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We give an elementary introduction to the construction of probability
distributions on sets of infinite graphs, called random graphs, as limits of
ensembles of finite graphs motivated by a brief discussion of the incipient
infinite cluster in bond percolation on an infinite graph. The Hausdorff and
spectral dimension of random graphs are introduced. For illustrational pur-
poses some concrete examples of random combs are considered, for which
it is shown that their Hausdorff and spectral dimensions equal 1 except
on a critical curve on which they exhibit non-trivial behaviour. Models
of so-called generic planar random trees are defined and a proof that their
Hausdorff and spectral dimensions equal 2 and 4/3, respectively, is outlined.
In a concluding section we describe some open problems.

PACS numbers: 02.10.Ox, 04.60.Nc, 04.60.Pp, 05.40.Fb

1. Introduction

Random graphs occur in many areas of physics and mathematics, either
as useful technical tools or as models of physical systems involving random-
ness, e.g. in the theory of random media and in polymer physics. The
random graphs we shall be interested in are not of the Rényi–Erdös type,
where randomness is realised in terms of a given fixed probability p for the
presence of an edge between any pair of vertices in a given vertex set. In-
stead, the probability distribution on graphs is defined by a local weight
function, typically depending on the degree of vertices. Our main focus will
be on certain large scale properties of random graphs and it turns out to
be convenient for this purpose to consider ensembles of infinite graphs. We
construct such ensembles by taking limits of distributions on finite graphs of
fixed size N for N →∞ in a somewhat similar spirit as the construction of
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the thermodynamic limit for statistical mechanical systems. One particular
motivating example for this approach is that of discretised quantum gravity.
Restricting to two dimensions the basic object in such models is a triangu-
lated surface, where the triangulation is considered as defining a discretised
metric on the surface such that summing over triangulations can be viewed
as a discrete approximation to a continuum integral over metrics on the sur-
face, see [2] for details. The ultimate goal of such an approach to quantum
gravity is to define integrals of appropriate observables as continuum lim-
its of the corresponding discrete expressions and preferably in such a way
that the resulting continuum quantities define a probability distribution on
a suitable class of continuum surfaces. On the other hand, one expects that
the large scale characteristics of the continuum limit should be detectable
as universal long distance features of the discretised models. An important
example of such a quantity is the dimensionality of surfaces. Two notions
of dimension, the Hausdorff dimension and the spectral dimension, will be
defined and discussed in some detail for concrete models of random trees
and random surfaces.

The main purpose of this paper is to motivate and give an elementary in-
troduction to the construction of probability distributions on infinite graphs
as limits of ensembles of finite graphs in Sections 2 and 3, illustrated by
simple examples of so-called random combs in Section 4. We also outline, in
Section 5, the definition of some models of planar random trees and results
on the Hausdorff and spectral dimension for these cases. In the concluding
Section 6 we describe some open problems.

2. Basic concepts

We start by introducing the basic concepts entering the following discus-
sion and at the same time fixing some notation.

2.1. Graphs

A graph G is specified by its vertex set V (G) and its edge set E(G).
Vertices will be denoted by v or vi etc. An edge is then an unordered pair
(v, v′) of different vertices. Both finite and infinite graphs will be considered,
i.e. V (G) may be finite or infinite, and all graphs will be assumed to be
locally finite, i.e. the number σv of edges containing a vertex v, called the
degree of v, is finite for all v ∈ V (G). By the size of G we shall mean the
number of edges in G and denote it by |G|, i.e. |G| = ]E(G), where ]M is
used to denote the number of elements in a set M .

A path in G is a sequence of different edges (v0, v1), (v1, v2), . . . , (vk−1, vk)
where v0 and vk are called the end vertices. If v0 = vk the path is called
a circuit originating at v0. The graph G is called connected if any two
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vertices v and v′ of G can be connected by a path, i.e. they are end vertices
of a path. The graph distance between v and v′ is then defined as the
minimal number of edges in a path connecting them. A connected graph is
called a tree if it has no circuits.

A planar graph is a graph together with an embedding φ : V (G) → R2

and an association to each edge (v, v′) ∈ E(G) of an arc ψ(v, v′) in R2

connecting φ(v) and φ(v′) such that arcs corresponding to different edges
are disjoint except possibly for endpoints. Two planar graphs are considered
identical if one can be continuously deformed into the other in R2.

2.2. Simple random walk

A walk on a graph G is a sequence (v0, v1), (v1, v2), . . . , (vk−1, vk) of (not
necessarily different) edges in G. We shall denote such a walk by ω : v0 → vk
and call v0 the origin and vk the end of the walk. Moreover, the number
k of edges in ω will be denoted by |ω|. To each such walk ω we associate
a weight

pG(ω) =
|ω|−1∏
i=0

σ−1
ω(i) ,

where ω(i) is the i-th vertex in ω. Denoting by Πn(G, v0) the set of walks
of length n originating at vertex v0 we have∑

ω∈Πn(G,v0)

pG(ω) = 1 ,

i.e. pG defines a probability distribution on Πn(G, v0). We call pG the simple
random walk on G.

