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We introduce the topic of dynamical breaking of the electroweak sym-
metry and its link to unparticle physics and cosmology. The knowledge of
the phase diagram of strongly coupled theories plays a fundamental role
when trying to construct viable extensions of the standard model (SM).
Therefore, we present the state-of-the-art of the phase diagram for SU,
Sp and SO gauge theories with fermionic matter transforming according
to arbitrary representations of the underlying gauge group. We summa-
rize several analytic methods used recently to acquire information about
these gauge theories. We also provide new results for the phase diagram of
the generalized Bars–Yankielowicz and Georgi–Glashow chiral gauge theo-
ries. These theories have been used for constructing grand unified models
and have been the template for models of extended technicolor interac-
tions. To gain information on the phase diagram of chiral gauge theories
we will introduce a novel all orders beta function for chiral gauge theo-
ries. This permits the first unified study of all non-supersymmetric gauge
theories with fermionic matter representation both chiral and non-chiral.
To the best of our knowledge the phase diagram of these complex models
appears here for the first time. We will introduce recent extensions of the
SM featuring minimal conformal gauge theories known as minimal walking
models. Finally, we will discuss the electroweak phase transition at nonzero
temperature for models of dynamical electroweak symmetry breaking.

PACS numbers: 11.15.Ex, 11.15.Ha, 11.15.Pg, 11.15.Tk

1. The need to go beyond

The energy scale at which the Large Hadron Collider experiment (LHC)
will operate is determined by the need to complete the SM of particle inter-
actions and, in particular, to understand the origin of mass of the elementary
particle. Together with classical general relativity the SM constitutes one
∗ Lecture presented at the XLIX Cracow School of Theoretical Physics, “Non-pertur-
bative Gravity and Quantum Chromodynamics”, Zakopane, May 31–June 10, 2009.
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of the most successful models of nature. We shall, however, argue that ex-
perimental results and theoretical arguments call for a more fundamental
description of nature.

In figure 1, we schematically represent, gray (green), the known forces of
nature. The SM of particle physics describes the strong, weak and electro-
magnetic forces. The light gray (yellow) region represents the energy scale
around the TeV scale and will be explored directly at the LHC, while the
dark gray (red) part of the diagram is speculative.

Fermi Scale

Standard Model

Fig. 1. Cartoon representing the various forces of nature. At very high energies
one may imagine that all the low-energy forces unify in a single force.

All of the known elementary particles constituting the SM fit on the
postage stamp shown in Fig. 2. Interactions among quarks and leptons are
carried by gauge bosons. Massless gluons mediate the strong force among
quarks while the massive gauge bosons, i.e. the Z and W , mediate the
weak force and interact with both quarks and leptons. Finally, the massless
photon, the quantum of light, interacts with all of the electrically charged
particles. The SM Higgs does not feel strong interactions. The interactions
emerge naturally by invoking a gauge principle. It is intimately linked with
the underlying symmetries relating the various particles of the SM. The
asterisk on the Higgs boson in the postage stamp indicates that it has not
yet been observed. Intriguingly the Higgs is the only fundamental scalar of
the SM.
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SU(3)

SU(2)

U(1)

Fig. 2. Postage stamp representing all
of the elementary particles which con-
stitute the SM. The forces are man-
dated with the SU(3) × SU(2) × U(1)
gauge group.

Fig. 3. The SM can be viewed as a low-
energy theory valid up to a high energy
scale Λ.

The SM can be viewed as a low-energy effective theory valid up to an
energy scale Λ, as schematically represented in Fig. 3. Above this scale new
interactions, symmetries, extra dimensional worlds or any other extension
could emerge. At sufficiently low energies with respect to this scale one
expresses the existence of new physics via effective operators. The success
of the SM is due to the fact that most of the corrections to its physical
observables depend only logarithmically on this scale Λ. In fact, in the SM
there exists only one operator which acquires corrections quadratic in Λ.
This is the squared mass operator of the Higgs boson. Since Λ is expected
to be the highest possible scale, in four dimensions the Planck scale, it is
hard to explain naturally why the mass of the Higgs is of the order of the
electroweak scale. This is the hierarchy problem. Due to the occurrence of
quadratic corrections in the cutoff this SM sector is most sensitive to the
existence of new physics.

