
Vol. 40 (2009) ACTA PHYSICA POLONICA B No 12

NEW ASPECTS OF TWO-DIMENSIONAL
QUANTUM GRAVITY∗

J. Ambjørna,b, R. Lollb, Y. Watabikic, W. Westraf , S. Zohrend,e

aThe Niels Bohr Institute, Copenhagen University
Blegdamsvej, 172100 Copenhagen, Denmark

bInstitute for Theoretical Physics, Utrecht University
Leuvenlaan 4, 3584 CE Utrecht, The Netherlands

cTokyo Institute of Technology
Department of Physics, High Energy Theory Group

2-12-1 Oh-okayama, Meguro-ku, Tokyo 152-8551, Japan
dMathematical Institute, Leiden University

Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
eDepartment of Statistics, Săo Paulo University

Rua do Matăo, 1010, 05508-090, Săo Paulo, Brazil
fDepartment of Physics, University of Iceland

Dunhaga 3, 107 Reykjavik, Iceland

(Received October 26, 2009)

Causal dynamical triangulations (CDT) can be used as a regularization
of quantum gravity. In two dimensions the theory can be solved anlytically,
even before the cut-off is removed and one can study in detail the how to
take the continuum limit. We show how the CDT theory is related to
Euclidean 2d quantum gravity (Liouville quantum gravity), how it can be
generalized and how this generalized CDT model has a string field theory
representation as well as a matrix model representation of a new kind,
and finally how it examplifies the possibility that time in quantum gravity
might be the stochastic time related to the branching of space into baby
universes.

PACS numbers: 04.60.–m, 04.60.Kz, 04.60.Nc

∗ Lecture presented at the XLIX Cracow School of Theoretical Physics, “Non-pertur-
bative Gravity and Quantum Chromodynamics”, Zakopane, May 31–June 10, 2009.

(3479)



3480 J. Ambjørn et al.

1. Introduction

Presumably quantum gravity makes sense as an ordinary effective quan-
tum field theory at low energies. At high energies it is presently unclear
how to view space-time. Is space-time an emergent low-energy structure as
advocated in string theory, does it require a new concept of quantization as
believed by people working on loop quantum gravity, or is quantum grav-
ity “just” an almost standard quantum field theory with non-trivial (non-
perturbative) ultraviolet behaviour? As long as we do not know the answer
we have an obligation to pursue all avenues.

The theory of quantum gravity which starts by providing an ultraviolet
regularization in the form of a lattice theory, the lattice link length being
the (diffeomorphism invariant) UV cut-off, and where in addition the lat-
tice respects causality, is denoted CDT (causal dynamical triangulations).
It is formulated in the spirit of the last of the three approaches mentioned
above: old “boring” quantum field theory with a non-trivial fixed point [1,2].
It allows a rotation to Euclidean space-time, the action used being the Eu-
clidean Regge action for the piecewise linear geometry represented by the
(now) Euclidean lattice (see [3,4] for details of the Regge action in the CDT
approach). The non-perturbative path integral is performed by summing
over lattices originating from Lorentzian lattices with a causal structure.
Like in ordinary lattice field theories we approach the continuum by fine-
tuning the bare coupling constants. The rotation to Euclidean space-time al-
lows the use of Monte Carlo simulations of the theory and in four-dimensional
space-time, which for obvious reasons has our main interest, there exists a
region of coupling constant space where the infrared behaviour of the uni-
verse seen by the computer is that of (Euclidean) de Sitter space-time [5,6]
(for a pedagogical review, see [7]). One might think this is a trivial result,
but quite the contrary: in Euclidean space-time the Einstein action is un-
bounded from below and the de Sitter solution is only a saddle point. Thus
we are clearly dealing with an “emergent” property of the path integral, a
genuine non-perturbative effect arising from an interplay between the regu-
larization and the path integral measure, and it can only be valid in some
limited region of the (bare) coupling constant space. This is precisely what
is observed. One of the main questions to be answered in such a lattice
theory is what happens when the lattice spacing is taken to zero, i.e. when
the cut-off is removed. Is it possible at all to remove the cut off, and if
so what are the ultraviolet properties of the theory? Non-trivial UV prop-
erties have been observed [8], properties which have been reproduced by
other “field theoretical” approaches to quantum gravity [9, 10]. However, in
the CDT-lattice approach it has so far been difficult to penetrate into the
trans-Planckian region. Active research is ongoing to achieve precisely this.
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Numerical simulations are very useful for understanding whether a non-
perturbatively defined quantum field theory has a chance to make sense.
Likewise it is useful for checking if certain conjectured non-perturbative fea-
tures of the theory have a chance of being true, and one can even discover
new, unexpected phenomena. In this way, the numerical simulations work
like experiments, and this is the spirit in which the above mentioned sim-
ulations have been conducted. However, numerical simulations have their
limitations in the sense that they will never provide a proof of the existence
of a theory and it might be difficult in detail to follow the way the con-
tinuum limit is approached since it requires larger and larger lattices. It is
thus of interest and importance to be able to study this in detail, even if
only in a toy model. Two-dimensional quantum gravity is such a toy model
which has a surprising rich structure. Many of the intriguing questions in
quantum gravity and in lattice quantum gravity are still present in the two-
dimensional theory. What is nice about the two-dimensional theory is that
it can be solved analytically even at the discretized level.

In the rest of this article we will discuss the two-dimensional CDT theory.
In Sec. 2 we define the “bare” model. In Sec. 3 we generalize the model,
allowing for local causality violations and we discuss the generalized model’s
relation to a specific matrix model (Sec. 4). What is new is that the matrix
model directly describes the continuum limit of the gravity theory. In Sec. 5
we show how to formulate a complete string field theory for the model and
in Sec. 6 we show the equivalence to the matrix model defined in Sec. 4.
The matrix model allows us to define the theory non-perturbatively and we
show how to calculate non-perturbatively (i.e. including the summation over
all topologies) certain observables. In Sec. 7 we discuss relations to other
models. In Sec. 8 we show that the string field theory can be understood
as a special kind of stochastic quantization of space, a phenomenon first
noticed in the context of 2d Liouville quantumgravity in [11]. Stochastic
quantization defines a non-perturbative Hamiltonian. This is discussed in
Sec. 9.