2.3. Hausdorff dimension

Given a connected graph G and R ≥ 0 and v ∈ V (G) we denote by
BR(G, v) the closed ball of radius R centered at v, i.e. the subgraph of G
spanned by vertices at graph distance at most R from v. If G is connected
and the limit

dh = lim
R→∞

ln |BR(G, v)|
lnR

(1)

exists, we call dh the Hausdorff dimension of G. If G is a finite graph we
clearly have dh = 0, a case we leave out of consideration in the following.
It is easily seen that the existence of the limit as well as its value do not
depend on the vertex v.
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2.4. Spectral dimension

For a connected graph G and v ∈ V (G) we denote by pt(G, v) the return
probability of the simple random walk to v at time t, that is

pt(G, v) =
∑

ω:v→v
|ω|=t

pG(ω) .

One can in a standard manner relate this quantity to the discrete heat kernel
on G, but we shall not need this interpretation in the following. If the limit

ds = −2 lim
t→∞

ln pt(G, v)
ln t

(2)

exists, we call ds the spectral dimension of G. Again in this case, the exis-
tence and value of the of the limit are independent of v. Moreover, ds = 0 if
G is finite since pt(G, v)→ (]V (G))−1 for t→∞. If G is infinite one has

dh ≥ 1 and ds ≥ 1 .

If G is the hyper-cubic lattice Zd it is clear that dh = d and by Fourier
analysis it is straight-forward to see that also ds = d. However, examples of
graphs with dh 6= ds are abundant, see e.g. [13].

2.5. Random graphs

An ensemble of graphs, or a random graph, is a set G of graphs equipped
with a probability measure µ. By 〈·〉µ we denote the expectation w.r.t. µ. In
the following it is assumed that graphs in G are rooted, i.e. each graph has
a marked vertex r, called the root. We shall then use the notation BR(G)
for BR(G, r) and pt(G) for pt(G, r).

The annealed Hausdorff dimension d̄h and spectral dimension d̄s of an
ensemble (G, µ) are defined by

d̄h = lim
R→∞

ln 〈 |BR(G)| 〉µ
lnR

(3)

and
d̄s = −2 lim

t→∞

ln 〈 pt(G) 〉µ
ln t

, (4)

respectively, provided the limits exist. If there exists a subset G0 of G such
that µ(G0) = 1 and such that every G ∈ G0 has Hausdorff dimension dh we
say that the Hausdorff dimension of (G, µ) is almost surely dh, and similarly
for the spectral dimension.
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2.6. Random infinite graphs

As indicated above we shall mainly be interested in infinite graphs and
ensembles of such graphs. In the latter case the measure µ will be obtained
as a limit of measures µN , N ∈ N, defined on sets of finite graphs. It is
then appropriate to consider G as a metric space with distance between two
rooted graphs G,G′ ∈ G defined by

dG
(
G,G′

)
= inf

{
(R+ 1)−1 : BR(G) = BR

(
G′
)}

(5)

and the measures under consideration will be assumed to be Borel mea-
sures. We say that a sequence of probability measures (µN ) converges to
a probability measure µ on G if∫

G

f dµN
N→∞−→

∫
G

f dµ ,

for all bounded continuous functions f on G. This notion of convergence
is called weak convergence by probabilists [9] and can be shown [12] to be
equivalent to the requirement

µN ({G : BR(G) = G0}) N→∞−→ µ({G : BR(G) = G0}) , (6)

for all finite rooted graphs G0 and all R ≥ 1. A sufficient condition for the
existence of a limiting measure µ is, in addition to the existence of the limit
in (6), a so-called tightness requirement ensuring that the total probability
is conserved in the limit [9, 12].

3. The incipient infinite percolation cluster

Let G be an infinite, connected, rooted graph with root r and let 0 ≤
q ≤ 1. For an edge e ∈ E(G) let ηe be the probability distribution on {0, 1}
such that

ηe(ζ) =
{

q if ζ = 1
1− q if ζ = 0 .

Bond percolation on G is defined by the product measure

ρq =
∏

e∈E(G)

ηe

on the compact space {0, 1}E(G) of configurations assigning the value 0 or 1
to each edge in G.

Given such a configuration c we define the percolation cluster cr contain-
ing r as the maximal connected rooted subgraph of G with root r such that
c has value 1 for all edges in cr. If no edge emerging from r has value 1 the
cluster cr consists of the root r alone.
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3.1. Percolation on a hyper-cubic lattice

The most extensively studied case of bond percolation is when G is
a hyper-cubic lattice Zd of dimension d ≥ 2 with r = 0. It can be shown
([18] Sec. 1.4) that there exists a critical probability qcr ∈]0, 1[ with the
property that

ρq({c | |cr| =∞})
{

= 0 if q < qcr

> 0 if q > qcr
,

where |cr| denotes the number of edges in the cluster cr. Moreover, it is
known [18] for d = 2 or d ≥ 19 that ρqcr({c | |cr| = ∞}) = 0, i.e. the
percolation cluster cr is almost surely finite at the percolation threshold qcr.
For 3 ≤ d ≤ 18 it is an open question whether cr is infinite or not. For
q < qcr it is known that the distribution of |cr| has an exponential tail

ρq({c | |cr| = n}) ∼ const. e−α(q)n , n→∞ ,

such that the mean cluster size

χ(q) = 〈 |cr| 〉ρq

is well defined and finite for q < qcr. It is expected that χ(p) diverges at qcr

with an associated critical exponent γ,

χ(q) ∼ (qcr − q)−γ , q ↗ qcr .

This entails that clusters of arbitrarily large size become increasingly fre-
quent as q approaches qcr.

In order to describe the structure of cr close to qcr it is therefore rea-
sonable to attempt to define the probability measure µ on the space C` of
clusters cr, viewed as rooted graphs embedded in Zd, by

µ = lim
N→∞

µN , (7)

where µN is the measure ρqcr conditioned on clusters of size N ,

µN (A) = ρqcr(A | |cr| = N) .