1.1. The Higgs

It is a fact that the Higgs allows for a direct and economical way of spon-
taneously breaking the electroweak symmetry. It generates simultaneously
the masses of the quarks and leptons without introducing flavor changing
neutral currents at the tree level. The Higgs sector of the SM possesses,
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when the gauge couplings are switched off, an SUL(2)× SUR(2) symmetry.
The full symmetry group can be made explicit when re-writing the Higgs
doublet field

H =
1√
2

(
π2 + i π1

σ − i π3

)
(1.1)

as the right column of the following two by two matrix:

1√
2

(σ + i ~τ · ~π) ≡M . (1.2)

The first column can be identified with the column vector τ2H
∗ while the

second withH. We indicate this fact with [i τ2H
∗ , H] = M . τ2 is the second

Pauli matrix. The SUL(2)× SUR(2) group acts linearly on M according to:

M → gLMg†R and gL/R ∈ SUL/R(2) . (1.3)

One can verify that:

M

(
1− τ3

)
2

= [0 , H] , M

(
1 + τ3

)
2

= [i τ2H
∗, 0] . (1.4)

The SUL(2) symmetry is gauged by introducing the weak gauge bosons
W a with a = 1, 2, 3. The hypercharge generator is taken to be the third
generator of SUR(2). The ordinary covariant derivative acting on the Higgs,
in the present notation, is:

DµM = ∂µM − i gWµM + i g ′M Bµ ,

with

Wµ = W a
µ

τa

2
, Bµ = Bµ

τ3

2
. (1.5)

The Higgs Lagrangian is

L =
1
2

Tr
[
DµM

†DµM
]
− m2

2
Tr
[
M †M

]
− λ

4
Tr
[
M †M

]2
. (1.6)

At this point one assumes that the mass squared of the Higgs field is negative
and this leads to the electroweak symmetry breaking. Except for the Higgs
mass term the other SM operators have dimensionless couplings meaning
that the natural scale for the SM is encoded in the Higgs mass1.

1 The mass of the proton is due mainly to strong interactions, however its value cannot
be determined within QCD since the associated renormalization group invariant scale
must be fixed to an hadronic observable.
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At the tree level, when taking m2 negative and the self-coupling λ posi-
tive, one determines:

〈σ〉2 ≡ v2
weak =

|m2|
λ

and σ = vweak + h , (1.7)

where h is the Higgs field. The global symmetry breaks to its diagonal
subgroup:

SUL(2)× SUR(2)→ SUV (2) . (1.8)

To be more precise the SUR(2) symmetry is already broken explicitly by
our choice of gauging only an UY (1) subgroup of it and hence the actual
symmetry breaking pattern is:

SUL(2)×UY (1)→ UQ(1) , (1.9)

with UQ(1) the electromagnetic Abelian gauge symmetry. According to the
Nambu–Goldstone’s theorem three massless degrees of freedom appear, i.e.
π± and π0. In the unitary gauge these Goldstones become the longitudinal
degree of freedom of the massive electroweak gauge-bosons. Substituting
the vacuum value for σ in the Higgs Lagrangian the gauge-bosons quadratic
terms read:

v2
weak

8

[
g2
(
W 1
µW

µ,1 +W 2
µW

µ,2
)

+
(
gW 3

µ − g ′Bµ
)2]

. (1.10)

The Zµ and the photon Aµ gauge bosons are:

Zµ = cos θW W 3
µ − sin θWBµ ,

Aµ = cos θW Bµ + sin θWW 3
µ , (1.11)

with tan θW = g ′/g while the charged massive vector bosons are W±µ =
(W 1± iW 2

µ)/
√

2. The bosons masses M2
W = g2 v2

weak/4 due to the custodial
symmetry satisfy the tree level relation M2

Z = M2
W / cos2 θW . Holding fixed

the EW scale vweak the mass squared of the Higgs boson is 2λv2
weak and hence

it increases with λ. We recall that the Higgs Lagrangian has a familiar form
since it is identical to the linear σ Lagrangian which was introduced long
ago to describe chiral symmetry breaking in QCD with two light flavors.

