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We discuss the arbitrariness in the choice of cutoff scheme in calcu-
lations of beta functions. We define a class of “pure” cutoff schemes, in
which the cutoff is completely independent of the parameters that appear
in the action. In a sense they are at the opposite extreme of the “spectrally
adjusted” cutoffs, which depend on all the parameters that appear in the
action. We compare the results for the beta functions of Newton’s constant
and of the cosmological constant obtained with a typical cutoff and with a
pure cutoff, keeping all else fixed. We find that the dependence of the fixed
point on an arbitrary parameter in the pure cutoff is rather mild. We then
show in general that if a spectrally adjusted cutoff produces a fixed point,
there is a corresponding pure cutoff that will give a fixed point in the same
position.

PACS numbers: 04.60.–m, 11.10.Hi

1. Introduction

In the last ten years much work has been done on the calculation of the
beta functions of gravity, using Wilsonian Renormalization Group methods.
Such calculations have focused first on the Hilbert action, usually including
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also a cosmological term [1–6], and have been extended to include terms
quadratic in curvature [7–10] as well as higher polynomials in the Ricci
scalar [11–13] or in some approximation even all orders of the derivative ex-
pansion [14]. Similar studies have also been done in the conformal reduction
of gravity, where only the conformal factor is dynamical [15]. The main mo-
tivation for this work has been to try to (dis)prove the asymptotic safety of
gravity, i.e. the existence of a fixed point with finitely many UV attractive
directions [16], also [17] for reviews.

One slightly bothering aspect of these calculations is that very often one
works with quantities that are scheme-dependent, i.e. depend on details of
how one chooses to implement a cutoff. Scheme dependence is nothing new
in quantum field theory. It is usually taken as a sign that the quantity one
is calculating is not directly measurable. The leading approximation to the
beta functions of dimensionless coupling constants, such as Yang–Mills and
Yukawa couplings in four dimensions is scheme-independent. In the case
of gravity the most interesting couplings, like Newton’s constant and the
cosmological constant are dimensionful and their beta functions are scheme
dependent even in the lowest approximation. One hopes that at least the
qualitative features of the Renormalization Group (RG) flow are scheme
independent. For example, the existence of a Fixed Point (FP) as well as
the number of attractive/repulsive directions at the FP should be scheme-
independent. More quantitatively, one expects also the critical exponents
at the FP to be scheme-independent. All the calculations performed so
far support the existence of a FP with finitely many attractive directions.
For pure gravity the number of attractive directions seems likely to be three
[9,11–13], in accordance with the idea of asymptotic safety. At a quantitative
level, when using a truncation, both the position of the FP and the critical
exponents depend on the scheme, but there are some quantities, such as
the dimensionless combination ΛG which are much less sensitive to cutoff
scheme than others.

Here we add some tassels to this picture. We consider a class of cutoff
schemes that have not received much attention in the literature, that we call
“pure”. We say that a cutoff is “pure” if it does not depend on any of the
parameters (masses, wave function renormalizations, couplings . . . ) which
appear in the action. These cutoffs are logically at the opposite extreme
of another class of cutoffs that depend on all the couplings of the action
and are called, for reasons that will be made clear in Section 3, “spectrally
adjusted”.

In this note we would like to do two things. The first is to calculate the
properties of the gravitational fixed point in the Einstein–Hilbert truncation
using a pure cutoff, and compare them to the results of other, more popular
cutoffs. This we shall do in Section 4. The second is to show in general that
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whenever one uses a pure cutoff, there is a choice of parameters that will
yield the same FP as a spectrally adjusted cutoff. This will be the subject
of Section 5.

For definiteness we shall discuss scheme-dependence in the context of
Wetterich’s exact RG equation [18], which uses an additive infrared cutoff.
To limit the dimension of the parameter space that we explore we shall keep
other aspects of the cutoff and gauge choice fixed. Although stimulated
by research on gravity, the points we make in Sect. 5 are quite general and
should apply also to other quantum field theories and to other flow equations.