Existence of a limit similar to (7) for d = 2, where conditioning on non-
empty intersection with the boundary of a box of side length N centered
at (0, 0) is used, has been proven in [22]. Similarly, for large dimension the
existence of a limit has been established in [20].

The ensemble (C`, µ) is called the d-dimensional incipient infinite cluster
assuming it exists. It was originally conjectured by Alexander and Orbach [1]
that (C`, µ) has spectral dimension ds = 4

3 for all dimensions d ≥ 2, but it
is now generally believed to hold only for d sufficiently large. For d ≥ 19
a proof has been announced in [23]. Not much seems to be known about the
Hausdorff dimension of (C`, µ), except that clearly dh ≤ d.



Hausdorff and Spectral Dimension of Infinite Random Graphs 3515

3.2. Percolation on a Cayley tree

Let Γ be a fixed planar Cayley tree with all vertices of degree n except
for the root r, which is assumed for convenience to be of degree 1.

It is seen that in this case a cluster cr is a subtree of Γ and for a given
finite, rooted, planar tree T with root of degree 1 we have

ρq({c | cr = T}) = q
∏

v∈V (T )\r

(
n− 1
σv − 1

)
qσv−1(1− q)n−σv ,

where the binomial coefficient is by definition equal to 0 if σv > n. Con-
ditioning on the set of configurations where the root link has value 1 the
pre-factor q drops out and we get the distribution ρ on the set Tfin of finite,
rooted, planar trees with root of degree 1 given by

ρ(T ) =
∏

v∈V (T )\r

pσv−1 , (8)

where
pk =

(
n− 1
k

)
qk(1− q)n−1−k , k = 0, 1, 2, . . . . (9)

Note that
∞∑
k=0

pk = 1 . (10)

A distribution ρ of the form (8) on Tfin where (pk)k≥0 satisfies (10) and
pk ≥ 0 is called a Galton–Watson process [19], and the numbers pk are
called the off-spring probabilities of the process.

In order to determine pcr let

ZN =
∑

T :|T |=N

ρ(T ) = ρ({T | |T | = N}) (11)

and define the corresponding generating function by

Z(t) =
∞∑
N=1

ZN t
N . (12)

Letting f(t) be the generating function for (pk)k≥0

f(t) =
∞∑
k=0

pkt
k (13)
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one finds that Z(t) is determined by

Z(t) = tf(Z(t)) . (14)

With pk given by (9) we have

f(t) ≡ fq(t) = (1− q + tq)n−1 .

The total probability that cr is finite is

ρ({T | |T | <∞}) =
∞∑
N=1

ρ({T | |T | = N}) = Z(1) ,

so that by (14) we have that Z(1)=1 if q is small enough such that f ′q(1) ≤ 1.
Since

f ′q(1) = (n− 1)q

it follows that this is the case if q ≤ 1
n−1 whereas Z(1) < 1 if q > 1

n−1 ,
that is

qcr =
1

n− 1
.

Hence we have found that qcr is determined as the value of q fulfilling

∞∑
k=1

kpk = 1 . (15)

A Galton–Watson process fulfilling (15), i.e. the expected number of off-
spring equals 1 is called critical [19]. In this sense critical percolation on Γ
is described by a critical Galton–Watson process.

Conditioning on trees of fixed size N we obtain from ρ the measure

µN (T ) = ρ(T | |T | = N) = Z−1
N ρ(T ) . (16)

As will be explained in Section 5 the incipient infinite cluster, i.e. the limit
limN→∞ µN , exists as a special case of a more general result for so-called
generic critical Galton–Watson processes, and is a probability distribution
defined on the set T of infinite planar rooted trees. In order to explain the
idea of those arguments we shall consider in the next section some partic-
ularly simple examples of random trees, obtained by restricting the trees
to be so-called combs. Besides serving as a useful illustration those models
are of some interest in their own right; in particular, the resulting limiting
measures can capture the behaviour of certain N -particle dynamical sys-
tems known as balls in boxes at large N as will be explained further below.
Related models have been considered from a different point of view in [21].
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4. Random combs

As it turns out the basic arguments that apply to establish existence
of the infinite incipient percolation cluster on a Cayley tree as well as to
generic, critical Galton–Watson processes can be effectively illustrated in
the case of comb ensembles.

A comb consists of a linear chain si, 0 ≤ i < L + 1, called the spine
(or backbone) of the comb, and to each spine vertex si, i ≥ 1, is attached
a linear chain si, ti1, ti2, . . . with an arbitrary number ni of vertices, where
1 ≤ ni ≤ ∞. Likewise the spine length L fulfills 1 ≤ L ≤ ∞. We consider
combs as planar rooted trees whose root is r = s0 (which by convention has
degree 1) and whose teeth all emerge to the left of the spine when the latter
is oriented from the root and outwards, see Fig. 1.

· · ·
Fig. 1. A comb.

Let C(L) denote the set of combs with spine of length L <∞. Since ver-
tices in a comb have degree at most 3 it follows that C(L) is a compact subset
of the metric space (T , dT ) of all planar rooted trees with distance defined
by (5). Indeed, it is easily seen that C(L) is homeomorphic to the product
space (N∪{∞})L, where N∪{∞} is the standard one-point compactification
of N.