2. The CDT formalism

CDT stands in the tradition of [12], which advocated that in a gravita-
tional path integral with the correct, Lorentzian signature of space-time one
should sum over causal geometries only. More specifically, we adopted this
idea when it became clear that attempts to formulate a Euclidean nonper-
turbative quantum gravity theory run into trouble in space-time dimension
d larger than two. Here we will discuss the implementation only when the
space-time dimension is two.
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Thus we start from Lorentzian simplicial space-times with d = 2 and
insist that only causally well-behaved geometries appear in the (regularized)
Lorentzian path integral. A crucial property of our explicit construction is
that each of the configurations allows for a rotation to Euclidean signature as
mentioned above. We rotate to a Euclidean regime in order to perform the
sum over geometries (and rotate back again afterward if needed). We stress
here that although the sum is performed over geometries with Euclidean
signature, it is different from what one would obtain in a theory of quantum
gravity based ab initio on Euclidean space-times. The reason is that not
all Euclidean geometries with a given topology are included in the “causal”
sum since, in general, they have no correspondence to a causal Lorentzian
geometry.

Fig. 1. Piecewise linear space-time histories 1+1 dimensional quantum gravity.

We refer to [3] for a detailed description of how to construct the class
of piecewise linear geometries used in the Lorentzian path integral in higher
dimensions. The most important assumption is the existence of a global
proper-time foliation. This is illustrated in Fig. 1 in the case of two dimen-
sions. We have a sum over two-geometries, “stretching” between two “one-
geometries” separated a proper time t and constructed from two-dimensional
building blocks. In Fig. 2 we have shown how to fill the two-dimensional
space-time between the space (with topology S1) at time tn and time tn+1 =
tn + a where a denotes the lattice spacing. While we in the lattice model
often use units where everything is measured in lattice length (i.e. the lat-
tice links have length one), we are, of course, interested in taking the limit
a→ 0 to recover continuum physics.
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In the path integral we will be summing over all possible ways to connect
a given 1d “triangulation” at time tn and a given 1d triangulation at tn+1 to
a slab of 2d space-time as shown in Fig. 2, and in addition we will sum over
all 1d “triangulations” of S1 at times tn. Thus we are demanding that the
time-slicing is such that the topology of space does not change when space
“evolves” from time tn to time tn+1.

Fig. 2. The propagation of a spatial slice from time t to time t + 1. The ends of
the strip should be joined to form a band with topology S1 × [0, 1].

The Einstein–Hilbert action SEH in two dimensions is almost trivial.
According to the Gauss–Bonnett theorem the curvature term is a topological
invariant and does not contribute to the equations of motion as long as the
topology of space-time is unchanged. And even if the topology changes the
change in the curvature term is just a number, the change in the Euler
characteristic of the 2d surface. We will first ignore this term, since we
are first not allowing topology change. Thus the (Euclidean) action simply
consists of the cosmological term:

SEH
E = λ

∫
d2x
√
g −→ SRegge

E = ΛN2 , (1)

where N2 denotes the total number of triangles in the two-dimensional tri-
angulation. We denote the discretized action the Regge action since it is
a trivial example of the natural action for piecewise linear geometries in-
troduced by Regge [13]. The dimensionless lattice cosmological coupling
constant Λ will be related to the continuum cosmological coupling constant
λ by an additive renormalization:

Λ = Λ0 + 1
2λ a

2 , (2)

the factor 1/2 being conventional. The path integral or partition function
for the CDT version of quantum gravity is now

G
(0)
λ (l1, l2; t) =

∫
D[g] e−S

EH
E [g] →

G
(0)
Λ (L1, L2, T ) =

∑
T

1
CT

e−SE(T ) , (3)
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where the summation is over all causal triangulations T of the kind described
above with a total of T time steps, an “entrance loop” of length l1 = L1a and
an “exit loop” of length l2 = L2a, and where we have dropped the superscript
“Regge” on the discretized action. The factor 1/CT is a symmetry factor,
given by the order of the automorphism group of the triangulation T .

Our next task is to evaluate the sum over triangulations in (3), if possible,
analytically. Surprisingly, it can be done [14]. One can simply count the
number of triangulations in a slice like the one shown in Fig. 2 and from this
the total number of triangulations in T slices. As usual, when it comes to
counting, it is often convenient to introduce the generating function for the
numbers one wants to count and first find this function. In our model the
generating function has a direct physical interpretation. We define

G̃
(0)
Λ (X1, X2; t) =

∑
L1,L2

e−X1L1 e−X2L2G
(0)
Λ (L1, L2;T ) . (4)

Thus G̃(0)
Λ (X1, X2;T ) is the generating function of the numbers G(0)

Λ (L1, L2;
T ) if we write Z1 = e−X1 , Z2 = e−X2 . But we can also view X as a (bare)
dimensionless boundary cosmological constant, such that a boundary cosmo-
logical term XL has been added to the action. In this way G̃(0)

Λ (X1, X2;T )
represents the sum over triangulations where the length of the boundaries
are allowed to fluctuate, the fluctuations controlled by the value X of the
boundary cosmological constant. In general, we expect, just based on stan-
dard dimensional analysis, the boundary cosmological constants Xi to be
subjected to an additive renormalization when the continuum limit is ap-
proached. Like (2) we expect

X = Xc + xa , (5)

where x then denotes the continuum boundary cosmological constant, and
one, after renormalization, has the continuum boundary cosmological ac-
tion x l.

We refer to [14] for the explicit combinatorial arguments which allow
us to find G̃(0)

Λ (X1, X2;T ). Let us just state the following results: one can
derive an exact iterative equation (using notation Z = e−X , W = e−Y ,
Q = e−Λ)

G̃
(0)
Λ (Z,W ;T ) =

QZ

1−QZ
G̃

(0)
Λ

(
Q

1−QZ
,W ;T − 1

)
. (6)

This equation can be iterated and the solution written as

G̃
(0)
Λ (Z,W ;T )

=
F 2t(1− F 2)2 ZW

[(1−ZF )−F 2t+1(F−Z)] [(1−ZF )(1−WF )−F 2T (F−Z)(F−W )]
, (7)
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where F is

F =
1−

√
1− 4Q2

2Q
. (8)

These equations tell us that Qc = 1/2 and that Zc = 1 and we can now take
the continuum limit in (7) using t = T a and find

G̃
(0)
λ (x, y; t) =

4λ e−2
√
λt

(
√
λ+ x) + e−2

√
λt(
√
λ− x)

× 1

(
√
λ+ x)(

√
λ+ y)− e−2

√
λt(
√
λ− x)(

√
λ− y)

. (9)

Further, the continuum version of (4):

G̃
(0)
λ (x1, x2; t) =

∞∫
0

dl1dl2 e
−x1l1−x2l2G

(0)
λ (l1, l2; t) (10)

allows us to obtain:

G
(0)
λ (l1, l2; t) =

e−[coth
√
λt]
√
λ(l1+l2)

sinh
√
λt

√
λl1l2
l2

I1

(
2
√
〈l1l2

sinh
√
λt

)
, (11)

where I1(x) is a modified Bessel function of the first kind. Quite remarkable
this expression was first obtained using entirely continuum reasoning by
Nakayama [15].