2. The flow equation

As mentioned in the Introduction, most of the progress towards asymp-
totic safety of the last ten years has come from applying functional renor-
malization group methods to gravity. In this section we describe these tools,
using first the example of a real scalar field and then describing some of
the modifications that are needed in the application to gravity. A general
idea put forward by Wilson is that the functional integration should not be
performed in one single step covering all field fluctuations from the UV to
the IR, weighting all fluctuations with the same bare action, but rather in
a sequence of finite steps, updating the action at each step. A concrete im-
plementation of this idea that is easily amenable to explicit calculations was
given in 1993 by Wetterich [18]. We begin from a formal functional integral

e−Wk[j] =
∫

(dφ)e−(S(φ)+∆Sk(φ)+
R
jφ) , (1)

where j is an external source and

∆Sk(φ) =
1
2

∫
d4qφ(−q)Rk(q2)φ(q) . (2)

The effect of the new term ∆Sk is simply to modify the (inverse) propagator
of the theory: it replaces q2 by

Pk(q2) = q2 +Rk(q2) . (3)

The kernel Rk(q2) is chosen so as to suppress the propagation of the modes
with momenta |q| � k2 and tends to zero for |q| � k2 so that high momen-
tum modes are integrated out without any suppression. We shall discuss the
properties of this function in greater detail in Section 3. One then defines a
scale-dependent effective action functional Γk(φ), as the Legendre transform
of Wk, minus the term ∆Sk that we introduced in the beginning:

Γk[φ] = Wk[j]−
∫
jφ−∆Sk(φ) , (4)
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where φ is now to be interpreted as a shorthand for 〈φ〉, the variable conju-
gated to j. If the functional integral is defined by an UV cutoff, then when
k tends to this cutoff the average effective action is related by a nontrivial
transformation to the bare action [20]. For k → 0, ∆Sk → 0 and one recov-
ers the standard definition of the effective action (the generating function
of one-particle-irreducible Green functions). It is not exactly the Wilsonian
action but its definition is similar in spirit and it is somewhat easier to work
with. If one evaluates this functional at one loop, it is

Γ (1)
k =

1
2

STr log
(
δ2S

δφδφ
+Rk

)
(5)

and its scale dependence is given by

k
dΓk
dk

=
1
2

STr
(
δ2S

δφδφ
+Rk

)−1

k
dRk
dk

. (6)

Here STr is a trace that includes a factor −1 for fermionic fields and a fac-
tor 2 for complex fields. It can be shown that the “renormalization group
improvement” of this equation, which consists in replacing S by Γk in the
r.h.s., leads actually to an exact equation often called the Functional Renor-
malization Group Equation (FRGE) [18]:

k
dΓk
dk

=
1
2

STr
(
δ2Γk
δφδφ

+Rk

)−1

k
dRk
dk

. (7)

It is important to observe that the last term in Eq. (7) suppresses the
contribution of high momentum modes so that the trace is ultraviolet finite:
there is no need to use any ultraviolet regularization. In fact, once the equa-
tion has been derived, it is actually not necessary to refer to the functional
integral anymore. The FRGE defines a flow in the space of all theories and
if we start from any point and we follow the flow in the limit k → 0, then we
find the effective action, from which in principle we can derive everything
we may want to know about the theory. Conversely, by following the flow
towards higher energy we can establish whether the theory has a FP with
the desired properties.

The application of this equation to gravity has been discussed first in [1].
Since gravity is a gauge theory, one has to take into account the complica-
tions due to the gauge fixing and ghost terms. So far the best way to deal
with these complications is to use the background field method. Let ḡµν be
a fixed but otherwise arbitrary metric. We can write gµν = ḡµν + hµν . It is
not implied that h is small. We choose a gauge-fixing condition

SGF(ḡ, h) =
1
2

∫
d4x
√
ḡ χµY

µνχν , (8)
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where χν = ∇µhµν + β∇νh, h = hµµ and Y is some operator, which in the
simplest cases is just equal to ḡµν . The standard formal manipulations in
the path integral give rise to a ghost term

Sc =
∫
d4x
√
ḡ C̄ν(∆gh)νµC

µ , (9)

and, if Y contains derivatives, also a “third ghost” term [12,19]

Sb =
1
2

∫
d4x
√
ḡ bµY

µνbν . (10)

