Alembertian

∇2 =
(
a

a0

)−2

2 , (92)
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where a0 = a(0). With this rescaling (absorbable in β̃), at τ = 0 the
d’Alembertian in conformal space matches with the Minkowskian one.

We can now separate S2 in turn into a local and a genuinely non-local
piece

S2 =
∫
dx
√
−g

(
−2R ln(a)R+R ln(2/µ2)R

)
≡ SI

2 + SII
2 . (93)

δSI
2

δa(τ)
=− 72

{
(a′)2a′′

a4
[12 ln a− 10]

+
a′a′′′

a3
[−8 ln a+ 4] +

(a′′)2

a3
[−6 ln a+ 2] +

a(4)

a2
2 ln a

}
.

(94)

Finally we have to compute

〈x| ln 2|y〉 = lim
ε→0

1
ε
〈x|2ε|y〉 − 1

ε
〈x|y〉 . (95)

The (covariant) delta function is in one-to-one correspondence with the coun-
terterm. The Green’s function we are interested will be

∼ 1
|x− y|4+2ε

. (96)

After integration of ~x− ~y we get

∼ 1
|t− t′|1+2ε

. (97)

So

SII
2 = 36

∫
dτ
a′′(τ)
a(τ)

τ∫
0

dτ ′
1

τ − τ ′
a′′(τ ′)
a(τ ′)

. (98)

Note the limits of integration ensuring causality. Technically speaking we
are using here the in–in effective action and not the in–out one that would
be appropriate for a scattering process.

The variation of SII
2 is

δSII
2

δa(τ)
= 36

[2a−3(τ)
(
a′(τ)

)2 − 2a−2(τ)a′′(τ)
] τ∫

0

dτ ′
1

τ − τ ′
a′′(τ ′)
a(τ ′)

−2a−2(τ)a′(τ)
∂

∂τ

 τ∫
0

dτ ′
1

τ − τ ′
a′′(τ ′)
a(τ ′)


+a−1(τ)

∂2

∂τ2

 τ∫
0

dτ ′
1

τ − τ ′
a′′(τ ′)
a(τ ′)

 . (99)
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In the spirit of effective Lagrangians we would obtain first the lowest order
equation of motion from S1 and plug it in α̃(SI

2 + SII
2 ) + β̃S3. As can be

seen by inspection, quantum corrections act as an external driving force
superimposed to Einstein equations.

In a FRW universe without matter and with zero cosmological constant
the non-local pieces are actually zero (i.e. there are no log terms) when
one considers physical observables and the equations of motion are used.
Therefore the toy model we have considered is not realistic, but it has served
us to develop our tools.

Let us now move to the more physically relevant case of a de Sitter
universe. The relevant one-loop corrected effective action is

S =
1

16πG

∫
dx
√
−g(R− 2Λ) +

1
16π2

∫
dx
√
−g29

5
Λ ln
∇2

µ2
Λ

+ local terms of O(p4) . (100)

We write S as

S ≡ κ2

(∫
dx
√
−g(R− 2Λ) + α̃S2

)
, (101)

with
α̃ =

G

π
× 29

5
. (102)

We split S2 in two parts

SI
2 = −2

∫
dx
√
−gΛ2 ln(a) , SII

2 =
∫
dx
√
−gΛ ln(�/µ2)Λ , (103)

and obtain the corresponding variations following the method outlined pre-
viously

δSI
2

δa(τ)
= −2Λ2a3(τ) [4 ln(a(τ)) + 1] , (104)

δSII
2

δa(τ)
= 2Λ2a(τ)

τ∫
0

dτ ′a2(τ ′)
µ−2ε

|τ − τ ′|1+2ε
. (105)

The equation of motion will be

12a′′(τ)− 8Λa3(τ) + α̃
δS2

δa(τ)
= 0 (106)

which at lowest order is just

12a′′(τ)− 24H2a3(τ) = 0 , H2 =
Λ
3
. (107)
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The lowest order solution (with a(0) = 1) is

aI(τ) =
1

1−Hτ
. (108)

The final step is to plug the 0-th order solution aI(τ) into the variation of
S2 and recalculate the solution for a(τ). Note that we use a perturbative
procedure is of course only valid as long as the correction is small compared
to the unperturbed solutions.