Finally, from (2) and (5) one can now obtain the continuum limit of the
iteration equation (6):

∂

∂t
G̃

(0)
λ (x, y; t) +

∂

∂x

[
(x2 − λ)G̃(0)

λ (x, y; t)
]

= 0 , (12)

This is a standard first order partial differential equation which should be
solved with the boundary condition

G̃
(0)
λ (x, y; t = 0) =

1
x+ y

(13)

corresponding to
G

(0)
λ (l1, l2; t = 0) = δ(l1 − l2) . (14)

The solution is thus

G̃
(0)
λ (x, y; t) =

x̄2(t;x)− λ
x2 − λ

1
x̄(t;x) + y

, (15)
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where x̄(t;x) is the solution to the characteristic equation

dx̄

dt
= −(x̄2 − λ) , x̄(t = 0) = x . (16)

It is readily seen that the solution is indeed given by (9) since we obtain

x̄(t) =
√
λ

(
√
λ+ x)− e−2

√
λt(
√
λ− x)

(
√
λ+ x) + e−2

√
λt(
√
λ− x)

. (17)

If we interpret the propagator G(0)
λ (l1, l2; t) as the matrix element be-

tween two boundary states of a Hamiltonian evolution in “time” T ,

G
(0)
λ (l1, l2; t) =

〈
l1

∣∣∣ e−H0t
∣∣∣l2〉 (18)

we can, after an inverse Laplace transformation, read off the functional form
of the Hamiltonian operator H0 from (12),

H̃0(x) =
∂

∂x

(
x2 − λ

)
,

H0(l) = −l ∂
2

∂l2
+ λl . (19)

This end our short review of basic 2d CDT. We have here emphasized
that all continuum results can be obtained by explicit solving the lattice
model and taking the continuum limit simply by letting the lattice spacing
a → 0. The same will be true for the generalized CDT model described
below, but to make the presentation more streamlined we will drop the
explicit route via a lattice and work directly in the continuum.

3. Generalized CDT

It is natural the ask what happens if the strict requirement of “classical”
causality on each geometry appearing in the path integral is relaxed. While
causality is a reasonable requirement as an outcome of a sensible physical
theory, there is no compelling reason to impose it on each individual geom-
etry in the path integral, since these are not physical observables. We used
it, inspired by [12], as a guiding principle for obtaining a path integral which
is different from the standard Euclidean path integral, which was seemingly
a necessity in higher than two space-time dimensions.

In Fig. 3 we show what happens if we allow causality to be violated locally
by allowing space to split in two at a certain time t, but we never allow the
“baby” universe which splits off to come back to the “parent” universe. The
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baby universe thus continues its life and is assumed to vanish, shrink to
nothing, at some later time. We now integrate over all such configurations
in the path integral. From the point of view of Euclidean space-time we
are simply integrating over all space-times with the topology of a cylinder.
However, returning to the original Minkowskian picture it is clear that at
the point, where space splits in two the light-cone is degenerate and one is
violating causality in the strict local sense that each space-time point should
have a future and a past light-cone. Similarly, when the baby universe “ends”
its time evolution the light-cone structure is degenerate. These points thus
have a diffeomorphism invariant meaning in space-times with Lorentzian
structure, and it makes sense to associated a coupling constant gs with the
process of space branching in two disconnected pieces.

+= +

Fig. 3. In all four graphs, the geodesic distance from the final to the initial loop
is given by t. Differentiating with respect to t leads to Eq. (20). Shaded parts of
graphs represent the full, gs-dependent propagator and disc amplitude, and non-
shaded parts the CDT propagator.

The equation corresponding to Fig. 3 is [16]

∂

∂t
G̃λ,gs(x, y; t) = − ∂

∂x

[(
(x2 − λ) + 2gs Wλ,gs(x)

)
G̃λ,gs(x, y; t)

]
. (20)

Wλ,gs(x) is denoted the disk amplitude with a fixed cosmological constantx.
It is related to the disk amplitude with a fixed boundary length by

W̃λ,gs(x) =

∞∫
0

dl e−xlWλ,gs(l) . (21)

It describes the “propagation” of the a spatial universe until it vanishes in
the vacuum. If we did not allow any spatial branching we would simply have

W̃
(0)
λ (x) =

∞∫
0

dt G
(0)
λ (x, l = 0; t) =

1
x+
√
λ
, (22)
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where G(0)
λ (x, l; t) denotes the Laplace transform of G(0)

λ (l′, l; t) with respect
to l′. From the composition rules for Gλ,gs(l1, l2; t) it follows that it has
(mass) dimension 1. Thus Gλ,gs(x, l2; t) is dimensionless and it follows that
the (mass) dimension of the coupling constant gs must be 3. In a discretized
theory it will appear as the dimensionless combination gsa

3, a being the
lattice spacing, and one can show that the creation of more than one baby
universe at a given time t is suppressed by powers of a (see [16] for details).
Thus we only need to consider the process shown in Fig. 3. For a fixed
cosmological constant λ and boundary cosmological constants x, y expres-
sions like G̃λ,gs(x, y; t) and W̃λ,gs(x) will have a power series expansion in
the dimensionless variable

κ =
gs

λ3/2
(23)

and the radius of convergence is of the order of one. Thus the coupling
constant gs indeed acts to tame the creation of baby universes and if gs
exceeds this critical value Eq. (20) breaks down and is replaced by another
equation corresponding to Liouville quantum gravity with central change
c = 0 (see [16] for a detailed discussion).

Differentiating the integral equation corresponding to Fig. 3 with respect
to the time t one obtains (20). The disc amplitude Wλ,gs(x) is at this stage
unknown. However, one has graphical representation for the disc amplitude
shown in Fig. 4. It translates into the equation [16]

= +

Fig. 4. Graphical illustration of Eq. (65). Shaded parts represent the full disc
amplitude, unshaded parts the CDT disc amplitude and the CDT propagator.