Also the cutoff term ∆Sk is written in terms of the background metric

∆Sk(ḡ) =
∫
d4x
√
ḡ hµν ḡ

µρḡνσRk(∆̄)hρσ , (11)

where ∆̄ is some differential operator constructed with the background met-
ric. In this way one constructs a generating functional W (jµν , ḡµν) depend-
ing on sources that couple linearly to hµν , and on the background metric.
Applying the definition Eq. (4) one obtains a functional Γk(hµν , ḡµν) where
hµν is now a shorthand for 〈hµν〉, the Legendre conjugate of jµν . One can
also think of Γk as a functional of two metrics, namely 〈gµν〉 = ḡµν + 〈hµν〉
and the background metric. In the limit k → 0 this functional becomes
the ordinary gravitational effective action in the background gauge. The
functional Γk(g, ḡ) is invariant under simultaneous coordinate transforma-
tions of g and ḡ, the so-called background gauge transformations. We will
restrict our attention to the functional Γk(g) = Γk(g, g) obtained by the
identification of the background field (which hitherto remained completely
unspecified) and the vacuum expectation value g. By construction this func-
tional has the same gauge invariance as the original action and it contains
the information about the familiar terms such as the Einstein–Hilbert ac-
tion. The functional Γk(g, ḡ) contains in addition the information about the
k-dependence of the gauge-fixing terms and other genuinely bimetric terms
in the action [21]. In the following we will ignore the RG flow of these terms.
The functional Γk(g, ḡ) obeys an FRGE that has the same form as in Eq. (7),
where φ now stands for hµν , Cµ, C̄µ and b.

3. Cutoff schemes

There is a large arbitrariness in the choice of the cutoff ∆Sk. Let us
begin by discussing the simplest example: a scalar theory in flat space with
the action truncated to:

S =
∫
dx
(

1
2 (∂φ)2 + V (φ2)

)
, (12)
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where V is an even potential. The cutoff is usually written in momentum
space as in Eq. (2) where Rk is a function that is only required to satisfy
the boundary conditions that are appropriate to a cutoff, namely:

• it tends rapidly to zero when q2 > k2;

• it tends to k2 when q2 tends to zero;

• it is monotonically decreasing in q2;

• it is monotonically decreasing in k, uniformly in q2.

The second condition is a kind of normalization and is not strictly necessary:
it is possible to allow Rk to tend to some other finite value, or even to
infinity, when k → 0. However, for reasons that will become clear shortly,
it is convenient to keep fixed the value of Rk(0). Aside from this, the shape
of the function is arbitrary. Inserting the ansatz Eq. (12) for Γk, the FRGE
Eq. (7) becomes

k
dΓk
dk

=
1
2

1
(4π)2

∫
dzz

∂Rk(z)
∂t

Pk(z) + 2V ′ + 4φ2V ′′
, (13)

where z = q2, t = log(k/k0) and the modified inverse propagator Pk is
defined as in Eq. (2).

From here, taking derivatives with respect to φ2, one can extract the
beta functions of the coefficients of the Taylor expansion of the potential.
These beta functions will depend in general on the choice of Rk. One notable
exception, in four dimensions, is the beta function of the quartic coupling,
which in the limit where the mass and the higher couplings are negligible,
turns out to be independent of Rk. The way in which this happens is as
follows: the trace in the r.h.s. of the FRGE involves an integration over q2.
In the specific case, the function to be integrated turns out to be a total
derivative and therefore depends only on the boundary values. Since these
have been fixed, it is completely determined. See Appendix A in [12] for
details.

The discussion can be refined by taking into account a wave function
renormalization constant Z in front of the kinetic term. One then usually
modifies the definition Eq. (2) by including a factor Z:

∆Sk =
Z

2

∫
dq φ(−q)Rk(q2)φ(q) . (14)

The reason why this is convenient is that the inverse propagator Zq2 and
the cutoff ZRk(q2) then neatly combine into a modified inverse propagator
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ZPk(q2) and the overall factors of Z cancel between numerator and denom-
inator of the FRGE, which takes the form

k
dΓk
dk

=
1
2

1
(4π)2

∫
dzz

∂Rk(z)
∂t + ηRk(z)

Pk(z) + 2V ′+4φ2V ′′

Z

, (15)

where we have defined η = d logZ
d log k .

