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1. Introduction

It has been realized in recent years that the dynamics of black holes in
spacetimes of dimension D ≥ 5 is much richer than in four dimensions. The
origin of this rich variety was recently identified as residing in the possibility
of having horizons that are much longer along some directions than in oth-
ers [1,2]. The exploration of the phases and properties of higher-dimensional
black holes is of intrinsic interest in gravity, where the spacetime dimension
can be viewed as a tunable parameter. At the same time, there is a wealth of
applications in string theory, such as the microscopic understanding of black
hole entropy and dual interpretations in the context of the gauge/gravity cor-
respondence, including the recently proposed fluid/AdS-gravity correspon-
dence. See e.g. the reviews [3–9] for various aspects of the phase structure of
black objects in higher-dimensional gravity and more elaborate exposition
of the motivation.

We review here the effective worldvolume theory for higher-dimensional
black holes, proposed in Ref. [1] and further developed and generalized in
Ref. [2]. This effective theory is based on the observation that the main
feature behind novel properties of higher-dimensional black holes, compared
to four-dimensional ones, is that their horizons can have two characteristic
lengths of very different size. We restrict ourselves here, for simplicity, to
the case of neutral, vacuum black holes, where the two length scales are
associated with the mass and angular momentum

`M ∼ (GM)1/D−3 , `J ∼
J

M
. (1)

In the four-dimensional case these length scales are of the same order, due
to the Kerr-bound J ≤ GM2. In higher-dimensional spacetimes, however,
it is known that black hole solutions exist for which the angular momentum
for given mass can be arbitrarily high, so that `J � `M . In particular, this
is observed in five dimensions for ultraspinning black rings [7,10] and in six
and higher dimensions for ultraspinning Myers–Perry black holes [11, 12].
The ability to have these two separated lengths is the origin of essentially all
novel features of these higher-dimensional black holes, and suggests therefore
an organization according to a hierarchy of scales:

1. `J . `M : black holes behave qualitatively similarly to the four-dimen-
sional Kerr black hole.

2. `J ≈ `M : threshold of new black hole dynamics.

3. `J � `M : the separation of scales enables an effective description of
long-wavelength dynamics in terms of blackfolds.
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The first and second regimes involve the full non-linearities of General
Relativity, but in the first case there are no hints of any qualitatively new
properties of black holes compared to four-dimensional ones. However, in
the second regime, when the two scales begin to diverge, there is ample evi-
dence of the onset of new phenomena: horizon instabilities, inhomogeneous
(‘pinched’) phases, non-spherical horizon topologies, and absence of unique-
ness [10, 12–14]. This regime seems hard to investigate by means of exact
analytical techniques, but the presence of only one scale in the problem is
actually convenient for numerical investigation, The focus in this lecture is
on the third regime, where the existence of a small parameter `M/`J allows
the introduction of efficient approximate analytical methods, which we call
the “blackfold approach”.

The effective description of black holes in the third regime is based on
the idea that in the limit `M/`J → 0, keeping the horizon size finite, the
black hole geometry approaches that of an infinitely extended black brane,
possibly boosted along some of its worldvolume directions. This has been
observed in all presently known exact solutions that admit an ultraspinning
limit. In particular, in five dimensions the black ring becomes thin in the
ultraspinning limit and the geometry approaches that of a boosted black
string [5, 15]. In particular, the thickness r0 of the ring is much smaller
than its radius R in this limit, i.e. `M/`J ∼ r0/R → 0. In six and higher
dimensions Myers–Perry black holes pancake along the plane of rotation in
the ultraspinning limit and the geometry approaches that of a black brane
[12]. In this case this means that the thickness r0 of the pancake is much
smaller than its radius R.

The connection to (boosted) black branes observed in these examples
gives the crucial hint to identify the variables for a general effective descrip-
tion of higher-dimensional black holes in this regime. Namely, the black hole
is regarded as black brane whose worldvolume spans a curved submanifold
of a background spacetime, referred to as a blackfold [1, 2]. This generalizes
the simplest example of constructing a thin black ring in any dimension by
considering a circular boosted black string, as considered earlier in Ref. [13]
and expanded upon in [16, 17]. But the ultraspinning limit of Myers–Perry
black holes is also correctly captured by the approach, along with a rich bes-
tiary of new stationary black holes [1,18]. Moreover, the blackfold formalism
allows to study time evolution and stability of black holes and branes [2].