4.1. The case L is fixed

Let us denote by C(L)
N the subset of C(L) consisting of combs with exactly

N edges
C(L)
N = {C ∈ C(L) : n1(C) + . . .+ nL(C) = N} .

We consider probability distributions µN on the finite set C(L)
N of the form

µN (C) =
1
ZN

L∏
i=1

q(ni(C)) , (17)
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where the weight function q(n) is assumed to be positive with asymptotic
behaviour

q(n) ∼ c n−b , n→∞ , (18)

where b ∈ R and c > 0 are constants. Here ZN , the partition function, is
a normalisation factor

ZN =
∑

n1+...+nL=N

L∏
i=1

q(ni) .

Let ζ(t) denote the generating function for q(n)

ζ(t) =
∞∑
n=1

q(n) tn .

By (18) it is clear that ζ is analytic in the open unit disc with a singularity
at t = 1 such that for t↗ 1

ζ(t) ∼
 kc (1− t)b−1 if b < 1

−c ln(1− t) if b = 1
a(t) + kc (1− t)b−1 if b > 1

, (19)

where k 6= 0 is a constant depending on b and a(t) is analytic at t = 1. We
shall assume, in addition, that ζ(t) has the required analyticity properties in
a slightly larger so-called ∆-domain containing the unit disk such that the
generating functions for partition functions encountered below are amenable
to singularity analysis. Essentially, this means that (19) is assumed to hold
for t → 1 inside the larger domain. We refer to [17] Sec. VI. 3 for precise
statements.

We then have the following convergence result.

Theorem 4.1 For fixed L <∞ the measures (µN )N≥1 defined by (17) con-
verge to a probability distribution µ on the set C(L)

∞ of infinite combs in C(L),
characterised as follows:

If b ≤ 1 then µ = δCL,∞, the Dirac measure concentrated at the comb
CL,∞ all of whose teeth are infinite.

If b > 1 then µ is supported on the set of combs with a single infinite
tooth and for each such comb C we have

µ(C) =
1
L

( ∞∑
n=1

q(n)

)1−L ∏
i:ni(C)6=∞

q(ni(C)) .
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Proof. Define the generating function

Z(t) =
∞∑
N=1

ZN t
N

so that
Z(t) = ζ(t)L

and hence by (19)

Z(t) ∼
 (kc)L (1− t)(b−1)L if b < 1

(−c)L (ln(1− t))L if b = 1
a(t)L + Lζ(1)L−1 kc (1− t)b−1 if b > 1

.

Using standard transfer theorems [17] we conclude that for N →∞

ZN ∼
 k1N

(1−b)L−1 if b < 1
k1N

−1(lnN)L−1 if b = 1
Lζ(1)L−1 cN−b if b > 1

, (20)

where k1 > 0 is a constant depending on b and c.
Compactness of C(L) implies that in order to prove convergence of

(µN )N≥1 it suffices (see [12]) to establish (6) (with G replaced by C). It
is, however, equivalent and more convenient to establish convergence of
µN (AR(C0)), N ≥ 1, where C0 is an arbitrary finite comb in C(L) and
AR(C0) is the set of combs coinciding with C0 up to a fixed tooth-height
R ≥ 0. Clearly, we can without loss of generality assume that R equals the
maximal tooth-height of C0 since, if R is larger, AR(C0) is empty for N
large enough and, if it is smaller, we can replace C0 by the comb obtained
by shortening the teeth by the amount exceeding height R.

For such a comb C0 we let I denote the set of i ∈ {1, . . . , L} such that
ni(C0) = R+1 and set ni(C0) = n0

i and N0 =
∑

i/∈I n
0
i . For N large enough

we then have

µN (AR(C0)) =
1
ZN

∏
i/∈I

q(n0
i )

∑
P

i∈I ni=N−N0
ni>R

∏
i∈I

q(ni) . (21)

b < 1: In this case, repeating the arguments yielding (20) shows that the
sum in (21) has asymptotic behaviour given by

SN ∼ k2N
(1−b)(]I)−1 (22)
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and hence

µN (AR(C0)) =
∏
i/∈I

q(n0
i )
SN
ZN

∼ k′2N
(b−1)(L−]I) ,

where k2, k
′
2 > 0 are constants. For ]I < L the last expression vanishes for

N →∞ while for ]I = L we have

µN (AR(C0)) =
1
ZN

∑
P

n1+...+nL=N
ni>R

L∏
i=1

q(ni) → 1 , N →∞ ,

since the last sum deviates from ZN by a sum of terms of the same form
where at least one of the summation variables is fixed at a value less than
R and hence is of lower order in N by the preceding estimate. This being
valid for any R ≥ 0 we conclude that the limit µ = limN→∞ µN exists and
that µ(CL,∞) = 1, which proves the first part of the theorem.
b = 1: In this case, (22) is replaced by

SN ∼ k2N
−1(lnN)]I−1

and the conclusion is the same as above.
b > 1: First, consider for fixed i 6= j in {1, . . . , L} and K ≥ 0 the set
A(i, j;K) of combs C such that ni(C), nj(C) > K. If we remove from
a comb C in A(i, j;K) the i-th and j-th tooth as well as the edges (si−1, si)
and (sj−1, sj) and then identify si−1 with si and sj−1 with sj we obtain
a new comb C ′ in C(L−2). Using this observation it follows from (17) that

µN (A(i, j;K)) ≤
∑

n,m>K
n+m<N

q(n)q(m)
ZN−n−m
ZN

≤ const.
∑
n>K

q(n) (23)

since, in the first sum, at least one of the arguments n, m, N − n−m must
be ≥ N/3 and the corresponding factor then cancels ZN up to a constant
by (18) and (20). Since the last expression in (23) is O(K1−b) and vanishes
uniformly in N as K →∞ we can evaluate the limit limN→∞ µN (AR,L(C0))
by first imposing the constraint ni(C) ≤ K for all i ∈ {1, . . . , L} except one
and letting K →∞ in the last step.