The choice of the shape of the function Rk is an aspect of the cut-
off scheme which involves infinitely many parameters. When one considers
more complicated theories, further “discrete” choices present themselves. For
example, in the case of gravity truncated to the Hilbert action, the second
variation of the action has the following schematic form:

Γ (2)
k = aZ[−2 + bR+ cΛ] , (16)

where Z = 1/(16πG), a, b and c are constants, 2 = ∇µ∇µ and the curvature
term R are computed with the background metric. Tensor structures are
omitted, since they are not essential for the argument. Since in curved
spacetime one cannot use momentum space methods, in the definition of
the cutoff one has to decompose the fields on a basis of eigenvectors of
some selfadjoint differential operator. The cutoff then suppresses the modes
with eigenvalues λ < k2 (if the operator is of second order). One then has
a choice of what operator to use. In [12] we called a cutoff of type I, II
or III, respectively, if it is defined using the spectrum of −2, −2 + bR or
−2 + bR+ cΛ.

In the literature, an overall factor of Z = 1/(16πG) is inserted in the
definition of the cutoff as in Eq. (14). In the case of gravity there are some
differences. Unlike in the scalar case, the coefficient Z is dimensionful; even
more important, one can show that Z is now an essential coupling constant
in the sense that it cannot be eliminated by rescaling the metric without
changing the unit of mass k [22]. In spite of these differences, it is still true
that Z does not appear in the reference operator, so in the case of type
I and II cutoffs the spectrum of the operator does not depend on k. In the
type III cutoff the reference operator contains the running coupling Λ. As
a consequence, also the spectrum of the reference operator changes with k.
For this reason this is called a “spectrally adjusted cutoff”. It has been
argued in [23] that such cutoffs give improved results.

In this paper we would like to explore in the opposite direction and
consider a class of cutoff functions that do not depend on any coupling, not
even on Z. Quite generally, we will refer to a cutoff that does not contain
any parameter that appears in the action as a “pure” cutoff.
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4. Gravitational beta functions

We will now discuss the example of gravity in the Einstein–Hilbert trun-
cation, where one retains only the terms with up to two derivatives of the
metric:

Γk =
∫
dx
√
g (2ΛZ − ZR) + SGF + Sghost , (17)

where Z = 1/(16πG), SGF is a gauge-fixing term and Sghost is the ghost
action. We decompose the metric into gµν = g

(B)
µν + hµν where g(B)

µν is a
background. We consider a de Donder background gauge:

SGF

(
g(B), h

)
=

Z

2α

∫
dx

√
g(B)χµg

(B)µνχν , (18)

where
χν = ∇µhµν − 1

2∇νh .

All covariant derivatives are with respect to the background metric. In
the following all metrics will be background metrics, and we will omit the
superscript (B) for notational simplicity. In order to restrict the number of
parameters, we will fix α = 1 which leads to considerable simplifications.

After calculating the second variation of the action, we decompose hµν
into its different spin components according to

hµν = hT
µν +∇µξν +∇νξµ +∇µ∇νσ −

1
d
gµν2σ +

1
d
gµνh (19)

and
Cµ = CTµ +∇µC , C̄µ = C̄T

µ +∇µC̄ , (20)

where hT
µν is transverse and traceless, ξ is a transverse vector, σ and h are

scalars, CT and C̄T are transverse vectors, and C and C̄ are scalars. These
fields are subject to the following differential constraints:

hTµ
µ = 0 , ∇νhT

µν = 0 , ∇νξν = 0 , ∇µC̄T
µ = 0 , ∇µCTµ = 0 .

We further redefine

ξµ =

√
−2− R

d
ξ̂µ , σ =

√
−2

√
−2− R

d− 1
σ̂ (21)

which removes some powers of−2 from the second variation and furthermore
cancels some Jacobian determinants that arise in the functional integral
when one performs the decomposition Eq. (19). We then drop the hat from
ξ and σ.
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In order to extract the beta functions of Λ and Z it is enough to calculate
the r.h.s. of the FRGE on the background of a sphere. Then the inverse
propagator diagonalizes

Γ (2)

hT
µνh

T
ρσ

=
Z

2

[
−2 +

2
3
R− 2Λ

]
1
2

(gµρ gνσ + gµσ gνρ) ,

Γ (2)
ξµξν

= Z

[
−2 +

1
4
R− 2Λ

]
gµν ,

Γ (2)
hh = −Z

8
[−2− 2Λ] ,

Γ (2)
σσ =

3Z
8

[−2− 2Λ] ,

Γ (2)

C̄T
µC

T
ν

=
[
2 +

1
4
R

]
gµν ,

Γ (2)