We introduce a variable s defined aI(τ) = es. Then s counts the number
of e-folds

δSI
2

δa(τ)
= −2Λ2e3s [4s+ 1] ,

δSII
2

δa(τ)
= 2Λ2esI(s) (109)

and the equation of motion reads

a′′(s) + a′(s)− 2e−2sa3(s) = 3
2 α̃H

2 (−es(1 + 4s) + e−sI(s)) , (110)

where I is

I(s) = ln
( µ
H

(1− e−s)
)
e2s + es(1− es − ses) , (111)

and the equation to solve is

a′′(s) + a′(s)− 2e−2sa3(s) = 3
2 α̃H

2
[
−(5s+ 2)ess + 1 + es ln

( µ
H (1− e−s)

)]
.

(112)
Note that α̃ appears only in the combination α̃H2. Since there are H large
uncertainties in H in practice only the sign of α̃ is relevant. In addition,
there is some ambiguity associated to the choice of the renormalization scale
that appears in the combination ln(µ/H). This is shown in figure 2.

Let us now assume that a = a(τ, ~x); i.e. we allow for some space inho-
mogeneities. Then

δSII
2

δa(τ, ~x)
∼ Λ2a(τ, ~x)

τ∫
0

dτ ′d3~ya2(τ ′, ~y)
µ−2ε

|x− y|4+2ε
. (113)

This corresponds to new correlations of a quantum nature between dif-
ferent points. The consequences of this term have not been fully investigated
yet.
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Fig. 2. The scale factor relative to the inflationary expansion for different values
of µ and H (all units are GeV). We can see that the curves present a very similar
behaviour for the different values shown, though a higher value of H leads earlier to
deviations from the usual inflationary expansion. Higher values of µ also have this
effect, which is larger as H increases. In fact, if we considered values of µ/H large
enough (but not relevant physically), the logarithm term would become dominant
and the deviation would be positive.

7. Gravity as a Goldstone phenomenon

We have given in the previous sections arguments why the Einstein–
Hilbert action could be viewed as the most relevant term, in the sense of the
renormalization-group, of an effective theory.

Let us review them:

— Dimensionful coupling constant (MP ∼ fπ) .
— Derivative couplings (

√
−gR ∼ g∂∂g) .

— Choice of action based on RG criteria of relevance, not on renormaliz-
ability (unlike Yang–Mills).

— Power counting analogous to ChPT.

— Massless quanta (π ↔ gµν).

— Existence of a global symmetry to be broken (see below).

Here we want to pursue this line of thought further. As an entertain-
ment, without making any particularly strong claim of relevance, we shall
investigate a formulation inspired as much as possible in the chiral symmetry
breaking of QCD. It has the following characteristics:
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— No a priori metric, only affine connection is needed (parallelism).
— Lagrangian is manifestly independent of the metric.
— Breaking is triggered by a fermion condensate.

A different model along these lines was considered some time ago by
Russo and coworkers [8].

We seek inspiration in the effective Lagrangians of QCD at long dis-
tances. A successful model for QCD is the so-called chiral quark model. Con-
sider the matter part Lagrangian of QCD with massless quarks (2 flavours)

L = iψ̄ 6∂ψ = iψ̄L 6∂ψL + iψ̄R 6∂ψR . (114)

This theory has a global SU(2) × SU(2) symmetry that forbids a mass
term M .

However after chiral symmetry breaking pions appear and they must be
included in the effective theory. Then it is possible to add the following term

−Mψ̄LUψR −Mψ̄RU
†ψL , (115)

that is invariant under the full global symmetry

ψL → LψL , ψR → RψR , U → LUR† . (116)

Chiral symmetry breaking is also characterized by the presence of a
fermion condensate 〈

ψ̄ψ
〉
6= 0 . (117)

In order to determine whether the condensate is zero or not one is to solve a
‘gap’-like equation in some modelization of QCD, or on the lattice. The final
step is to integrate out the fermions using the self-generated effective mass
as an infrared regulator. This reproduces the chiral effective Lagrangian
discussed in the beginning of the lectures, although the low-energy constants
αi obtained in this way are not necessarily the real ones, as the chiral quark
model is only a simplification of QCD and not the real thing.

There is only one possible term bilinear in fermions that is invariant
under Lorentz × Diff

ψ̄aγ
a∇µψµ . (118)

To define ∇ we only need an affine connection

∇µψµ = ∂µψ
µ + iωabµ σabψ

µ + Γ ν
µνψ

µ . (119)

Note that no metric is needed at all to define the action if we assume that
ψµ behaves as a contravariant spinorial vector density under Diff. Then, Γµ

νρ

does not enter, only the spin connection. If we keep this spin connection
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fixed, i.e. we do not consider it to be a dynamical field for the time being,
there is no invariance under general coordinate transformations, but only
under the global group SO(d)×GL(d) (assuming an Euclidean signature)1.