To leading order in the expansion in `M/`J one can neglect the back-
reaction of the blackfold on the geometry, so that it is a ‘test’ blackfold.
Corrections to the geometry can then be systematically obtained using the
method of matched asymptotic expansion. This was used in e.g. Ref. [13]
(following [19,20]) to compute the first corrections to the geometry and phys-
ical quantities for higher-dimensional rings. In this lecture, we describe the
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zeroth order construction, which already reveals many new types of black
objects including their physical properties and allows for the study of time-
dependence and stability.

The blackfold approach draws heavily from the beautiful theory of clas-
sical brane dynamics developed by Carter in [21], which generalizes the dy-
namics of a particle traversing a worldline in a background spacetime to that
of branes tracing out embedded worldvolumes. Another central ingredient of
the approach, regarded as a long-wavelength effective theory, is that part of
its dynamics takes the form of the dynamics of a fluid that lives on a dynam-
ical worldvolume. In this context, black branes correspond to specific types
of fluid, which are to leading order of the perfect fluid form1. The blackfold
equations then reduce to a set of intrinsic equations, the Euler equations of
the fluid, and a set of extrinsic equations for the worldvolume embedding,
which is a generalized geodesic equation for the motion of branes. The effec-
tive theory of black holes when `M/`J � 1 is thus a theory that describes
how to bend the worldvolume of a black brane in a background spacetime.
In this regard we treat black branes in a manner similar to other familiar
extended objects such as cosmic strings or D-branes. The main novelty is
that black branes possess black hole horizons, so when their worldvolume is
spatially compact we obtain a black hole with finite horizon area.

The outline of this lecture is as follows. We first present in Section 2
the conceptual basis that underlies the blackfold approach as a worldvol-
ume theory of dynamics of black branes. Then we discuss in Section 3
the blackfold equations, which comprise a set of coupled non-linear differ-
ential equations for the collective coordinates of a neutral black brane. As
an important special case we subsequently consider in Section 4 stationary
blackfolds, including physical quantities, horizon topology, the possibility
of boundaries and an action principle. We continue in Section 5 by briefly
exhibiting some new solutions as well as application of the approach to de-
scribe ultra-spinning Myers–Perry black holes. Finally, we briefly discuss
in Section 6 the stability of blackfolds, including a simply way to see the
Gregory–Laflamme instability of black branes. We close in Section 7 with a
future outlook.

2. Effective worldvolume theory

We present here the effective worldvolume theory for black holes that
results by integrating out the gravitational short-distance degrees of freedom.
Note that since the extended objects in the construction are curved black
branes they possess an event horizon.

1 A closely related recent development in which black hole dynamics is mapped to fluid
dynamics is the ‘fluid/AdS-gravity correspondence’ [22]. As explained in Ref. [2], this
correspondence can be seen as contained in the blackfold approach. There are also
suggestive connections to the membrane paradigm [23,24].
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2.1. Collective coordinates for a black brane

We start by schematically splitting the degrees of freedom of General
Relativity into long and short wavelength components,

gµν =
{
g(long)
µν , g(short)

µν

}
, (2)

where µ, ν = 0, . . . , D−1 are spacetime indices. The Einstein–Hilbert action
is then approximated as

IEH =
1

16πG

∫
dDx
√
−gR≈ 1

16πG

∫
dDx

√
−g(long)R(long) + Ieff

[
g(long)
µν , φ

]
,

(3)
where Ieff [g(long)

µν , φ] is an effective action obtained after integrating-out the
short-wavelength gravitational degrees of freedom. What is meant by this
will be explained below, but we first wish to identify the ‘collective co-
ordinates’ φ that enter this effective action, which describes the resulting
coupling to the long-wavelength component of the gravitational field.

Since the limit `M/`J → 0 of known black holes results in flat black
branes, the effective theory is taken to describe the collective dynamics of
a boosted black p-brane

ds2
p−brane =

(
ηab +

rn0
rn
uaub

)
dσadσb +

dr2

1− rn
0
rn

+ r2dΩ2
n+1 , (4)

with r0 the horizon radius and ua the velocity field, satisfying uaubηab = −1.
Here, and in the following we set the spacetime dimension to beD = 3+p+n
and denote the worldvolume coordinates by σa = (t, zi), a, b = 0, . . . , p.