C̄C
=
[
2 +

1
2
R

]
. (22)

Now we define the cutoff. We require that after adding the cutoff, the
modified inverse propagator has the same form as in Eq. (22) except for
the replacement of −2 by Pk(−2), where Pk is defined as in Eq. (3). This
means that when the inverse propagator has the form Eq. (16), the cutoff is

Rk = aZRk(−2) . (23)

This type of cutoff was introduced in [2] and studied in greater generality
in [4]. With this cutoff the r.h.s. of the FRGE takes the form

dΓk
dt

=
1
2
Tr(2)

∂tRk + ηRk

Pk + 2
3R− 2Λ

+
1
2
Tr′(1)

∂tRk + ηRk

Pk + 1
4R− 2Λ

+
1
2
Tr(0)

∂tRk + ηRk
Pk − 2Λ

+
1
2
Tr′′(0)

∂tRk + ηRk
Pk − 2Λ

− Tr(1)
∂tRk

Pk − R
4

− Tr′(0)

∂tRk

Pk − R
2

, (24)

where η = d logZ
d log k . The first term comes from the spin-2, transverse traceless

components, the second from the spin-1 transverse vector, the third and
fourth from the scalars h and σ. The last two contributions come from the
transverse and longitudinal components of the ghosts. A prime or a double
prime indicate that the first or the first and second eigenvalues have to be
omitted from the trace. The reason for this is explained in the references
quoted above.

In order to be able to perform the calculation in closed form we choose
the optimized cutoff Rk(z) = (k2 − z)θ(k2 − z) [24]. In this way one finds
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the following beta functions for the dimensionless couplings Z̃ = Z/k2, Λ̃ =
Λ/k2:

∂tZ̃ = −2Z̃ +
373− 654Λ̃ + 600Λ̃2

1152π2(1− 2Λ̃)2
+
∂tZ̃

Z̃

29− 9Λ̃
1152π2(1− 2Λ̃)2

,

∂t(Z̃Λ̃) = −4Z̃Λ̃ +
1 + 3Λ̃

12π2(1− 2Λ̃)
+
∂tZ̃

Z̃

5
192π2(1− 2Λ̃)

(25)

which admit a FP at G̃∗ = 0.7012, Λ̃∗ = 0.1715, with critical exponents
θ = 1.689± 2.486i.

As anticipated, we would like to examine a different type of cutoff, not
depending on any of the parameters that are present in the action. The
cutoff Eq. (23) depends on the parameter Z, so to define a pure cutoff we
replace Z by γk2 where γ is an arbitrary number:

Rk = aγk2Rk(−2) . (26)

The FRGE now reads
dΓk
dt

=
1
2
Tr(2)

∂tRk + 2Rk
Z
γk2

(
−2 + 2

3R− 2Λ
)

+Rk(−2)

+
1
2
Tr′(1)

∂tRk + 2Rk
Z
γk2

(
−2 + 1

4R− 2Λ
)

+Rk(−2)

+
1
2
Tr(0)

∂tRk + 2Rk
Z
γk2 (−2− 2Λ) +Rk(−2)

+
1
2
Tr′′(0)

∂tRk + 2Rk
Z
γk2 (−2− 2Λ) +Rk(−2)

−Tr(1)
∂tRk

Pk − R
4

− Tr′(0)

∂tRk

Pk − R
2

. (27)

This leads to the following beta functions

∂tZ̃ = −2Z̃ +
49γ(γ − Z̃) + (1− 2Λ̃)(25Z̃2 − 151Z̃γ + 28γ2)

192π2(γ − Z̃)2(1− 2Λ̃)

−
γ
[
3(γ − Z̃)2 + Z̃(1− 2Λ̃)(101Z̃ − 3γ)

]
192π2(γ − Z̃)3

X ,

∂t(Z̃Λ̃) = −4Z̃Λ̃− 9γ2 + 4Z̃2 − γZ̃(23− 20Λ̃)
32π2(γ − Z̃)2

−
5γ
[
γ2 − 2γZ̃ + 4Z̃2Λ̃(1− Λ̃)

]
16π2(γ − Z̃)3

X , (28)
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where

X = ln

(
Z̃(1− 2Λ̃)
γ − 2Z̃Λ̃

)
.