Besides breaking the electroweak symmetry dynamically the ordinary
Higgs serves also the purpose to provide mass to all of the SM particles via
the Yukawa terms of the type:

−Y ij
d Q̄

i
LHd

j
R − Y ij

u Q̄
i
L(iτ2H

∗)ujR + h.c. , (1.12)
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where Yq is the Yukawa coupling constant, QL is the left-handed Dirac spinor
of quarks, H the Higgs doublet and q the right-handed Weyl spinor for the
quark and i, j the flavor indices. The SUL(2) weak and spinor indices are
suppressed.

When considering quantum corrections the Higgs mass acquires large
quantum corrections proportional to the scale of the cut-off squared.

m2
ren −m2 ∝ Λ2 . (1.13)

Λ is the highest energy above which the SM is no longer a valid description of
nature and a large fine tuning of the parameters of the Lagrangian is needed
to offset the effects of the cut-off. This large fine tuning is needed because
there are no symmetries protecting the Higgs mass operator from large cor-
rections which would hence destabilize the Fermi scale (i.e. the electroweak
scale). This problem is the one we referred above as the hierarchy problem
of the SM.

The constant value of the Higgs field evaluated on the ground state is
determined by the measured mass of the W boson. On the other hand,
the value of the SM Higgs mass (mH ) is constrained only indirectly by
the electroweak precision data. The preferred value of the Higgs mass is
mH = 87+36

−27 GeV at 68% confidence level (C.L.) with a 95% C.L. upper
limit mH < 160 GeV. This value increases to mH < 190 GeV when in-
cluding the LEP-2 direct lower limit mH > 114 GeV, as reported by the
Electroweak Working Group (http://lepewwg.web.cern.ch)2. It is in-
structive to look separately at the various measurements influencing the fit
for the SM Higgs mass. The final result of the average of all of the mea-
sures, however, has a Pearson’s chi-square (χ2) test of 11.8 for 5 degrees
of freedom. This relatively high value of χ2 is due to the two most precise
measurements of sin2 θeff , namely those derived from the measurements of
the lepton left–right asymmetries Al by SLD and of the forward–backward
asymmetry measured in bb̄ production at LEP, AbFB. The two measure-
ments differ by about 3 σs. The situation is shown in Fig. 6 (updated
values of [1]). The values of sin2 θeff and their average are shown each at
the preferred value of mH corresponding to a given central value of mt. The
implications for the value of the mass of the Higgs are interesting. The bb̄
forward–backward asymmetry leads to the prediction of a relatively heavy
Higgs with mH = 420+420

−190 GeV. On the other hand, the lepton left–right
asymmetry corresponds to mH = 31+33

−19 GeV, in conflict with the lower limit
mH > 114 GeV from direct LEP searches. Moreover, the world average of
the W mass, mW = 80.398 ± 0.025 GeV (see Fig. 7), is still larger than

2 All the plots we use in this section are reported by the Electroweak Working Group
and can be found at the web-address: http://lepewwg.web.cern.ch
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Fig. 4. Values of the Higgs mass extracted from different electroweak observables.
The average is shown as a gray (green) band.

Fig. 5. The 1 − σ range of the electroweak parameters S and T determined from
different observables. The ellipsis shows the 68% probability from combined data.
The lightest (yellow) area gives the SM prediction withmt andmH varied as shown.
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Fig. 6. The data for sin2 θlept
eff are plotted versus mH . For presentation purposes

the measured points are shown each at the mH value that would ideally correspond
to it given the central value of mt.

the value extracted from a SM fit, again requiring mH to be smaller than
what is allowed by the LEP Higgs searches. This tension may be due to new
physics, to a statistical fluctuation or to an unknown experimental problem.
The overall situation is summarized in Fig. 4, where the predicted values
of mH from the different observables are shown. A very light SM Higgs is
deduced only when averaging over the whole set of data.