The D collective coordinates of the black brane are then

φ(σa) = {X⊥(σa), r0(σa), ui(σa)} , (5)

where r0 is the ‘horizon thickness’, ui the p independent components of
the velocity field and X⊥ the D − p − 1 position of the brane in directions
transverse to the worldvolume. In the long-wavelength effective theory these
are allowed to vary slowly along the worldvolume Wp+1, over a length scale
R much longer than the size-scale of the black brane,

R� r0 . (6)

Here, the scale R is typically set by the smallest intrinsic or extrinsic curva-
ture radius of the worldvolume.
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In order to preserve manifest diffeomorphism invariance it is convenient
to introduce some gauge redundancy and enlarge the set of embedding co-
ordinates of the worldvolume of the black brane to include all the spacetime
coordinates Xµ(σa). From this embedding one can compute an induced
metric

γab = g(long)
µν ∂aX

µ∂bX
ν , (7)

which is the geometry induced on the worldvolume of the brane by the far-
zone (r � r0) background metric g(long)

µν . The near-zone (r � R) metric is
the solution (4) in the strict R→∞ limit. However, for R large but finite,
the collective coordinates depend on σ, so that the near-zone metric for the
black brane is of the form

ds2
(short) =

(
γab(σ) +

rn0 (σ)
rn

ua(σ)ub(σ)
)
dσadσb+

dr2

1− rn
0 (σ)
rn

+r2dΩ2
n+1 + . . .

(8)
which is an approximate solution to Einstein equations in the limit r0

R � 1.
Furthermore, the long and short degrees of freedom interact together in the
‘overlap’ or ‘matching-zone’ r0 � r � R, where the metrics g(long)

µν and
g

(short)
µν must match.

Note that we are considering here black branes that are not rotating along
the transverse (n+1)-sphere, nor do we include any possible deformations of
it. This choice is solely made in order to simplify the analysis. As discussed
in more detail in Ref. [2] internal spin can be added as a further conserved
charge on the worldvolume. Other generalizations such as lumpy blackfolds
can be considered as well.

2.2. Effective stress tensor

The way in which the short-distance dynamics is integrated out is by
solving Einstein equations at distances r � R and encoding the effects of
the solution at distances r � r0 in an effective stress tensor that depends
only on the collective coordinates. In particular, the stress tensor is such
that its effect on the long-wavelength field g(long)

µν is the same as that of the
black brane at distances r � r0.

If we consider the effective equations of motion resulting from (3) by
varying with respect to the long-wavelength metric g(long)

µν , one finds Einstein
equations for g(long)

µν , sourced by an effective worldvolume stress tensor

T eff
µν = − 2√

−g(long)

δIeff

δgµν(long)

∣∣∣∣∣
Wp+1

. (9)
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The appropriate notion of this effective stress-tensor can be argued [2] to be
the quasilocal stress-energy tensor introduced by Brown and York [25]. For
ease of notion, we drop from now on the superscript “eff” on the stress-tensor
Tµν and “(long)” from the background metric gµν .

The effective stress tensor is computed in the zone r0 � r � R, where
the gravitational field is weak and the quasilocal stress tensor Tab =
∂aX

µ∂bX
νTµν is, to leading order in r0/R, the same as the ADM stress

tensor. It is not difficult to compute this for the boosted black p-brane (4),
and introducing a slow variation of the collective coordinates the stress ten-
sor becomes

T ab(σ) =
Ω(n+1)

16πG
rn0 (σ)

(
nua(σ)ub(σ)− γab(σ)

)
+ . . . . (10)

Here the dots stand for terms with gradients of ln r0, ua, and γab, which are
taken to be small and are neglected to the order we are working in.

2.3. Fluid perspective

We note that the effective stress-tensor (10) is of the perfect fluid form

T ab = (ε+ P )uaub + Pγab , (11)

with energy density ε and pressure P

ε =
Ω(n+1)

16πG
(n+ 1)rn0 , P = − 1

n+ 1
ε , (12)

and velocity ua satisfying uaubγab = −1. This is in fact expected on gen-
eral grounds, since the the long-wavelength effective theory for any kind of
brane will take the form of a derivative expansion for an effective stress-
energy tensor that satisfies the conservation equations DaT

ab = 0 (Da is
the worldvolume covariant derivative). To lowest derivative order the stress
tensor will then be that of an isotropic perfect fluid.