The appearance of the logarithms is due to the mismatch between the coef-
ficients of −2 and Rk(−2), which leaves some explicit terms with z = −2

to be integrated over. The FP now depends on the arbitrary parameter γ,
which is part of the freedom in the definition of the cutoff. This reflects itself
in the position of the fixed point, as shown in figure 1. We give separately
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Fig. 1. Value of G̃∗ (left panel), Λ̃∗ (right panel) and Λ∗G∗ (lower panel) as func-
tions of γ with a pure cutoff. The dot indicates the values for the type Ib cutoff.

the dependence of G̃∗, Λ̃∗ and of the dimensionless product Λ∗G∗. We see
that as γ varies over four orders of magnitude, G̃∗, Λ̃∗ each vary by less than
one order of magnitude, and Λ∗G∗ changes just by a factor smaller than 2.
It had been observed before that the dimensionless product ΛG has a beta
function that is gauge independent in lowest order in an expansion in Λ̃ [2];
also its value at the FP was found to be quite insensitive to the choice of
gauge and cutoff. Our findings confirm this picture also for the dependence
on the parameter γ. In figure 2 we also give the critical exponents as func-
tions of γ. As with other cutoffs, they form a complex conjugate pair, but
for large γ the imaginary part of the eigenvalue goes to zero and for γ > 60
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Fig. 2. Real and imaginary parts of the critical exponents as functions of γ. The
dot and the cross indicate the real and imaginary part of the critical exponent for
the type Ib cutoff.

we find two real eigenvalues. Clearly for very large or very small γ the prop-
erties of the FP are significantly affected, but there is a wide range of values
for which the properties of the FP are quite stable.

We observe that the curves in figure 1 pass through the position of the
fixed point in the type Ib cutoff examined previously, which is marked by
a dot in the graphs. In other words, there is a value of γ for which the
pure cutoff gives a FP in the same position as the type Ib cutoff. The
corresponding value is precisely γ = Z̃∗ = 0.0284. It would seem from (28)
that the beta functions become singular when γ = Z̃ but if we put γ = Z̃+ε
and expand in powers of ε, the coefficient of the negative powers of ε cancel
out. Furthermore, one finds that the leading (ε-independent) terms in the
expansion coincide with the first two terms on the r.h.s. of (25).

There is clearly something special happening when γ has the value of Z̃∗
in the type Ib cutoff. In the next section we will explain the origin of this
coincidence and we will see that it holds in much greater generality.

5. Fixed points with pure and spectrally adjusted cutoffs

We have shown in the previous section, in the special case of gravity in
the Einstein Hilbert truncation, that there is a value of the parameter γ for
which a pure cutoff reproduces the results of a type I cutoff. In this section
we argue that this property is quite general. Since we are going to move to
a much more general setting we will have to make some choices in order to
somehow circumscribe the scope of the argument.

We assume that Γk admits a derivative expansion of the form

Γk =
∑
i

giOi , (29)

where Oi are operators and gi are numerical parameters depending on k.
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The operators Oi are integrals of the form

Oi =
∫

ddx
√
gΩi , (30)

where Ωi are (possibly nonpolynomial) functions of the fields and their
derivatives, respecting all the symmetries that the theory is supposed to
possess. In gauge theories, Ωi are constructed with covariant derivatives
and curvatures. The number of derivatives increases with i, but the precise
correspondence need not be spelled out here.

Some of the parameters appearing in the expansion may be eliminated
by field redefinitions. This is the case, for example, for the wave function
renormalization constants. Such parameters are said to be “redundant” or
“inessential” [25]. We assume that the theory has been parametrized in such
a way that a certain subset of the gi is redundant, while the remaining ones
are “essential”.

The fields do not have any scale dependence, so that

k
dΓk
dk

=
∑
i

βiOi , (31)

where βi(gj , k) = k dgidk are the beta functions. In general they depend on
all the gi and also explicitly on k. Note that we call “beta functions” the
derivatives of the parameters appearing in the action whether they are es-
sential or not. One sometimes prefers to call “anomalous dimensions” the
(logarithmic) derivatives of irrelevant parameters such as the wave function
renormalization constants. We will not need to make this terminological
distinction here. We will call β (without subscript i) the “beta functional”
on the r.h.s. of the FRGE

β =
∑
i

βiOi .