W̃λ,gs(x) = W̃
(0)
λ (x)

+ gs

∞∫
0

dt

∞∫
0

dl1dl2 (l1 + l2)G(0)
λ (x, l1 + l2; t)Wλ,gs(l1)Wλ,gs(l2) . (24)

The superscript (0) indicates the CDT amplitudes without baby universe
branching, calculated above. We assume

W̃λ,gs=0(x) = W̃
(0)
λ (x) , (25)
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and similarly for G(0)
λ,gs

. The integrations in (24) can be performed, yielding

W̃λ,gs(x) =
1

x+
√
λ

+
gs

x2 − λ

(
W̃ 2
λ,gs

(
√
λ)− W̃ 2

λ,gs
(x)
)
. (26)

Solving for W̃λ,gs(x) we find

W̃λ,gs(x) =
−(x2 − λ) + Ŵλ,gs(x)

2gs
, (27)

where we have defined

Ŵλ,gs(x) =
√

(x2 − λ)2 + 4gs
(
gsW̃ 2

λ,gs
(
√
λ) + x−

√
λ
)
. (28)

W̃λ,gs(x) is determined up to the value W̃λ,gs(
√
λ). We will now show that

this value is fixed by consistency requirements of the quantum geometry. If
we insert the solution (27) into Eq. (20) we obtain

∂

∂t
G̃λ,gs(x, y; t) = − ∂

∂x

[
Ŵλ,gs(x) G̃λ,gs(x, y; t)

]
. (29)

In analogy with (12) and (15), this is solved by

G̃λ,gs(x, y; t) =
Ŵλ,gs(x̄(t, x))

Ŵλ,gs(x)
1

x̄(t, x) + y
, (30)

where x̄(t, x) is the solution of the characteristic equation for (29), the gen-
eralization of Eq. (16):

dx̄

dt
= −Ŵλ,gs(x̄) , x̄(0, x) = x , (31)

such that

t =

x∫
x̄(t)

dy

Ŵλ,gs(y)
. (32)

Physically, we require that t can take values from 0 to ∞, as opposed to
just in a finite interval. From expression (32) for t this is only possible if the
polynomial under the square root in the defining equation (28) has a double
zero, which fixes the function Ŵλ,gs(x) to

Ŵλ,gs(x)=(x−α)
√

(x+α)2−2gs/α=λ(x̃−u)
√

(x̃+u)2−2κ , (33)
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where
x = x̃

√
λ , α = u

√
λ , u3 − u+ κ = 0 . (34)

In order to have a physically acceptable W̃λ,gs(x), one has to choose the
solution to the third-order equation which is closest to 1 and the above
statements about the expansion of W̃λ,gs(x) in a power series in κ follows
from (27), (33) and (34).

4. The matrix model representation

The formulas (33) and (27) are standard formulas for the resolvent of
a Hermitean matrix model, calculated to leading order in N , the size of the
matrix. In fact the following matrix model

Z(λ, gs) =
∫
dφ e−N TrV (φ) , V (φ) =

1
gs

(
λφ− 1

3
φ3
)

(35)

has a resolvent〈
1
N

Tr
(

1
x− φ

)〉
= Wλ,gs(x)(x) +O

(
1
N2

)
, (36)

whereWλ,gs(x) is given by (27), and where the expectation value of a matrix
expression O(φ) is defined as

〈O(φ)〉 =
1

Z(λ, gs)

∫
dφ e−N TrV (φ) O(φ) . (37)

What is surprising here, compared to “old” matrix model approaches to
2d Euclidean quantum gravity, is that the large N limit reproduces directly
the continuum theory. No scaling limit has to be taken. The situation is
more like in the Kontsevich matrix model, which directly describes contin-
uum 2d gravity aspects. In fact the cubic potential is “almost” like the cubic
potential in the Kontsevich matrix model, but the wold-sheet interpretation
is different.

Can the above correspondence be made systematic in an large N expan-
sion and can the matrix model representation help us to a non-perturbative
definition of generalized 2d CDT gravity? The answer is yes [17].

First we have to formulate the CDT model from first principles such that
we allow for baby universes to join the “parent” universe again, i.e. we have
to allow for topology changes of the 2d universe, and next we have to check
if this generalization is correctly captured by the matrix model (35) [18].
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5. CDT string field theory

In quantum field theory particles can be created and annihilated if the
process does not violate any conservation law of the theory. In string field
theories one operates in the same way with operators which can create and
annihilate strings. From the 2d quantum gravity point of view we thus have
a third-quantization of gravity: one-dimensional universes can be created
and destroyed. In [19] such a formalism was developed for non-critical strings
(or 2d Euclidean quantum gravity). In [18] the formalism was applied to 2d
CDT gravity leading to a string field theory or third quantization for CDT
which allows us in principle to calculate any amplitude involving creation
and annihilation of universes.

Let us briefly review this formalism. The starting point is the assumption
of a vacuum from which universes can be created. We denote this state |0〉
and define creation and annihilation operators:

[Ψ(l), Ψ †(l′)] = lδ(l − l′) ,
Ψ(l)|0〉 = 〈0|Ψ †(l) = 0 . (38)

The factor l multiplying the delta-function is introduced for convenience,
see [18] for a discussion.

Associated with the spatial universe we have a Hilbert space on the
positive half-line, and a corresponding scalar product (making H0(l) defined
in Eq. (19) Hermitian):

〈ψ1|ψ2〉 =
∫
dl

l
ψ∗1(l)ψ2(l) . (39)

The introduction of the operators Ψ(l) and Ψ †(l) in (38) can be thought
of as analogous to the standard second quantization in many-body theory.
The single particle Hamiltonian H0 defined by (19) becomes in our case the
“single universe” Hamiltonian. It has eigenfunctions ψn(l) with correspond-
ing eigenvalues en = 2n

√
λ, n = 1, 2, . . . :

ψn(l) = l e−
√
λlpn−1(l) , H0(l)ψn(l) = enψn(l) , (40)

where pn−1(l) is a polynomial of the order of n − 1. Note that the disk
amplitude W (0)

λ (l), which is obtained from (22), formally corresponds to
n = 0 in (40):

W
(0)
λ (l) = e−

√
λl , H0(l)W (0)

λ (l) = 0 . (41)
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This last equation can be viewed as a kind of Wheeler–deWitt equation if
we view the disk function as the Hartle–Hawking wave function. However,
W

(0)
λ (l) does not belong to the spectrum of H0(l) since it is not normalizable

when one uses the measure (39).
We now introduce creation and annihilation operators a†n and an cor-

responding to these states, acting on the Fock-vacuum |0〉 and satisfying
[an, a

†
m] = δn,m. We define

Ψ(l) =
∑
n

anψn(l) , Ψ †(l) =
∑
n

a†nψ
∗
n(l) , (42)

and from the orthonormality of the eigenfunctions with respect to the mea-
sure dl/l we recover (38). The “second-quantized” Hamiltonian is

Ĥ0 =

∞∫
0

dl

l
Ψ †(l)H0(l)Ψ(l) , (43)

and the propagator G̃λ(l1, l2; t) is now obtained as

G̃
(0)
λ (l1, l2; t) = 〈0|Ψ(l2)e−tĤ0Ψ †(l1)|0〉 . (44)

While this is trivial, the advantage of the formalism is that it automat-
ically takes care of symmetry factors (like in the many-body applications
in statistical field theory) both when many spatial universes are at play
and when they are joining and splitting. We can follow [19] and define the
following Hamiltonian, describing the interaction between spatial universes:

Ĥ = Ĥ0 − gs
∫
dl1

∫
dl2Ψ

†(l1)Ψ †(l2)Ψ(l1 + l2)

−αgs
∫
dl1

∫
dl2Ψ

†(l1 + l2)Ψ(l2)Ψ(l1)−
∫
dl

l
ρ(l)Ψ(l) , (45)

where the different terms of the Hamiltonian are illustrated in Fig. 5. Here
gs is the coupling constant we have already encountered in Sec. 3 of mass
dimension 3. The factor α is just inserted to be able to identify the action

1l 1l

2l 2l

1l 2l+1l 2l+

l

Fig. 5. Graphical illustration of the various terms in Eq. (45).
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of the two gs-terms in (45) when expanding in powers of gs. We will think
of α = 1 unless explicitly stated differently. When α = 1, Ĥ is hermitian
except for the presence of the tadpole term. It tells us that universes can
vanish, but cannot be created from nothing. The meaning of the two inter-
action terms is as follows: the first term replaces a universe of length l1 + l2
with two universes of length l1 and l2. This is one of the processes shown
in Fig. 5. The second term represents the opposite process, where two spa-
tial universes merge into one, i.e. the time-reversed picture. The coupling
constant gs clearly appears as a kind of string coupling constant: one factor
gs for splitting spatial universes, one factor gs for merging spatial universes
and thus a factor g2

s when the space-time topology changes, but there are
also factors for branching alone. This is only compatible with an Euclidean
sft-picture if we associate a puncture (and thus a topology change) with the
vanishing of a baby universe. As discussed above, this is indeed not unnatu-
ral from a Lorentzian point of view. From this point of view the appearance
of a tadpole term is more natural in the CDT framework than in the original
Euclidean framework in [19]. The tadpole term is a formal realization of this
puncture “process”, where the light-cone becomes degenerate.

In principle, we can now calculate the process, where we start out withm
spatial universes at time 0 and end with n universes at time t, represented as

Gλ,gs(l1, .., lm; l′1, .., l
′
n; t) = 〈0|Ψ(l′1) . . . Ψ(l′n) e−tĤΨ †(l1) . . . Ψ †(lm)|0〉 . (46)

5.1. Dyson–Schwinger equations

The disk amplitude is one of a set of functions for which it is possible to
derive Dyson–Schwinger equations (DSE). The disk amplitude is character-
ized by the fact that at t = 0 we have a spatial universe of some length, and
at some point it vanishes in the “vacuum”. Let us consider the more general
situation, where a set of spatial universes of some lengths li exists at time
t = 0, and where the universes vanish at later times. Define the generating
function:

Z(J) = lim
t→∞
〈0|e−tĤ e

R
dl J(l)Ψ†(l)|0〉 . (47)

Notice that if the tadpole term had not been present in Ĥ Z(J) would have
trivially been equal 1. We have

lim
t→∞
〈0|e−tĤ Ψ †(l1) · · ·Ψ †(ln)|0〉 =

δnZ(J)
δJ(l1) · · · δJ(ln)

∣∣∣∣
J=0

. (48)

Z(J) is the generating functional for universes that disappear in the vacuum.
We now have

0 = lim
t→∞

[
∂

∂t
〈0|e−tĤ e

R
dl J(l)Ψ†(l)|0〉 = −〈0|e−tĤ Ĥ e

R
dl J(l)Ψ†(l)|0〉

]
. (49)
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Commuting the Ψ(l)’s in Ĥ past the source term effectively replaces these
operators by lJ(l), after which they can be moved to the left of any Ψ †(l)
and outside 〈0|. After that the remaining Ψ †(l)’s in Ĥ can be replaced by
δ/δJ(l) and also moved outside 〈0|, leaving us with an integro-differential
operator acting on Z(J):

0 =

∞∫
0

dlJ(l)O
(
l, J,

δ

δJ

)
Z(J) , (50)

where

O

(
l, J,

δ

δJ

)
= H0(l)

δ

δJ(l)
− δ(l)− gsl

l∫
0

dl′
δ2

δJ(l′)δJ(l − l′)

−αgsl
∞∫

0

dl′l′J(l′)
δ

δJ(l + l′)
. (51)

Z(J) is a generating functional which also includes totally disconnected
universes which never “interact” with each other. The generating functional
for connected universes is obtained in the standard way from field theory by
taking the logarithm of Z(J). Thus we write:

F (J) = logZ(J) , (52)

and we have

lim
t→∞
〈0|e−tĤΨ †(l1) · · ·Ψ †(ln)|0〉con =

δnF (J)
δJ(l1) · · · δJ(ln)

∣∣∣∣
J=0

, (53)

and we can readily transfer the DSE (50)–(51) into an equation for the
connected functional F (J):

0 =

∞∫
0

dl J(l)

H0(l)
δF (J)
δJ(l)

− δ(l)− gsl
l∫

0

dl′
δ2F (J)

δJ(l′)δJ(l − l′)

−gsl
l∫

0

dl′
δF (J)
δJ(l′)

δF (J)
δJ(l − l′)

− αgsl
∞∫

0

dl′l′J(l′)
δF (J)

δJ(l + l′)

 . (54)

From Eq. (54) one obtains the DSE by differentiating (54) after J(l) a num-
ber of times and then taking J(l) = 0.
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5.2. Application of the DSE

Let us introduce the notation

w(l1, . . . , ln) ≡ δnF (J)
δJ(l1) · · · δJ(ln)

∣∣∣∣
J=0

(55)

as well as the Laplace transform w(x1, . . . , xn) (like in (10)). Let us differen-
tiate Eq. (54) after J(l) once and two twice, then take J(l) = 0 and Laplace
transform the obtained equations. We obtain the following equations (where
H0(x)f(x) = ∂x[(x2 − λ)f(x)]):

0 = H0(x)w(x)− 1 + gs∂x (w(x, x) + w(x)w(x)) , (56)

0 = (H0(x) +H0(y))w(x, y) + gs∂xw(x, x, y) + gs∂yw(x, y, y)
+ 2gs (∂x[w(x)w(x, y)] + ∂y[w(y)w(x, y)])

+ 2αgs∂x∂y
(w(x)− w(y)

x− y

)
. (57)

The structure of the DSE for an increasing number of arguments is hopefully
clear (see [18] for details).