Thermodynamics provides the universal macroscopic description of equi-
librium configurations, and fluid dynamics is the general long-wavelength
description of fluctuations under the assumption of local equilibrium. The
equation of state P (ε) for a neutral black brane is thus given in (12) and
the system in its rest frame has local entropy density and temperature

s =
Ω(n+1)

4G
rn+1

0 , T =
n

4πr0
. (13)

These obey the laws of thermodynamics and Gibbs–Duhem equation

dε = T ds , ε+ P = T s . (14)
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Going beyond the perfect fluid approximation (11), the stress tensor will ac-
quire dissipative terms proportional to gradients of ln r0, ua, γab. These are
not discussed here, and are, at any rate, absent for stationary configurations.

3. Blackfold dynamics

Part of the general effective theory of blackfold dynamics can thus be
formulated as a theory of a fluid on a dynamical worldvolume. We now
present the full dynamical equations that this system should satisfy and
apply it to the blackfold approach.

3.1. Blackfold equations

Before we present the dynamical equations for branes, it is instructive
to consider the well-known case of a free point particle with mass m moving
along a worldline xµ(τ) in a background spacetime gµν . The induced metric
on the wordline is γττ = ∂τx

µ∂τx
νgµν = uµuνgµν = −1. The stress-tensor

on the worldline is T ττ = m so that

Tµν = ∂τx
µ∂τx

νT ττ = muµuν . (15)

We demand conservation of this stress tensor under the tangential covariant
derivative ∇µ = −uµuν∇ν . This gives

0 = ∇µTµν = maν + (Dτm)uµ , (16)

where the acceleration is aµ = uρ∇ρuµ ≡ u̇µ and we used uµaµ = 0. We
therefore find two sets of equations,

maν = 0 (geodesic equation) , (17)
Dτm = 0 (mass conservation) , (18)

corresponding to the geodesic equation and conservation of mass, respec-
tively.

The above can be generalized to the case of extended objects, branes,
employing various notions about the geometry of worldvolume embeddings.
In particular, using the induced metric (7) one introduces the first funda-
mental form of the submanifold and perpendicular projector

hµν = ∂aX
µ∂bX

νγab , ⊥µν= gµν − hµν . (19)

The tensor hµν projects onto the worldvolume Wp+1, while ⊥µν projects
along directions orthogonal. From this one computes the extrinsic curvature
tensor

Kµν
ρ = hµ

σ∇νhσρ , ∇µ = hµ
ν∇ν , (20)
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which is tangent to Wp+1 along its (symmetric) lower indices µ, ν, and
orthogonal to Wp+1 along ρ. For use below, we also note that its trace is
the mean curvature vector

Kρ = hµνKµν
ρ = ∇µhµρ . (21)

We refer for further details of this analysis to Ref. [2], and the original paper
of Carter [21].

Given a brane stress-energy tensor with support on the p+1-dimensional
worldvolume Wp+1 one then requires it to obey the conservation equation

∇µTµρ = 0 . (22)

This follows from the assumption that this effective stress-energy tensor de-
rives from an underlying conservative dynamics (in the present case, General
Relativity) and that spacetime diffeomorphism invariance holds. In parallel
with (17), (18) the D equations on the equal number of worldvolume field
variables φ(σa), separate into D − p − 1 equations in directions orthogonal
to Wp+1 and p+ 1 equations parallel to Wp+1,

TµνKµν
ρ = 0 (extrinsic equations) , (23)

DaT
ab = 0 (intrinsic equations) . (24)

One may now apply these equations to the generic stress-energy tensor of a
perfect fluid and the results can be found in e.g. Ref. [2].

Here, we use the specific stress tensor (12) of a neutral black brane, in
which case the equations (23), (24) become after some algebra

Kρ = n⊥ρµu̇µ , (25)

u̇a +
1

n+ 1
uaDbu

b = ∂a ln r0 . (26)

This set of blackfold equations describes the general collective dynamics of
a neutral black brane. Physically, these equations show that the force that
accelerates an element of the fluid is given along worldvolume directions
by pressure gradients (Euler equation) and in directions transverse to the
worldvolume by the extrinsic curvature.