Consider for definiteness the case L = 3 and I = {2, 3}. By (21) we then
have for K > R

µN (AR(C0))=

q
(
n1

0

) ∑
n2+n3=N−n0

1
R<n2≤K

q(n2)
q(n3)
ZN

+
∑

n2+n3=N−n0
1

R<n3≤K

q(n2)
ZN

q(n3)

+O
(
K1−b

)
,
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where the quotients in the (finite) sums converge to L−1ζ(1)1−L = 1
3ζ(1)−2

for N →∞ according to (18) and (20). Hence, the two sums have identical
limits and we obtain after letting K →∞

lim
N→∞

µN (AR(C0)) = 2
3ζ(1)−2q(n0

1)
∑
n>R

q(n) .

For a general finite comb C0 this argument immediately generalises and
establishes the existence of a limiting measure µ such that

µ(AR(C0)) =
]I

L
ζ(1)1−L

(∑
n>R

q(n)

)]I−1∏
i/∈I

q(n0
i ) . (24)

If Ai0 denotes the set of combs with tooth at i0 infinite and all other teeth
finite, we have for each C ∈ Ai0 that

µ(C) = lim
R→∞

µ(AR(C)) =
1
L
ζ(1)1−L

∏
i 6=i0

q(ni(C))

proving the claimed formula. Since summing this expression over all combs
in C(L) with a single infinite tooth gives 1 the theorem is proven. �

Remark 4.2 Stationary measures for certain simple dynamical systems of
balls in boxes fall within the class of finite size measures considered in this
subsection. We can see this as follows. Interprete s1, s2, . . . , sL as labelling
a sequence of boxes and think of s0 as being identified with sL, i.e. we
impose periodic boundary conditions. Inside box si we assume there is
a pile of ni balls that we identify with the height of the i-th tooth in a comb
in C(L). Given a configuration of balls we assume there is a transition rate
ui(ni) for a ball in box si to move one step in counterclockwise direction
to box si−1. Since the process preserves the total number N of balls this
defines a dynamical system with finite state space C(L)

N that clearly is an
indecomposable Markov chain if all ui are strictly positive. Hence it has
a unique stationary state, i.e. a probability distribution µN that is preserved
under the process. Using the Chapman–Kolmogoroff equations it can be
found in explicit form [16]

µN (C) =
1
Z ′N

L∏
i=1

ni(C)∏
m=1

1
ui(m)

 ,

where Z ′N is a normalisation factor. Choosing ui = u independent of i we
see that this is a measure of the form (17) where

q(n) =
n∏

m=1

1
u(m)

.
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In particular, choosing

u(m) = 1 +
b

m
+O(m−(1+ε)) , m ∈ N ,

where ε > 0, we have

q(n) ∼ c

nb
, n→∞ .

Theorem 4.1 implies in this case that increasing the total number of particles
has the effect, in the stationary limit, that all boxes become crowded with
balls if b ≤ 1 whereas particles mainly will concentrate in one box at a time
if b > 1. This phenomenon has been discussed previously in [8, 16] and
references given there.

4.2. The case L is arbitrary

We now relax the restriction to combs of fixed spine length and let CN
denote the set of all combs with N edges and define µN on CN by

µN (C) =
1
ZN

L(C)∏
i=1

q(ni(C)) , (25)

where q obeys the same conditions as previously and ZN is now given by

ZN =
∑
C∈CN

L(C)∏
i=1

q(ni(C)) ,

with generating function

Z(t) =
ζ(t)

1− ζ(t)
. (26)

It is worthwhile noting that whereas the finite size measures µN for fixed L
were invariant under scaling of the function q by a constant this is no longer
true for µN given by (25). In fact, the constant c in (18) can be regarded as
a fugacity associated with the spine length.

The general result for this case can be formulated as follows.

Theorem 4.3 The measures (µN )N≥1 defined by (25) converge to a proba-
bility measure µ on C∞ that can be characterised as follows:

If ζ(1) ≥ 1 then µ is supported on the set of combs with an infinite spine
all of whose teeth are finite and their lengths are identically and indepen-
dently distributed according to the density ν on N0 given by

ν(n) = q(n+ 1) tn+1
0 , n ≥ 0 ,

where t0 > 0 is determined by ζ(t0) = 1.
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If ζ(1) < 1 then µ is supported on the set of combs with finite spine
length and a single infinite tooth such that if C ∈ C(L) is such a comb then

µ(C) = (1− ζ(1))2
∏

i:ni(C)<∞

q(ni(C)) .