If the operator Ωi has dimension αi, Oi has dimension αi− d and gi has
dimension di = d − αi. One can now define dimensionless couplings g̃i and
dimensionless operators Õi by gi = kdi g̃i and Oi = k−diÕi, so that Eq. (29)
can also be written as Γk =

∑
i g̃iÕi. The condition that has to be satisfied

by a FP is

k
dg̃i
dk

= 0 , (32)

for all essential couplings gi. We can rewrite this as follows. From the
definition of g̃i we obtain ∂tgi = digi+kdi∂tg̃i. Then we can rewrite Eq. (31)
as

k
dΓk
dk

=
∑
i

dig̃iÕi +
∑
i

∂tg̃iÕi .
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Then the FP equation can be written compactly as(
−
∑
i

dig̃iÕi + β

)∣∣∣∣∣
essential

= 0 , (33)

where the subscript “essential” means that the equation has to be projected
on the subspace of essential couplings. The individual equations Eq. (32)
can be obtained from the functional equation by extracting the coefficient of
the operator Õi. We will now compare the functional form of this equation
for two classes of cutoffs.

For definiteness we start by choosing a “spectrally adjusted” cutoff, de-
fined as follows. The second variation of the action is a differential operator

∆(gi) =
δ2Γk
δφδφ

=
∑
i

gi
δ2Oi
δφδφ

. (34)

By this notation we emphasize that the operator depends on all the param-
eters gi. In the case of gauge theories the operator ∆ is constructed with the
covariant derivative ∇µ. We choose the cutoff R to be a function of the full
operator ∆: Rk = Rk(∆(gi)), where Rk is one of the functions that were
discussed in Section 3. Then the modified inverse propagator is

∆(gi) +Rk(∆(gi)) = Pk(∆(gi)) , (35)

where Pk is defined as in Eq. (3). This is a cutoff of “type III”, in the
terminology of [12]. It is spectrally adjusted because it manifestly depends
on all the couplings, masses and wave function renormalizations.

The r.h.s. of the FRGE can now be written

β =
1
2

STr
(

∆(gi)+Rk(∆(gi))
)−1(∂Rk(∆(gi))

∂t
+R′k(∆(gi))

∂∆
∂gi

βi

)
, (36)

where a prime indicates the derivative of the function with respect to its
argument. In the first term one derives only the explicit dependence of the
cutoff on k and in the second the dependence that comes from the flow
of the gi. From here the beta functions βi can be obtained in a two step
procedure. First one has to extract from Eq. (36) the coefficient of Oi.
Formally, we can write

βi =
δβ

δOi
.

This is usually the most labor-intensive part of the calculation, but still it
does not immediately give the beta function, because the r.h.s. is itself a
linear combination of the beta functions, of the form

δβ

δOi
= Bi +Aijβj ,
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where Bi are the one loop beta functions and Aij are calculable coefficients.
The beta functions can be obtained by solving this linear system:

βi = (1−A)−1
ij Bj .

If one is only interested in the location of the FP, one can avoid this step by
the following trick [26]. Since at a FP gi = g̃i∗k

di , for some constants g̃i∗, we
obtain an equivalent set of FP equations if in the beta functional we replace
βi by digi = dig̃ik

di . This modified beta functional is

β̄ =
1
2

STr (∆(gi) +Rk(∆(gi)))
−1

(
∂Rk(∆(gi))

∂t
+R′k(∆(gi))

∂∆
∂gi

dig̃ik
di

)
.

(37)
If we define

β̄i =
δβ̄

δOi
these expressions do not contain the β functions anymore, and so they can
be plugged directly in the FP equation. The FP equations obtained from the
modified beta functions β̄i have the same FP solutions as the ones obtained
from the true beta functions βi. We observe that the second term on the
r.h.s. of Eq. (37) is not just a function of ∆. In general it is a complicated
operator that will not commute with ∆ itself. We actually do not have
the mathematical tools to extract beta functions from such complicated
traces involving functions of several noncommuting operators. However,
calculability is not required here, so we can proceed formally. We now simply
assume that the FP equations determined in this way have a solution at
g̃i = g̃i∗.