We also note that the extrinsic equations (23) can be written explicitly
in terms of the embedding Xµ(σa), yielding the form

T ab
(
Da∂bX

ρ + Γρµν∂aX
µ∂bX

ν
)

= 0 , (27)

which can be regarded as the generalization to p-branes of geodesic equation
(17) for free particles, or more simply, of “mass× acceleration = 0”.
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One of the differences of blackfolds as compared to other branes is that
they have event horizons, which is reflected in the effective theory in the
existence of an entropy and in the local thermodynamic equilibrium of the
effective fluid. In the blackfold approach it is assumed that the regular-
ity of the event horizon under long-wavelength perturbations — including
those that bend the worldvolume away from the flat geometry or that excite
the effective fluid away from equilibrium — is satisfied when the blackfold
equations are satisfied. There is so far significant evidence that this is the
case. Analysis of the perturbations of black strings that bend them into a
circle [13] (and extensions thereof to branes curved into tori [18]) show that
the extrinsic equations (23) are equivalent to demanding absence of singu-
larities on, or outside the horizon. Moreover, the intrinsic, hydrodynamical
perturbations of a black brane in AdS have been studied in detail in [22]
and shown to be consistent with horizon regularity. A rigorous proof of the
statement is, however, at present not known.

We finally note that in (2) and (3) it was assumed that the full dynam-
ics at all wavelengths is described by vacuum General Relativity, i.e. the
Einstein–Hilbert action with no matter nor cosmological constant. How-
ever, it can be shown [2] that the blackfold equations (25), (26) are enough
to describe neutral blackfolds in any configuration that, at small distances,
is dominated by the Einstein–Hilbert term. For instance, this will be the
case for blackfolds in the presence of a cosmological constant as long as
r0 � |Λ|−1/2 (see [16] for an explicit application), or for blackfolds in an
external background gauge field as long as the typical length scale of the
background field around the blackfold is much larger than r0. No restric-
tion on R other than R � r0 needs to be imposed. On the other hand, for
charged blackfolds, where the gauge field has short-wavelength components,
the situation is different. The extension to this will be discussed in a future
work.

4. Stationary blackfolds

We now turn to equilibrium blackfold configurations that remain sta-
tionary in time, which correspond to stationary black holes.

4.1. Solution of the intrinsic equations

Using a general result proven in [26] for stationary fluid configurations,
it is possible to solve the blackfold equations explicitly for the worldvolume
variables [2], namely the thickness r0 and velocity u, so one is left only with
the extrinsic equations (25) for the worldvolume embedding Xµ(σ).
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The solution to the intrinsic equations (26) in this case can be summa-
rized by

uµ =
kµ

|k|
, r0 =

n|k|
2κ

. (28)

Here, k is a time-like Killing vector of the background spacetime

k = ξ +
∑
i

Ωiχi , (29)

where ξ is the (canonically normalized) generator of time-translations of
the background space-time and χi are generators of angular rotations in
the background space-time normalized such that the orbits have periods 2π.
The Ωi are thus the corresponding angular velocities. The constant κ in (28)
is the surface gravity of the black hole horizon.

To have a stationary blackfold the Killing vector fields ξ and χi should
correspond to symmetries of the submanifold Wp+1. In a local rest frame
on the blackfold we can relate ξ and χi to Killing vectors of the static black
p-brane by

ξ = R0
∂

∂t
, χi = Ri

∂

∂zi
, (30)

where t and zi are the canonically normalized world-volume coordinates of
a static flat black p-brane. R0 is a red-shift factor between the background
space-time and the blackfold worldvolume and Ri are the proper radii of the
orbits of χi. With this, the norm of k is seen to be

|k| = R0

√
1− V 2 , V 2 =

1
R2

0

∑
i

Ω2
i R

2
i , (31)

where V is the velocity field of the blackfold. Thus |k| can be regarded
as the relativistic Lorentz factor at a point in Wp+1, with a possible local
redshift, all relative to the reference frame of ξ-static observers. Plugging
(31) into (28) we obtain that for given κ and Ωi the thickness r0 is solved in
terms of the Ra as

r0(σ) =
nR0(σ)

2κ

√
1− V 2(σ) . (32)

The conditions that κ and Ωi must remain uniform over the blackfold
worldvolume were referred to in [1] as the blackness conditions. There they
were imposed by requiring regularity of the black hole horizon, invoking
general theorems for stationary black holes, namely the zeroth law of black
hole mechanics and horizon rigidity. Alternately, as summarized above and



3470 R. Emparan et al.

shown in [2], one can derive them as general consequences of stationary fluid
dynamics, where κ and Ωi appear as integration constants.