Eventually we would like to find a non trivial condensate such as〈
ψ̄aψ

µ
〉
∼ eµa . (120)

In the absence of the (so far) external connection, we expect a constant value
for eµa (note that the constant of proportionality has dimensions of mass if
we take eµa to be dimensionless). It is of course irrelevant in which direction
it points; all the vacua will be equivalent. If the condensate appears one can
always choose eµa = δµa without loss of generality. We shall interpret eµa as
the (inverse) n-bein. Note that once a dynamical value for eµa is generated
we can write terms such as Mψ̄ae

a
µψ

µ, where eaµ (the n-bein) is defined by
eaµe

µ
b = δab . Of course one can introduce quantities such as gµν = eµaeνb δab

and its inverse gµν defined by gµνgνρ = δρµ.
Note that a large number of Goldstone bosons are produced. The original

symmetry group G = SO(d)×GL(d) has d(d−1)
2 + d2 generators. After the

breaking G → H, with H = SO(d), which has a total of d(d−1)
2 generators,

leaving d2 broken generators, as expected. It remains to be seen how many
of those actually couple to physical states.

In order to trigger the appearance of a vacuum expectation value we have
to include some dynamics to induce the symmetry breaking. The model we
propose is to add the interaction piece

SI =
∫
d4x((ψ̄aψµ + ψ̄µψa)Ba

µ + cdet(Ba
µ)) . (121)

Note that the interaction term also behaves as a density thanks to the co-
variant Levi–Civita symbol hidden in the determinant of Ba

µ. If we consider
the equation of motion for the auxiliary field Ba

µ we get〈
ψ̄aψ

µ
〉

= 2cεµνεabBb
ν . (122)

So the vacuum expectation value of the field B would correspond to the
value of the n-bein, up to a (dimensional) constant.

In what follows we shall consider the above model for D = 2 for sim-
plicity. Note the peculiar ‘free’ kinetic term γa ⊗ kµ. We write explicitly in
two dimensions the bilinear operator acting on the fermion fields. Note that

1 We recommend the reader to follow the discussion presented by Percacci [25] in these
proceedings.
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indices a, b, . . . can be raised and lowered freely in Euclidean space.

M =


B11 k1 B12 k2

k1 B11 k2 B12

B21 −ik1 B22 −ik2

ik1 B21 ik2 B22

 (123)

and we also define

∆ab ≡MM † ≡
∑
µ

iDa
µ · iDb

µ , (124)

where
Da
µ = γa(∂µ + iwµσ3)− iBa

µ . (125)

We want to compute the effective action after integration of the fermion
degrees of freedom using the heat kernel method. Then

W = −1
2

∞∫
0

dt

t
Tr
〈
x|e−t∆|x

〉
, (126)

〈
x|e−t∆|x

〉
=

1
tD/2

∫
dDk

(2π)D
Tr
[
e−k

2γaγb+i
√
t(γaDbµkµ+Daµkµγ

b)+tDaµD
b
µ

]
,

(127)
where ∆ has been defined above. Note that the exponent is a matrix in
Lorentz and Dirac indices (the latter not explicitly written). Once we know
W (w,B) we can differentiate with respect Ba

µ and obtain the relation be-
tween the ‘n-bein’ and the spin connection using a logic similar to the one
defined by the Palatini formalism [26].

Note that

e−k
2γaγb = δab − 1

D
γaγb +

1
D
γaγbe−Dk

2 ≡ P ab +
1
D
γaγbe−Dk

2
. (128)

Thus the exponential, considered as a matrix, has zero modes and therefore
the heat kernel calculation is non-standard and quite laborious.

Here we shall limit ourselves to the case where there is no connection
at all and then indicate how one could proceed beyond that (rather trivial)
limit, to include a non-zero spin connection. We refer the interested reader
to [4] for more details.

If w = 0 then one can use homogeneity and isotropy arguments to look
for constant solutions of the gap equation associated to the following effective
potential

Veff = cdet(Ba
µ) + 2

∫
dnk

(2π)n
Tr (log(−γakµ +Ba

µ)) . (129)
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The extremum of Veff are found from

cnεaa2....anε
µµ2....µnBa2

µ2
. . . .Ban

µn + 2Tr
∫

dnk

(2π)n
(−γ ⊗ k +B)−1

∣∣∣∣µ
a

= 0 .

(130)
Notice that the equations are invariant under the permutation

Bij → Bσ(i)σ(j) , ki → kσ(i) , σεS2 . (131)

The ‘gap equation’ to solve for constant values of Bij is

cBij −
1

16π
Bij log

detB
µ

= 0 . (132)

A logarithmic divergence has been absorbed in c. This equation has a non-
trivial solution that we can always choose, as indicated before, to beBa

µ ∼ δ
µ
a .