We can solve the DSE iteratively. For this purpose let us introduce the
expansion of w(x1, . . . , xn) in terms of the coupling constants gs and α:

w(x1, . . . , xn) =
∞∑

k=n−1

αk
∞∑

m=k−1

gms w(x1, . . . , xn;m, k) . (58)

The amplitude w(x1, . . . , xn) starts with the power (αgs)n−1 since we have to
perform n mergings during the time evolution in order to create a connected
geometry if we begin with n separated spatial loops. Thus one can find the
lowest order contribution to w(x1) from (56), use that to find the lowest
order contribution to w(x1, x2) from (57), etc. Returning to Eq. (56) we can
use the lowest order expression for w(x1, x2) to find the next order correction
to w(x1), etc.

As mentioned above the amplitude w(x1, . . . , xn) starts with the power
(αgs)n−1 coming from merging the n disconnected spatial universes. The
rest of the powers of αgs will result in a topology change of the resulting,
connected worldsheet. From an Euclidean point of view it is thus more
appropriate to reorganize the series as follows

w(x1, . . . , xn) = (αgs)n−1
∞∑
h=0

(αg2
s)
hwh(x1, . . . , xn) , (59)

wh(x1, . . . , xn) =
∞∑
j=0

gjsw(x1, . . . , xn;n− 1 + 2h+ j, n− 1 + h) (60)
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and aim for a topological expansion in αg2
s , at each order solving for all

possible baby-universe creations which at some point will vanish into the
vacuum. Thus wh(x1, . . . , xn) will be a function of gs although we do not
write it explicitly. The DSE allows us to obtain the topological expansion
iteratively, much the same way we already did as a power expansion in gs.

6. The matrix model, once again

Let us consider our N × N Hermitian matrix with the cubic potential
(35) and define the observable

W (x1, . . . , xn)d = Nn−2

〈
(Tr

(
1

x1 −M

)
· · ·
(

tr
1

x1 −M

)〉
, (61)

where the subscript d refers to the fact that the correlator will contain
disconnected parts. We denote the connected part of the correlator by
W (x1 . . . , xn). It is standard matrix model technology to find the matrix
model DSEs for W (x1 . . . , xn). We refer to [20–23] for details. One obtains
precisely the same set of coupled equations as (56)–(57) if we identify:

α =
1
N2

, (62)

and the discussion surrounding the expansion (59) is nothing but the stan-
dard discussion of the large N expansion of the multi-loop correlators (see
for instance [23] or the more recent papers [24–26]). Thus we conclude that
there is a perturbative agreement between the matrix model (35) and the
CDT SFT in the sense that perturbatively:

W (x1, . . . , xn) = w(x1, . . . , xn) . (63)

In practice the SFT is only defined perturbatively, although in principle we
have available the string field Hamiltonian. However, we can now use the
matrix model to extract non-pertubative information. The identification of
the matrix model and the CDT SFT DSEs were based on (62), but in the
SFT we are interested in α = 1, i.e., formally in N = 1, in which case
the matrix integrals reduce to ordinary integrals. This means that we will
consider the entire sum over topologies “in one go”:

Z(g, λ) =
∫
dm exp

[
− 1
gs

(
λm− 1

3
m3

)]
, (64)

while the observables (61) can be written as

Wd(x1, . . . , xn) =
1

Z(gs, λ)

∫
dm

exp
[
− 1
gs

(
λm− 1

3 m
3
)]

(x1 −m) · · · (xn −m)
. (65)
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These integrals should be understood as formal power series in the dimen-
sionless variable κ defined by Eq. (23). Any choice of an integration contour
which makes the integral well defined and reproduces the formal power series
is a potential nonperturbative definition of these observables. However, dif-
ferent contours might produce different nonperturbative contributions (i.e.
which cannot be expanded in powers of t), and there may even be nonper-
turbative contributions which are not captured by any choice of integration
contour. As usual in such situations, additional physics input is needed to
fix these contributions.

To illustrate the point, let us start by evaluating the partition function
given in (64). We have to decide on an integration path in the complex plane
in order to define the integral. One possibility is to take a path along the
negative axis and then along either the positive or the negative imaginary
axis. The corresponding integrals are

Z(gs, λ) =
√
λκ1/3F±

(
κ−2/3

)
,

F±(κ−2/3) = 2π e±iπ/6Ai
(
κ−2/3 e±2πi/3

)
, (66)

where Ai denotes the Airy function. Both F± have the same asymptotic
expansion in κ, with positive coefficients. Had we chosen the integration
path entirely along the imaginary axis we would have obtained (2πi times)
Ai(κ−2/3), but this has an asymptotic expansion in κ with coefficients of
oscillating sign, which is at odds with its interpretation as a probability
amplitude. In the notation of [27] we have

F±(z) = π
(

Bi(z)± iAi(z)
)
, (67)

from which one deduces immediately that the functions F±(κ−2/3) are not
real. However, since Bi(κ−2/3) grows like e2/(3κ) for small κ while Ai(κ−2/3)
falls off like e−2/(3κ), their imaginary parts are exponentially small in 1/κ
compared to the real part, and therefore, do not contribute to the asymptotic
expansion in κ. An obvious way to define a partition function which is real
and shares the same asymptotic expansion is by symmetrization,

1
2 (F+ + F−) ≡ πBi . (68)

The situation parallels the one encountered in the double scaling limit of the
“old” matrix model [30], and discussed in detail in [32], but is less compli-
cated. We will return to a discussion of this in the next section.

Presently, let us collectively denote by F (z) any of the functions F±(z)
or πBi(z), leading to the tentative identification

Z(gs, λ) =
√
λκ1/3 F

(
κ−2/3

)
, F ′′(z) = zF (z) , (69)
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where we have included the differential equation satisfied by the Airy func-
tions for later reference. In preparation for the computation of the observ-
ables W̃d(x1, . . . , xn) we introduce the dimensionless variables

x = x̃
√
λ, m = g1/3

s β , W̃d(x1, . . . , xn) = λ−n/2w̃d(x̃1, . . . , x̃n) . (70)

Assuming x̃k > 0, we can write

1
x̃− κ1/3 β

=

∞∫
0

dα exp
[
−
(
x̃− κ1/3β

)
α
]
. (71)

We can use this identity to re-express the pole terms in Eq. (65) to obtain
the integral representation

w̃d(x̃1, . . . , x̃n) =

∞∫
0

n∏
i=1

dαi e
−(x̃1α1+···+x̃nαn)

F
(
κ−

2
3 − κ

1
3
∑n

i=1 αi

)
F
(
κ−

2
3

) (72)

for the amplitude with dimensionless arguments. By an inverse Laplace
transformation we thus obtain:

Wd(l1, . . . , ln) =
F (κ−2/3 − κ1/3

√
λ (l1 + · · ·+ ln))

F (κ−2/3)
. (73)

For the special case n = 1 we find

W (l) =
F (κ−2/3 − κ1/3

√
λ l)

F (κ−2/3)
(74)

for the disc amplitude, together with the remarkable relation

Wd(l1, . . . , ln) = W (l1 + · · ·+ ln) . (75)