We finally note that black branes (and other fluid branes) may have
‘free’ boundaries without any boundary stresses. In this case, it can be
shown that the pressure must approach zero at the boundary P |∂Wp+1

= 0,
which is the Young–Laplace equation for a bounded fluid when there is no
surface tension that could balance the fluid pressure at the boundary. For a
neutral blackfold, vanishing pressure at the boundary means

r0|∂Wp+1
= 0 . (33)

The geometric interpretation of this is that the thickness of the horizon
must approach zero size at the boundary, so that the horizon closes off at
the edge of the blackfold. Using (32) we see that for stationary blackfolds
this condition implies2 that the fluid approaches the speed of light at the
boundary,

V 2|∂Wp+1
= 1 . (34)

This happens for example for Myers–Perry black holes with one ultraspin,
which can be shown [1, 18] to be described by a rigidly-rotating blackfold
disk.

4.2. Horizon geometry, mass and angular momenta

The blackfold construction puts, on any point in the spatial section Bp
of Wp+1, a (small) transverse sphere sn+1 with Schwarzschild radius r0(σ).
Thus the blackfold represents a black hole with a horizon geometry that is
a product of Bp and sn+1 — the product is warped since the radius of the
sn+1 varies along Bp. The null generators of the horizon are proportional to
the velocity field u.

If r0 is non-zero everywhere on Bp then the sn+1 are trivially fibered on
Bp and the horizon topology is

(topology of Bp)× sn+1 . (35)

However, if Bp has boundaries, as discussed above, then r0 will shrink to
zero size at them, resulting in a non-trivial fibration and different topology.
A simple but very relevant instance of this happens when Bp is a topological
p-ball. Then the horizon topology can easily be seen to be Sp+n+1 = SD−2.

2 It may also happen because the boundary is an infinite-redshift surface, R0 → 0.
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The physical properties of stationary blackfolds can be obtained by in-
tegrating appropriate quantities over the spatial section Bp of the brane
worldvolume. As a consequence, the mass, angular momenta and entropy
are given by

M =
Ω(n+1)

16πG

( n
2κ

)n ∫
Bp

dV(p) R
n+1
0 (1− V 2)

n−2
2
(
n+ 1− V 2

)
, (36)

Ji =
Ω(n+1)

16πG

( n
2κ

)n
nΩi

∫
Bp

dV(p) R
n−1
0 (1− V 2)

n−2
2 R2

i , (37)

S =
AH
4G

=
Ω(n+1)

4G

( n
2κ

)n+1
∫
Bp

dV(p) R
n+1
0 (1− V 2)n/2 . (38)

An immediate physical consequence that can be derived from the expressions
above is that

a(j) ∼ j−
p

D−3−p , (39)

where j ∼ `J/`M and a ∼ AH/M
D−2. Here, it is assumed for simplicity

that all length scales along Bp are of order R and that the velocities and
redshift are moderate. This shows that for a given number of large non-zero
angular momenta, the blackfold with smallest p is entropically preferred at
fixed mass.

4.3. Action principle and first law of stationary blackfolds

Having solved the intrinsic equations (26) in the form (28), we are left
with the extrinsic equations (25), where we can now eliminate the variables
r0(σ) and ua(σ) in terms of the embedding functions Xµ(σ). The remaining
extrinsic equation that determines the embedding can then be written as

Kρ = n ⊥ρµ ∂µ log(R0

√
1− V 2) , (40)

where ⊥ρµ (see (19)) projects along directions perpendicular to the world-
volume. These are thus D− p− 1 equations, the solutions of which describe
stationary blackfolds to leading order in the ‘test blackfold’ approximation.

The extrinsic blackfold equations (40) can equivalently be found be vary-
ing the action [2]

I = β

∫
Bp

dV(p)R
n+1
0

(
1− V 2

)n/2
, (41)
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where Bp is the spatial section of Wp+1 and dV(p) is the integration measure
on Bp. The action (41) is in many applications the most efficient way to find
solutions of the stationary blackfold equations (40).