Summarizing, the experimental window for the SM Higgs mass
114 GeV< mH < 190 GeV coincides with the theoretical range 125 GeV <
mH < 175 GeV of allowed values of the SM Higgs mass naturally compat-
ible with a high cutoff scale3 and the stability of the ground state of the
SM. This fact may be a coincidence or may be an argument in favor of the
naturality of the SM Higgs.

A Higgs heavier than 190 GeV is compatible with precision tests if we
allow simultaneously new physics to compensate for the effects of the heavier
value of the mass. The precision measurements of direct interest for the

3 The scale associated with unification in four dimensions is typically of the order of
1015 GeV.
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Fig. 7. The world average for mW is plotted versus mH .

Higgs sector are often reported using the S and T parameters as shown in
Fig. 5. From this graph one deduces that a heavy Higgs is compatible with
data at the expense of a large value of the T parameter. Actually, even
the lower direct experimental limit on the Higgs mass can be evaded with
suitable extensions of the SM Higgs sector.

Many more questions need an answer if the Higgs is found at the LHC: Is
it composite? How many Higgs fields are there in nature? Are there hidden
sectors?

1.2. Riddles

Why do we expect that there is new physics awaiting to be discovered?
Of course, we still have to observe the Higgs, but this cannot be everything.
Even with the Higgs discovered, the SM has both conceptual problems and
phenomenological shortcomings. In fact, theoretical arguments indicate that
the SM is not the ultimate description of nature:

• Hierarchy Problem: The Higgs sector is highly fine-tuned. We have
no natural separation between the Planck and the electroweak scale.
• Strong CP Problem: There is no natural explanation for the small-

ness of the electric dipole moment of the neutron within the SM. This
problem is also known as the strong CP problem.
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• Origin of Patterns: The SM can fit, but cannot explain the number
of matter generations and their mass texture.
• Unification of the Forces: Why do we have so many different inter-

actions? It is appealing to imagine that the SM forces could unify into
a single Grand Unified Theory (GUT). We could imagine that at very
high energy scales gravity also becomes part of a unified description
of nature.

There is no doubt that the SM is incomplete since we cannot even account
for a number of basic observations:

• Neutrino Physics: Only recently it has been possible to have some
definite answers about properties of neutrinos. We now know that they
have a tiny mass, which can be naturally accommodated in extensions
of the SM, featuring for example a “see-saw” mechanism. We do not
yet know if the neutrinos have a Dirac or a Majorana nature.
• Origin of Bright and Dark Mass: Leptons, quarks and the gauge

bosons mediating the weak interactions possess a rest mass. Within
the SM this mass can be accounted for by the Higgs mechanism, which
constitutes the electroweak symmetry breaking sector of the SM. How-
ever, the associated Higgs particle has not yet been discovered. Be-
sides, the SM cannot account for the observed large fraction of “dark”
mass of the Universe. What is interesting is that in the Universe the
dark matter is about five times more abundant than the known bary-
onic matter, i.e. “bright” matter. We do not know why the ratio of
dark to bright matter is of order unity.
• Matter–Antimatter Asymmetry: From our everyday experience

we know that there is very little “bright” antimatter in the Universe.
The SM fails to predict the observed excess of matter.

These arguments do not imply that the SM is necessarily wrong, but
it must certainly be extended to answer any of the questions raised above.
The truth is that we do not have an answer to the basic question: What lies
beneath the SM?

A number of possible generalizations of the SM have been conceived
(see [2–8] for reviews). Such extensions are introduced on the base of one or
more guiding principles or prejudices. Two technical reviews are [9, 10].