The next step is to consider wµ(x) 6= 0. It is technically convenient to
consider the heat kernel for the operator M †M rather than MM †, although
of course the determinants are identical. It is also important to maintain
a covariant appearance as long as possible (note that there is no ‘metric’ so
far and no way of lowering or raising indices). The final result has to be of
course covariant, since our starting point is.

In conclusion, this leads us to the evaluation of the effective action

W = −1
2

∞∫
0

dt

t
Tr
〈
x|e−t∆|x

〉
, (133)

where now
∆ ≡M†M , (134)

with
M = iDbµ , M† = iDνb (135)

and

Dbµ = ξ† bLa γ
a(∂ρ + iwρσ3)ξρR µ − iB̄

b
µ ,

Dνb = ξ† σRν (∂σ + iwσσ3)γaξaL b − iB̄νb . (136)

∆ now has coordinate (and Dirac) indices. In the previous expressions we
have decomposed

Ba
µ = ξaL bB̄

b
νξ
−1ν
R µ ; B̄b

ν = ξ† bLaB
a
µξ
µ
R ν ; B̄νb = ξ† µRν Bµaξ

a
L b , (137)
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where B̄b
µ = Mδbµ is the background which we can take the role of a mass

term in the integration over t in the heat kernel. Note that we have redefined
the fermion fields to absorb the matrices ξL and ξR.

This way of doing things ensures the formal covariance of the heat kernel
expansion. It is not too difficult to see that the lowest non-trivial order gives

W =
µ2ec̃

16π

∫
d2x
√

Det[(ξσRµξ
†ρ
Rµ)−1] , (138)

where a summation over µ is to be understood and where M2 = µ2ec̃ with
c̃ = 16πc − 1. This is just the expected cosmological term with gσρ =∑

µ ξ
σ
Rµξ

†ρ
Rµ.

The next term in the heat kernel expansion should produce the relation
ensuring that the metric is compatible with the spin connection. Finally,
one would allow the spin connection to be a dynamical variable.

As mentioned before, there is apparently a fundamental problem in con-
sidering theories where the graviton is generated dynamically. If we refer
to the original paper by Weinberg and Witten [9], the apparent pathology
of these theories lies in the fact that the energy-momentum tensor has to
be identically zero if particles with spin higher than one appear. Actually,
at a very naive level the energy-momentum tensor of the toy model pre-
sented here is zero as the model contains no metric with respect to which
one can derive. Probably an energy-momentum tensor could be defined in
some way, but this is not totally obvious, and it is not clear to what extent
the conditions assumed by Weinberg and Witten apply.

The previous two-dimensional example is all too trivial but it shows per-
fectly the general ideas. It seems conceivable to entertain the idea that a
mechanism analogous to chiral symmetry breaking may trigger the dynam-
ical appearance of some degrees of freedom that at the very least reproduce
formally Einstein–Hilbert action. This leads to rather interesting results, for
instance we expect the following relation between the Planck mass and the
dynamically generated mass

M2
P ∼

M2

16π2
log

µ

M
. (139)

We have also seen above how a relation between the would-be cosmological
constant and the parameters of the underlying theory appears.

This is probably an appropriate place to stop and we recommend the
interested reader to examine the results that will be presented in [4].
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8. Summary

In these lectures we review the physical consequences of treating gravity
at the quantum level as an effective theory, not very different from what is
done in pion physics. Because it contains massless states, non-local loga-
rithmic terms in the effective action should then be present.

We have analyzed the relevance of the non-local quantum corrections
due to the virtual exchange of gravitons and other massless modes to the
evolution of the cosmological scale factor in FRW universes. The effect is
largest in a de Sitter universe with a large cosmological constant. The effects
are nonetheless locally absolutely tiny, but they lead to a noticeable secular
effect that slows down the inflationary expansion. Although this has not
been discussed in detail in these lectures, in a matter dominated universe
the effect is a lot smaller, and it appears to be of the opposite sign. Quantum
effects seem to enhance the expansion rate in this case. These effects have
no classical analogy.

Note that the results presented here are not ‘just another model’. Quan-
tum gravity non-local loop corrections exist. They are required by unitarity
if gravity is to be a consistent quantum theory. The non-localities also give
rise to other consequences; for instance it would be very interesting to com-
pute the space correlations that these logarithmic terms introduce.

In the final part we have discussed a toy model where gravitons appear
as a Goldstone states. The model has originally no metric whatsoever; it is
generated dynamically.
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