Interestingly, the action (41) is directly related to the effective action
that approximates, in the blackfold regime r0/R � 1, the gravitational
Euclidean action of the black hole

β−1I = G = M −
∑
i

ΩiJi − TS . (42)

This can be easily checked using the expressions (36)–(38), and holds for any
embedding, not necessarily a solution to the extrinsic equations. If we regard
M , Ji and S as functionals of the embedding Xµ(σ), it follows that extrema
of the action (42) satisfy the first law of thermodynamics dM = TdS+ΩidJi.
We thus see that solutions of the blackfold equations satisfy the ‘equilib-
rium state’ version of the first law of black hole mechanics. Conversely,
the blackfold equations for stationary configurations can be obtained as the
requirement that the first law be satisfied.

5. Explicit solutions

We discuss here some explicit solutions [1,18] of the stationary blackfold
equations. The first class of these is new, and includes the thin black ring
solutions of [13] as a special case. The second class shows that ultraspinning
Myers–Perry black holes are correctly captured by the blackfold approach.

5.1. Odd-sphere blackfolds

Consider a single odd-sphere, Bp = S2k+1, which we embed in a 2k+
2-dimensional flat subspace of RD−1 with metric

dρ2 + ρ2
k+1∑
i=1

(
dµ2

i + µ2
i dφ

2
i

)
,

k+1∑
i=1

µ2
i = 1 . (43)

The sphere is embedded as ρ = R and the worldvolume spatial coordinates
can be taken to be k independent µi plus the k + 1 Cartan angles φi. Then
we have Ri = Rµi and R0 = 1. We furthermore assume that all the angular
velocities along the φi are equal in magnitude, |Ωi| = Ω . From (31) it then
follows that the velocity V = RΩ is uniform over the blackfold, and so is
the thickness r0. Computing the action (41) for this case and extremizing
one finds the equilibrium condition

R =
√

p

n+ p

1
Ω

(44)



Blackfold Approach for Higher-dimensional Black Holes 3473

(for p = 1 we recover the result for black rings in [13]). The horizon geometry
is H = S2k+1 × sn+1. One may also consider non-equal angular velocities.
Then the radius ρ = R(µi) depends non-trivially on µi and one must solve
a second-order differential equation, which requires numerical analysis.

This is easily generalized to products of odd-spheres, Bp =
∏
pa∈odd S

pa ,
p =

∑
a pa, where we take each odd-sphere to have constant radius Ra, and

let each odd-sphere rotate along all its Cartan angles with angular velocities
equal in magnitude to Ω (a). The equations of equilibrium factorize for each
sphere and are solved for

Ra =
√

pa
n+ p

1
Ω (a)

. (45)

The horizon geometry is H =
∏
pa∈odd S

pa × sn+1, and the mass, angular
momenta, and area of the blackfold are easily obtained plugging these results
in the general formulas above.

5.2. Ultraspinning Myers–Perry black holes as even-ball blackfolds

It is not possible to find blackfold equations in a Minkowski background
for Bp a topological even-sphere. The reason is that the tension at fixed-
points of the rotation group cannot be counterbalanced by centrifugal forces
in this case. Instead, there exist solutions where Bp is an ellipsoidal even-
ball, with thickness r0 vanishing at the boundary of the ball so the horizon
topology is SD−2. These reproduce precisely all the physical properties
of a Myers–Perry black hole with p/2 ultra-spins. This provides a highly
non-trivial check on the approach and also shows that the method remains
sensible when the rotation has fixed-points, in this case at the center of
the ball. They also provide an explicit example of blackfolds with varying
thickness r0(σα).

As an illustration, we discuss here the simplest non-trivial case of p = 2
given originally in [1]. The general case can be found in [18]. We start by
considering a black 2-fold extending along a plane dr2 + r2dφ2 in Minkowski
space, which trivially solves the blackfold equations (40). We embed B2

as σ1 = φ, σ2 = r, and introduce a rigid brane rotation Ω along the φ
direction, so that the velocity is V = rΩ . Comparing with (34), it follows
that this becomes light-like at r = 1/Ω , so that the horizon r0 closes off at
that radius. As a consequence, B2 becomes the disk 0 ≤ r ≤ Ω−1.