Proof. Instead of establishing (6) it is again slightly more convenient, but
equivalent, to show that for each finite comb C0 and all R ≥ 0, L ≥ 1, the
sequence µN (AR,L(C0)), N ≥ 1, converges, where AR,L(C0) is the set of all
combs coinciding with C0 up to tooth height R of the first L teeth. By the
same argument as in the proof of Theorem 4.1 we can assume that R ≥ H0

and L ≥ L0, where H0 is the maximal height of teeth in C0 and L0 is the
spine length of C0, and furthermore that R = H0 or L = L0.
ζ(1) > 1: Since the radius of convergence of the generating series for
q(n), n ≥ 1, equals 1 by (18) and q(n) ≥ 0 there exists t0 ∈]0, 1[ such
that ζ(t0) = 1. Since ζ is analytic at t0 we get from (26) that

Z(t) ∼ ζ ′(t0)−1(t0 − t)−1 , t→ t0 ,

and hence
ZN ∼ ζ ′(t0)−1t−N0 , N →∞ .

Assume first that R > H0 and let n0
1, . . . , n

0
L0

be the number of vertices in
the teeth of C0, respectively. In this case L = L0 and the combs in AR,L(C0)
coincide with C0 on the first L0 teeth and the remaining part of the comb
is an arbitrary comb with root sL0 . Hence, for N →∞,

µN (AR,L(C0)) =
ZN−n0

1−...−n0
L0

ZN

L0∏
i=1

q(n0
i ) −→

L0∏
i=1

q(n0
i ) t

n0
i

0 . (27)

Next, assume R = H0 and let A(j;K) = {C ∈ C : nj(C) > K} for fixed
j ∈ N and K ≥ 0. By the same argument as for A(i, j;K) above we have

µN (A(j;K)) ≤
N−1∑

n=K+1

ZN−n
ZN

q(n) ≤ const.
∑
n>K

q(n)tn0 , (28)

where the last expression tends to 0 uniformly in N for K → ∞. This
implies that we can obtain the limit limN→∞ µN (AR,L(C0)) by first inserting
the constraint nj(C) ≤ K, 1 ≤ j ≤ L, take the limit N →∞ and finally let
K →∞.

Using (27) this gives in case L = L0 the result

lim
N→∞

µN (AH0,L(C0)) =
∏
i/∈I

q(n0
i ) t

n0
i

0

(∑
n>R

q(n) tn0

)]I
, (29)
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where I is the set of i ∈ {1, . . . , L0} such that n0
i = H0. On the other hand,

if L > L0 the limit vanishes since in this case AH0,L(C0) ⊆ C(L0) and hence
all combs contributing to µN (AR,L(C0)) have at least one tooth of length
≥ N/L0 − 1.

This proves the existence of the limiting measure µ. Letting R →∞ in
(29) the limit vanishes unless I = ∅ which shows that µ is supported on the
set of combs with finite teeth and it also follows from (29) that µ equals the
product measure as stated.
ζ(1) < 1: The assumption implies b > 1 such that (19) and (26) give

Z(t) ∼ A(t) +
kc

(1− ζ(1))2
(1− t)b−1

for t→ 1, where A(t) is analytic at t = 1. We conclude that for N →∞

ZN ∼ cN−b

(1− ζ(1))2
. (30)

Assume first R > H0. By the argument given above for (27) we obtain
from (30) that

µN (AR,L(C0)) →
L0∏
i=1

q(n0
i ) , N →∞ .

Next assume R = H0 and L > L0. In this case AR,L(C0) is independent
of L and contained in C(L0). By identical arguments to those yielding (24)
we get with notation as above

µN (AR,L(C0)) → (]I)(1− ζ(1))2
∏
i/∈I

q(n0
i ))

(∑
n>R

q(n)

)]I−1

. (31)

Finally, to deal with the case R = H0 and L = L0 we first note that the
estimate (23) for µN (A(i, j;K) still holds with the same argument. On the
other hand, given L′ ≥ 1 let B(K,L′) denote the set of combs with spine
length at least L′ and such that at most one of its first L′ teeth has length
≥ K. It is then easy to see that

µN (B(K,L′)) ≤ const.L′ζ(1)L
′
,

where the last expression clearly vanishes uniformly in N for K,L′ → ∞.
These two observations allow us to restrict attention to combs with spine
length ≤ L′ and one tooth of length ≥ K and ultimately letting K,L′ →∞.
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Using the previous result (31) this gives

µN (AR,L(C)) →
∏
i/∈I

q(n0
i )

(∑
n>R

q(n)

)]I−1(
(]I)(1− ζ(1)) +

∑
n>R

q(n)

)

for N →∞. This proves the existence of the limiting measure µ.
Taking the limit R → ∞ of the expression found in (31) we see that

it vanishes unless ]I = 1 for R large enough, which shows that in C(L) the
measure µ is supported on the set of combs with a single infinite tooth and
that for each such comb C in C(L)

µ(C) = (1− ζ(1))2
∏

i:ni(C)<∞

q(ni(C)) (32)

as stated in the theorem. Summing over C gives

µ(C(L)) = L(1− ζ(1))2ζ(1)L−1

and in turn summing this expression over L ≥ 1 gives 1 proving that µ is
supported on the set of combs with finite spine and a single infinite tooth.
ζ(1) = 1: In this case we necessarily have b > 1. Assuming first 1 < b < 2
we have from (19) and (26) that

Z(t) ∼ − 1
kc

(1− t)1−b

and therefore
ZN ∼ k2N

b−2 ,

where k2 > 0 is a constant. Going back to the case ζ(1) > 1 above we
obviously have that (27) still holds, and one easily verifies that corresponding
to (28) we have

µN (A(j;K)) ≤ const.K1−b ,

where the constant is independent of N and j. It follows that the rest of
the argument in the case ζ(1) > 1 above carries through unchanged proving
the claim for 1 < b < 2.