By Laplace transformation this formula implies the relation

W̃d(x1, . . . , xn) =
n∑
i=1

W̃ (xi)∏n
j 6=i(xj − xi)

. (76)

From W̃d(x1, . . . , xn) we can construct the connected multiloop functions
W̃ (x1, . . . , xn) using standard field theory. Let us remark that the asymp-
totic expansion in κ of W̃ (x1, . . . , xn), of course, agrees with that obtained
by recursively solving the CDT Dyson–Schwinger equations.
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7. Relation with other models

Can we identify a know continuum conformal field theory coupled to 2d
gravity, which leads to the functions we have here calculated? The answer
is yes. As a starting point note that for the disk amplitude we have

W̃
(0)
λ (x) =

1
x+
√
λ

=
1
x
−
√
λ

x2
+ · · · , (77)

from which we conclude that the susceptibility exponent γ = 1/2 (the low-
est non-analytic power of λ in the disk amplitude is λ1−γ). γ = 1/2 is
the generic value of the susceptibility exponent for the so-called branched
polymers and the way branched polymers enter into the game of 2d gravity
coupled to conformal field theories is as follows: recall that the (2, 2m− 1),
m = 2, 3, . . ., minimal conformal field theories coupled to 2d Euclidean quan-
tum gravity can be described as double-scaling limits of one-matrix models
with certain fine-tuned matrix potentials of the order of at least m+ 1. For-
mally, the case m = 1, which corresponds to a somewhat degenerate (2, 1)
conformal field theory with central charge c = −2 (which when coupled to
2d gravity is called topological gravity), is then described by a special double-
scaling limit of the purely Gaussian matrix model (see the review [33]). In
this double-scaling limit one obtains for the so-called FZZT brane precisely
the Airy function, see [32, 34–36] for recent discussions. For this model
γ = −1. While it is possible to describe 2d topological quantum gravity by
a double-scaling limit of the Gaussian matrix model, the most natural geo-
metric interpretation of the Gaussian matrix model is in terms of branched
polymers, in the sense that the integral∫

dM trM2n e−
1
2

trM2∫
dM e−

1
2

trM2
(78)

can be thought of as the gluing of a boundary of length n into a double-
line branched polymer of length n. Since the branched polymers are also
allowed to form closed loops, their partition function contains a sum over
topologies “en miniature”, and one can indeed define a double-scaling limit
of the model. When solving for the partition function in this limit, one
obtains precisely our Z(gs, λ) of Eq. (69)! (see [37], where this remarkable
result was first proved, for details). It does not imply that the generalized
CDT model is just branched polymers, it is much richer since it has a 2d
surface representation and many more observables, but the non-perturbative
branching process is clearly that of branched polymers. The relation between
the generalized CDT model and the c = −2 model is as follows: we have
the “right” branch of Liouville theory with susceptibility exponent γ−(= −1)
and a “wrong” branch with susceptibility exponent γ+, related by
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γ+ = − γ−
1− γ−

. (79)

The interpretation of this γ+ in relation to γ− in terms of geometry can be
found in [38–40], and for earlier related work see [41,42]. It is all related to
dominance or non-dominance of branching of baby universes. The simplest
example is precisely given by c = −2: topological quantum gravity has
γ− = −1 whose dual is the “wrong” γ+ = 1/2, which happens to be the value
occurring generically in the theory of branched polymers (see, e.g., [43–45]
for a discussion of why branched polymers and baby universes are generic
and even dominant in many situations in non-critical string theory and even
in higher dimensional quantum gravity).

8. Stochastic quantization

It is a most remarkable fact that the above mentioned result can all be
understood as a result of stochastic quantization of space. In this picture
time becomes the stochastic time related with the branching of space into
baby universes and the original CDT model described in Sec. 2 becomes the
classical limit where no stochastic processes are present [46].

Recall the Langevin stochastic differential equation for a single variablex
(see, for example, [47,48]).

ẋ(ν)(t) = −f
(
x(ν)(t)

)
+
√
Ω ν(t) , (80)

where the dot denotes differentiation with respect to stochastic time t, ν(t)
is a Gaussian white-noise term of unit width and f(x) a dissipative drift
force:

f(x) =
∂S(x)
∂x

. (81)

The noise term creates a probability distribution of x(t), reflecting the as-
sumed stochastic nature of the noise term, with an associated probability
distribution

P (x, x0; t) =
〈
δ
(
x− x(ν)(t;x0)

)〉
ν
, (82)

where the expectation value refers to an average over the Gaussian noise.
P (x, x0; t) satisfies the Fokker–Planck equation

∂P (x, x0; t)
∂t

=
∂

∂x

(
1
2
Ω
∂P (x, x0; t)

∂x
+ f(x)P (x, x0; t)

)
. (83)

This is an imaginary-time Schrödinger equation, with
√
Ω playing a role

similar to ~. It enables us to write P as a propagator for a Hamiltonian
operator Ĥ,
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P (x, x0; t) = 〈x|e−tĤ |x0〉 , Ĥ = 1
2 Ωp̂

2 + ip̂f(x̂) , (84)

with initial condition x(t = 0) = x0, and p̂ = −i∂x. It follows that by
defining

G̃(x0, x; t) ≡ ∂

∂x0
P (x, x0; t) (85)

the function G̃(x0, x; t) satisfies the differential equation

∂G̃(x0, x; t)
∂t

=
∂

∂x0

(
1
2
Ω
∂G̃(x0, x; t)

∂x0
− f(x0) G̃(x0, x; t)

)
. (86)

Omitting the noise term corresponds to taking the limit Ω → 0. One
can then drop the functional average over the noise in (82) to obtain

Pcl(x, x0; t) = δ(x− x(t, x0)) , G̃cl(x0, x; t) =
∂

∂x0
δ(x− x(t, x0)) . (87)

It is readily verified that these functions satisfy Eqs. (83) and (86) with
Ω = 0. Thus we have for S(x) = −λx+ x3/3:

∂G̃cl(x0, x; t)
∂t

=
∂

∂x0

(
(λ− x2

0) G̃cl(x0, x; t)
)
. (88)

Comparing now Eqs. (12) and (88), we see that we can formally re-
interpret G̃(0)

λ (x0, x; t) — an amplitude obtained by nonperturbatively quan-
tizing Lorentzian pure gravity in two dimensions — as the “classical prob-
ability” G̃cl(x0, x; t) corresponding to the action S(x) = −λx + x3/3 of a
zero-dimensional system in the context of stochastic quantization, only is
the boundary condition different, since in the case of CDT x is not an or-
dinary real variable, but the cosmological constant. The correct boundary
conditions are thus the ones stated in Eqs. (13), (14).