Computing the physical quantities of this blackfold using (36)–(38) one
finds that these reproduce exactly the values for an ultraspinning Myers–
Perry black hole in D = n + 5 dimensions, with a single spin parameter
a = 1/Ω and with horizon radial coordinate r+ = n/(2κ), to leading order
in r+/a [12]. The shape of the horizon is also accurately reproduced, and in
both cases a is the horizon radius in the plane parallel to the rotation.
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6. Instabilities

The blackfold approach can be used to study the perturbative dynam-
ics of a black hole when the perturbation wavelength is long λ � r0 . Such
perturbations can be either intrinsic variations in the thickness r0 and local
velocity u, or extrinsic variations in the worldvolume embedding geome-
try X. In general, these two kinds of perturbations are coupled, but for
perturbations with wavelength

r0 � λ� R , (46)

the worldvolume looks essentially flat and the intrinsic and extrinsic per-
turbations decouple. A standard analysis for the general case of a perfect
fluid brane, initially at rest, shows that in this regime the transverse, elastic
oscillations of the brane propagate with speed

c2
T = −P

ε
, (47)

and the longitudinal, sound-mode oscillations of the fluid propagate with
speed

c2
L =

dP

dε
. (48)

These follow from the extrinsic and intrinsic equations respectively (see e.g.
[27, 28])

A simple consequence is that for equations of state P = wε with con-
stant w, the fluid is unstable to either longitudinal or transverse oscillations.
This applies in particular to the case of neutral blackfolds for which

c2
L = −c2

T = − 1
n+ 1

, (49)

so these are generically unstable to longitudinal sound-mode oscillations and
stable to elastic oscillations in the range of wavelengths (46). This instability
is a manifestation of Gregory–Laflamme instability [6, 29] of black branes.
In particular, it should be related to the long wavelength component of the
horizon perturbation

δr0 ∼ eΩt+ikiz
i
. (50)

The dispersion relation predicted by (49) in the limit of small k,

Ω =
1√
n+ 1

k , (51)

is in good numerical agreement with the slope at the origin in figure 1 of [29].
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We also note that using (14) one may rewrite (51) as

Ω =
√

s

|cv|
k , (52)

where cv is the isovolumetric specific heat. This shows that the black brane
is dynamically unstable (to long-wavelength GL modes) if and only if it is
locally thermodynamically unstable, cv < 0. This is precisely the content of
the ‘correlated stability conjecture’ of Gubser and Mitra [30]. The blackfold
approach thus seems a powerful and simple method to examine instability of
branes and shows the correlation between dynamical and thermodynamical
stability, using the thermodynamics of the effective fluid.

7. Outlook

We conclude with a brief outlook.
The formalism reviewed in this lecture resembles to some extent two dif-

ferent earlier effective descriptions of black hole dynamics. The extrinsic part
is a generalization to p-branes of the effective worldline formalism for small
black holes [31–35]. The intrinsic part is similar to other fluid-dynamical
formalisms for horizon fluctuations, such as the membrane paradigm [23,24]
and the fluid/AdS-gravity correspondence [22]. In parallel with these de-
velopments, it should be possible to produce a systematic derivation of the
blackfold equations, which would allow to go beyond ‘perfect fluid’ and ‘gen-
eralized geodesic’ approximation and account for dissipation and effects of
internal structure and gravitational self-force. The study of higher order
corrections within the blackfold approach should also shed further light on
the validity of our assumption that the blackfold equations ensure regularity
of the event horizon.

We have restricted here to neutral blackfolds, but the method can be
readily generalized to charged blackfolds (to be discussed in future work)
as well as other backgrounds (see e.g. [16]). The construction of charged
blackfolds is bound to have many interesting application in string theory
and will be useful to further elucidate the relation of the blackfold approach
to the fluid/AdS-gravity correspondence. It would also be interesting to
study possible connections with the extremal limit, which introduces a long
length scale transverse to the horizon and allows to decouple a different
sector of the physics, namely the near-horizon region [36].

We have presented some of the most simple solutions of the stationary
blackfold equations, so it would be interesting to examine more complicated
novel solutions (see also [18]). Finally, a more detailed analysis of the per-
turbations of solutions to the blackfold equations and their stability, in the
regime where intrinsic and extrinsic perturbations are coupled, is expected to
give new insights into the phase structure and stability of higher-dimensional
black holes.
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