For b ≥ 2 the argument is similar but the details depend on the order of
the zero at t = 1 of the analytic part a(t) of ζ(t) and are left to the reader.
�

Considering a family of distributions q fulfilling (18) and parametrised
by b and c the theorem asserts that for b ≤ 1 the limiting measure is always
a product measure with exponentially distributed teeth, and for b > 1 there
is a critical curve c = c0(b) such that the same holds if c > c0(b) while for
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c = c0(b) the exponential distribution of tooth lengths is replaced by a power
law distribution

ν(n) ∼ c0(b)n−b . (33)

Finally, for c < c0(b) the combs have finite spine and one infinite tooth
almost surely.

Random combs with independent and identical tooth length distributions
of the form (33), were extensively studied in [13] and shown to have Hausdorff
and spectral dimensions given by

d̄h = 3− b and d̄s = 2− b

2
, 1 < b < 2 ,

whereas d̄h = d̄s = 1 for b ≥ 2. This latter statement consequently holds
also for the exponential distribution in the case ζ(1) > 1 of Theorem 4.3.
It is a trivial matter to verify that for the remaining cases of Theorems 4.1
and 4.3 we have dh = ds = 1 almost surely.

Note that except for the degenerate first case in Theorem 4.1 the limiting
measures found in this section are concentrated on trees with a single infinite
path. In the last case of Theorem 4.1 and of Theorem 4.3 this path consists
of a finite piece of the spine together with the unique infinite tooth and in
the first two cases of Theorem 4.3 it coincides with the infinite spine of the
combs. In the next section we consider cases of random trees exhibiting more
complicated behaviour. However, the feature that the limiting measures are
concentrated on trees with a single infinite path persists.

5. Generic random trees

We consider infinite planar random trees whose distribution is obtained
as a limit of finite size distributions that are defined by conditioning critical
Galton–Watson processes on fixed size N . More precisely, the finite size
measures µN are defined by (16) where ρ and ZN are given by (8) and (11)
and the off-spring probabilities (pn)n≥0 define a critical Galton–Watson pro-
cess in the sense explained in Section 3.2. Such a process is called generic
if the generating function f for (pn)n≥0 is analytic at t = 1, that is if the
generating series (13) has radius of convergence strictly larger than 1. As
is well known [2, 17] the generating function (12) for (ZN )N≥1 fulfills the
functional relation

Z(t) = tf(Z(t)) .

By the assumption of criticality this equation determines Z(t) uniquely as an
analytic function of t for |t| < 1 such that Z(t)→ 1 for t→ 1. Assuming the
Galton–Watson process is generic it follows by Taylor expanding f around
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t = 1 that

Z(t) ∼ 1 +

√
2

f ′′(1)
(1− t) 1

2 , t↗ 1 .

Applying standard transfer theorems [17] we get

ZN ∼ 1√
2πf ′′(1)

N−
3
2 , N →∞ .

By applying essentially the same arguments as those used in the last case
of Theorems 4.1 and 4.3 although technically more elaborate (see [12, 14]
for details) we have the following theorem establishing the existence of the
desired limiting measure µ. By a slight abuse of notation an infinite path
originating from the root in a tree is called a spine in the following and,
given a spine s0, s1, s2 . . . of a tree T , a branch of T at si is a subtree of T
sharing only the vertex si with the spine and such that si has degree 1 in T .
Hence the number of branches at si equals the degree of si in T minus 2 and
we consider si to be the root of the corresponding branches.

Theorem 5.1 The measures (µN )N≥1 defined by a generic critical Galton–
Watson process converge to a probability distribution µ on the space of all
rooted planar trees T . It is concentrated on the subset of trees S with a single
spine s1, s2, . . . , and can be characterized as follows:
(i) The probability that si has degree k + 1 is kpk, k ≥ 1.
(ii) The branches of the tree are independently and identically distributed
according to ρ given by (8).

The infinite random trees defined by the preceding theorem will be called
generic random trees. It turns out that the information on the measure µ
supplied by Theorem 5.1 is sufficient to determine both the Hausdorff and
the spectral dimension of generic random trees [6, 14,15].

Theorem 5.2 For a generic random tree the annealed Hausdorff and spec-
tral dimensions are given by

d̄h = 2 and d̄s = 4
3 .

It also holds that dh = 2 almost surely, and that ds = 4
3 almost surely.

We shall not at this place give a detailed proof of this result, but rather
supply some comments on the ideas that go into it and relevant references.

The statements concerning the Hausdorff dimension can be obtained
by rather standard generating function techniques. Thus the generating
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function fR for the average size 〈 |BR| 〉ρ of the ball of radius R w.r.t. the
Galton–Watson measure ρ fulfills the recursion relation

fR+1(t) = tf(fR(t)) for R ≥ 1 , and f1(t) = t ,

from which one obtains
〈 |BR| 〉ρ = R .