The source of gi-dependence in the cutoff definition given above is the
operator ∆. We can turn the cutoff into a pure cutoff if we replace all
the couplings appearing in ∆ by arbitrary constants, multiplied by suitable
powers of k to preserve the correct dimensionalities. The cutoff is then
Rk(∆(γikdi))). With this cutoff the r.h.s. of the FRGE reads

β =
1
2

STr
(
∆(gi) +Rk

(
∆
(
γik

di
)))−1

×

(
∂Rk

(
∆
(
γik

di
))

∂t
+R′k

(
∆
(
γik

di
)) ∂∆

∂gi
diγik

di

)
. (38)

From here one can extract beta functions

βi(gi, γi) =
δβ

δOi
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that can be used to write FP equations. These FP equations depend para-
metrically on the arbitrary numbers γi. Recalling that gi = g̃ik

di and com-
paring Eq. (38) to Eq. (37) we see that the only difference lies in the re-
placement of g̃i by γi in certain functional dependences.

It is clear that since the FP equation for the spectrally adjusted cutoff
has a zero when we replace everywhere g̃i by the numbers g̃i∗, then the FP
equation for the pure cutoff will also have a zero when we replace all the γi
and all the g̃i by g̃i∗. Therefore, with the particular choice of parameters
γi = g̃i∗, the pure cutoff produces a FP in the same position as the spectrally
adjusted type III cutoff.

This result has been derived using what we call a “type III” cutoff, be-
cause the argument is easier to make independently of the form of the action,
but we believe that it holds more generally, also for other cutoffs. To illus-
trate this consider a generalization of what was called a “type I” cutoff in [12].
In a gauge theory the second variation defined in Eq. (34) is a differential
operator constructed with the covariant derivative ∇µ. Let us assume that
the truncation of the theory is such that ∆ depends on ∇µ only through
the combination −2 = −∇µ∇µ. To make this explicit let us write it as
∆(−2, gi). A generalized type I cutoff can be defined by the requirement
that the modified inverse propagator has the same form as the original one
except for the replacement of −2 by Pk(−2):

Rk(−2, gi) = ∆(Pk(−2), gi)−∆(−2, gi) . (39)

The beta functional that one obtains with this cutoff has the form

β =
1
2

STr (∆(Pk(−2), gi))
−1

×
(

∂∆
∂(−2)

∂Pk(−2)
∂t

+
∂

∂gi

(
∆(Pk(−2), gi)−∆(−2, gi)

)
βi

)
(40)

which upon use of the trick explained above yields equivalent FP equations as

β̄ =
1
2

STr (∆(Pk(−2), gi))
−1

×
(

∂∆
∂(−2)

∂Pk(−2)
∂t

+
∂

∂gi

(
∆(Pk(−2), gi)−∆(−2, gi)

)
dig̃ik

di

)
.(41)

Again we can define a pure cutoff of generalized type I by replacing gi
by γikdi in Rk

Rk
(
−2, γik

di
)

= ∆
(
Pk(−2), γikdi

)
−∆

(
−2, γik

di
)
. (42)
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The beta functional that one obtains with this cutoff has the form

β =
1
2

STr
(
∆
(
Pk(−2), γikdi

)
+ ∆ (−2, gi)−∆(−2, γkdi)

)−1

×
(

∂∆
∂(−2)

∂Rk(−2)
∂t

+
(
∂∆
∂gi

(
Pk(−2), γikdi

)
− ∂∆
∂gi

(
−2, γik

di
))
diγik

di

)
.

(43)

Again we see that the two beta functionals have the same form except
for the replacement of g̃i by γi in certain functional dependences; additional
terms in the first factor cancel for γi = g̃i. Therefore, the argument given
above shows that if we set γi = g̃i∗ the pure cutoff will have a FP in the
same position as the generalized type I cutoff.

The reason why this discussion is less general than the previous one is
that this type of cutoff could only be defined if the inverse propagator has
a specific form. It may be possible to generalize this argument, for example
defining the cutoff by the rule

∇µ 7→
√
Pk(−2)
−2

∇µ .

We will not pursue this further. The discussion of the type III cutoff is
sufficient to make the point in generality. Furthermore, the type III cutoff
is “ideologically” at the opposite extreme of a pure cutoff, being always fully
dependent on all couplings. This is also supported by the numerical results,
which show that type III cutoffs yield fixed points at the extreme end of the
range of variation [12]. So it is somewhat reassuring that one can reproduce
at least the FP position of a spectrally adjusted, type III cutoff by a pure
cutoff.

R.P. would like to thank M. Reuter for discussions on cutoff choices.
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