Stochastic quantization of the system amounts to replacing

G̃
(0)
λ (x0, x; t)→ G̃(x0, x; t) , (89)

where G̃(x0, x; t) satisfies the differential equation corresponding to Eq. (86),
namely,

∂G̃(x0, x; t)
∂t

=
∂

∂x0

(
gs

∂

∂x0
+ λ− x2

0

)
G̃(x0, x; t) . (90)

We have introduced the parameter gs := Ω/2, which will allow us to repro-
duce the matrix model and SFT results reported above.
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A neat geometric interpretation of how stochastic quantization can cap-
ture topologically nontrivial amplitudes has been given in [49]. Applied to
the present case, we can view the propagation in stochastic time t for a given
noise term ν(t) as classical in the sense that solving the Langevin equation
(80) for x(ν)(t) iteratively gives precisely the tree diagrams with one ex-
ternal leg corresponding to the action S(x) (and including the derivative
term ẋ(ν)(t)), with the noise term acting as a source term. Performing the
functional integration over the Gaussian noise term corresponds to integrat-
ing out the sources and creating loops, or, if we have several independent
trees, to merging these trees and creating diagrams with several external
legs. If the dynamics of the quantum states of the spatial universe takes
place via the strictly causal CDT-propagator Ĝ0 = e−tĤ0 , a single spatial
universe of length l cannot split into two spatial universes. Similarly, no
two spatial universes are allowed to merge as a function of stochastic time.
However, introducing the noise term and subsequently performing a func-
tional integration over it makes these processes possible. This explains how
the stochastic quantization can automatically generate the amplitudes which
are introduced by hand in a string field theory, be it of Euclidean character
as described in [49], or within the framework of CDT.

What is new in the CDT string field theory considered here is that we
can use the corresponding stochastic field theory to solve the model. Since
we arrive at closed equations valid to all orders in the genus expansion let
us translate equations (90) to l-space

∂G(l0, l; t)
∂t

= −H(l0)G(l0, l; t) , (91)

where the extended Hamiltonian

H(l) = −l ∂
2

∂l2
+ λl − gsl2 = H0(l)− gsl2 (92)

now has an extra potential term coming from the inclusion of branching
points compared to the Hamiltonian H0(l) defined in (19). It is truly re-
markable that all branching and joining is contained in this simple extra
term. Formally H(l) is a well-defined Hermitian operator with respect to
the measure (39) (we will discuss some subtleties in the next section).

We can now write down the generalization of Wheeler–deWitt equation
(39) for the disk amplitude

Ĥ(l)W (l) = 0 . (93)

Contrary to W
(0)
λ (l) appearing in (39), W (l) contains all branchings and

all topology changes, and the solution is precisely (74)! This justifies the
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choice gs = Ω/2 mentioned above. Recall that E = 0 does not belong to the
spectrum of H0(l) since W0(l) is not integrable at zero with respect to the
measure (39). Exactly the same is true for the extended Hamiltonian H(l)
and the corresponding Hartle–Hawking amplitude W (l).

We have also as a generalization of (18) that

G(l0, l; t) = 〈l|e−tH(l)|l0〉 (94)

describes the nonperturbative propagation of a spatial loop of length l0 to
a spatial loop of length l in proper (or stochastic) time t, now including the
summation over all genera.

9. The extended Hamiltonian

In order to analyze the spectrum of H(l), it is convenient to put the
differential operator into standard form. After a change of variables

l = 1
2z

2 , ψ(l) =
√
zφ(z) , (95)

the eigenvalue equation becomes

H(z)φ(z) = Eφ(z) , H(z) = −1
2
d2

dz2
+

1
2
λz2 +

3
8z2
− gs

4
z4 . (96)

This shows that the potential is unbounded from below, but such that the
eigenvalue spectrum is still discrete: whenever the potential is unbounded
below with fall-off faster than −z2, the spectrum is discrete, reflecting the
fact that the classical escape time to infinity is finite (see [50] for a detailed
discussion relevant to the present situation). For small gs, there is a large
barrier of height λ2/(2gs) separating the unbounded region for l > λ/gs
from the region 0 ≤ l ≤ λ/(2gs) where the potential grows. This situation
is perfectly suited to applying a standard WKB analysis. For energies lower
than λ2/(2gs), the eigenfunctions (40) of H0(l) will be good approximations
to those of Ĥ(l). However, when l > λ/gs the exponential fall-off of ψ(0)

n (l)
will be replaced by an oscillatory behaviour, with the wave function falling
off only like 1/l1/4. The corresponding ψn(l) is still square-integrable since
we have to use the measure (39). For energies larger than λ2/(2gs), the
solutions will be entirely oscillatory, but still square-integrable.

Thus a somewhat drastic change has occurred in the quantum behaviour of
the one-dimensional universe as a consequence of allowing topology changes.
In the original, strictly causal quantum gravity model an eigenstate ψ(0)

n (l)
of the spatial universe had an average size of the order of 1/

√
λ. However,

allowing for branching and topology change, the average size of the universe
is now infinite!
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As discussed in [50], Hamiltonians with unbounded potentials like (96)
have a one-parameter family of self adjoint extensions and we still have
to choose one of those such that the spectrum of H(l) can be determined
unambiguously. One way of doing this is to appeal again to stochastic quan-
tization, following the strategy used by Greensite and Halpern [51], which
was applied to the double-scaling limit of matrix models in [50,52,53]. The
Hamiltonian (84) corresponding to the Fokker–Planck equation (90), namely,

H(x)ψ(x) = −gs
d2ψ(x)
dx2

+
d

dx

(
dS(x)
dx

ψ(x)
)
,

S(x) = x3

3 − λx , (97)

is not Hermitian if we view x as an ordinary real variable and wave functions
ψ(x) as endowed with the standard scalar product on the real line. However,
by a similarity transformation one can transform H(x) to a new operator

H̃(x) = e−S(x)/2gsH(x) eS(x)/2gs , ψ̃(x) = e−S(x)/2gsψ(x) , (98)

which is Hermitian on L2(R, dx). We have

H̃(x) = −gs
d2

dx2
+

(
1

4gs

(
dS(x)
dx

)2

+
1
2
d2S(x)
dx2

)
, (99)

which after substitution of the explicit form of the action becomes

H̃(x) = −gs
d2

dx2
+ V (x) , V (x) =

1
4gs

(
λ− x2

)2 + x . (100)

The fact that one can write

H̃(x) = R†R , R = −√gs
d

dx
+

1
2
√
gs

dS(x)
dx

(101)

implies that the spectrum of H̃(x) is positive, discrete and unambiguous.
We conclude that the formalism of stochastic quantization has provided us
with a nonperturbative definition of the CDT string field theory.
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