Combining this with Theorem 5.1 yields

〈 |BR| 〉µ =
f ′′(1)

2
R(R− 1) +R

which shows that d̄h = 2. By a closer analysis of fR in the vicinity of t = 1
using the genericity assumption and applying the Borel–Cantelli lemma (see
[15] for details) one can show that there exists a constant c1 > 0 such that
for µ-almost all trees T ∈ T we have

|BR(T )| ≤ c1R
2 lnR , R ≥ RT ,

for some finite RT . This proves that dh ≤ 2 almost surely. To get the reverse
inequality one combines a classical result by Kolmogoroff stating that

ρ ({T | |BR(T )| > |BR−1(T )|}) ∼ 2
f ′′(1)

1
R

for R→∞ [19] with some rather simple probability estimates [6,14] to show
that there exists a constant c2 > 0 such that

|BR(T )| ≥ c2R
2(lnR)−2 , R ≥ RT , (34)

for µ-almost all T . This proves the statements on the Hausdorff dimension.
Introducing the generating function QG(x) for return probabilities to the

root in a graph G by

QG(x) =
∞∑
t=0

pt(G)(1− x)t/2 (35)

the spectral dimension of G may be expressed in terms of the singular be-
haviour of QG at x = 0. More precisely we have, assuming transfer theorems
are applicable, that if

QG(x) ∼ c x−α , x→ 0 ,

where 0 < α < 1 then
ds = 2− 2α , (36)
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and similarly d̄s can be expressed in terms of the singular behaviour of
〈QG(x) 〉µ. In the formulation of the theorem the definition (36) of ds is
assumed, where

α = lim
x→0

lnQG(x)
| lnx| ,

and similarly for d̄s.
It is proven in [14] that for generic random trees the estimates

c x−
1
3 ≤ 〈QTx) 〉µ ≤ c x−

1
3

hold for 0 < x < 1
2 , where c, c > 0 are constants. Hence d̄s = 4

3 follows.
The almost sure lower bound ds ≥ 4

3 is a consequence of the inequality

QT (x) ≤ c′1R +
c′2

x|BR(T, r)| (37)

holding for all R ≥ 1, where the constants c′1, c′2 > 0 are independent of R
and T . There are various ways of obtaining this inequality one of which,
especially tailored for trees, is given in [14]. A more general version can be
obtained by different methods commented further on below. Using (34) in
(37) we obtain

QT (x) ≤ c′1R +
c′′2 (lnR)2

xR2
, R ≥ RT , (38)

for µ-almost all T . For x > 0 small enough we then get by choosing R to be
the integer part of x−

1
3 that

QT (x) ≤ const.x−
1
3 (lnx)2

which proves that α ≤ 1
3 and hence ds ≥ 4

3 almost surely.
Having established this almost sure lower bound it follows, up to tech-

nical details, that ds <
4
3 on a set of positive µ-measure would contradict

d̄s = 4
3 . Thus ds = 4

3 almost surely. An alternative proof of this fact using
the definition (2) of ds and continuous time random walk on T is given in [6].

6. Concluding remarks

A notable common feature of the random graph models considered in
Sections 4 and 5 is the absence of circuits. Introducing circuits by adding
links to a tree in such a way that distances of vertices to the root are pre-
served does not change the Hausdorff dimension but in general will affect
the spectral dimension. It remains a challenging problem to develop general
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methods for evaluating or estimating the spectral dimension beyond mod-
els of random trees. An attractive and interesting class of models involves
planar maps or planar surfaces. For such models there is a general result by
Benjamini and Schramm [7] stating that under the assumption that vertex
degrees are bounded in addition to a homogeneity condition planar random
surfaces have spectral dimension at most 2. Bounding the order of vertices is
not a natural constraint to introduce on models of planar maps of relevance
to 2-dimensional quantum gravity [2]. For such models the construction of
a limiting measure on infinite surfaces can be implemented along the lines
described above for random combs and generic random trees. For triangu-
lated planar surfaces this was accomplished in [4] and the resulting ensemble
called the uniform infinite planar triangulation. It has Hausdorff dimension
dh = 4 almost surely [5]. For the simpler case of so-called causal planar tri-
angulations [3] the proof can be based on a particular case of Theorem 5.1
for which one as dh = 2 almost surely as well as d̄h = 2 [15]. The uniform in-
finite planar quadrangulation has been constructed in [10] and it was shown
that d̄h = 4. The spectral dimension is not known for these cases. In [15] it
is proven that for causal planar triangulations ds ≤ 2 almost surely and it
seems reasonable to conjecture that ds = 2 almost surely, but strong lower
bounds on ds seem hard to obtain. The general lower bound

ds ≥ 2dh

dh + 1
(39)

valid for general connected rooted graphs such that ds and dh exist is a con-
sequence of the inequality

QG(x) ≤ c′1R +
c′2

x|BR(G)| (40)

for 0 < x < 1, R ≥ 1 of which (35) is a special case. The derivation of this
latter inequality can be based on the fact that the function

QT (v;x) =
∑
ω:r→v

(1− x)|ω|/2
|ω|∏
i=0

σ−1
ω(i) , v ∈ V (G) ,

is a fundamental solution of a discrete form of the Laplace equation on G;
details of the argument will appear elsewhere, see also [11]. The constants
c′1, c

′
2 > 0 only depend on the order of the root of G such that if one chooses

R to be the integer part of x−
1

dh+1 in (40) one obtains α ≤ 1
dh+1 and the

inequality (39) follows. Using that dh = 2 almost surely for the infinite
causal planar triangulation we obtain

ds ≥ 4
3
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almost surely in this case, while for the uniform infinite planar triangulation
we get

ds ≥ 8
5

almost surely by using the result of [5] that dh = 4 almost surely. We know
of no good reason to expect either of these inequalities to be sharp and it
remains a challenge to develop methods to improve them.

I wish to thank Thordur Jonsson and John Wheater for enjoyable col-
laboration on random graphs. This work was supported by the EU Research
Training Network grant MRTN-CT- 2004-005616.
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