In the models we will consider here the electroweak symmetry breaks
via a fermion bilinear condensate. The Higgs sector of the SM becomes an
effective description of a more fundamental fermionic theory. This is similar
to the Ginzburg–Landau theory of superconductivity. If the force underlying
the fermion condensate driving electroweak symmetry breaking is due to a
strongly interacting gauge theory these models are termed technicolor.
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Technicolor, in brief, is an additional non-Abelian and strongly inter-
acting gauge theory augmented with (techni)fermions transforming under a
given representation of the gauge group. The Higgs Lagrangian is replaced
by a suitable new fermion sector interacting strongly via a new gauge inter-
action (technicolor). Schematically:

LHiggs → −1
4FµνF

µν + iQ̄γµD
µQ+ · · · , (1.14)

where, to be as general as possible, we have left unspecified the underlying
non-Abelian gauge group and the associated technifermion (Q) representa-
tion. The dots represent new sectors which may even be needed to avoid, for
example, anomalies introduced by the technifermions. The intrinsic scale of
the new theory is expected to be less or of the order of a few TeVs. The
chiral-flavor symmetries of this theory, as for ordinary QCD, break spon-
taneously when the technifermion condensate Q̄Q forms. It is possible to
choose the fermion charges in such a way that there is, at least, a weak left-
handed doublet of technifermions and the associated right-handed one which
is a weak singlet. The covariant derivative contains the new gauge field as
well as the electroweak ones. The condensate spontaneously breaks the elec-
troweak symmetry down to the electromagnetic and weak interactions. The
Higgs is now interpreted as the lightest scalar field with the same quantum
numbers of the fermion–antifermion composite field. The Lagrangian part
responsible for the mass-generation of the ordinary fermions will also be
modified since the Higgs particle is no longer an elementary object.

Models of electroweak symmetry breaking via new strongly interacting
theories of technicolor type [11,12] are a mature subject (for recent reviews
see [13–15]). One of the main difficulties in constructing such extensions
of the SM is the very limited knowledge about generic strongly interacting
theories. This has led theorists to consider specific models of technicolor
which resemble ordinary quantum chromodynamics and for which the large
body of experimental data at low energies can be directly exported to make
predictions at high energies. Unfortunately, the simplest version of this
type of models are at odds with electroweak precision measurements. New
strongly coupled theories with dynamics very different from the one featured
by a scaled up version of QCD are needed [16].

We will review models of dynamical electroweak symmetry breaking
making use of new type of four dimensional gauge theories [16–18] and their
low energy effective description [19] useful for collider phenomenology. The
phase structure of a large number of strongly interacting nonsupersymmetric
theories, as function of number of underlying colors will be uncovered with
traditional nonperturbative methods [20] as well as novel ones [21]. We will
discuss possible applications to cosmology as well. These lectures should be
integrated with earlier reviews [13–15,22–27] on the various subjects treated
here.
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2. Dynamical electroweak symmetry breaking

It is a fact that the SM does not fail, when experimentally tested, to de-
scribe all of the known forces to a very high degree of experimental accuracy.
This is true even if we include gravity. Why is it so successful?

The SM is a low energy effective theory valid up to a scale Λ above which
new interactions, symmetries, extra dimensional worlds or any possible ex-
tension can emerge. At sufficiently low energies with respect to the cutoff
scale Λ one expresses the existence of new physics via effective operators.
The success of the SM is due to the fact that most of the corrections to its
physical observable depend only logarithmically on the cutoff scale Λ.

Superrenormalizable operators are very sensitive to the cut off scale. In
the SM there exists only one operator with naive mass dimension two which
acquires corrections quadratic in Λ. This is the squared mass operator of
the Higgs boson. Since Λ is expected to be the highest possible scale, in four
dimensions the Planck scale, it is hard to explain naturally why the mass of
the Higgs is of the order of the electroweak scale. The Higgs is also the only
particle predicted in the SM yet to be directly produced in experiments.
Due to the occurrence of quadratic corrections in the cutoff this is the SM
sector highly sensitive to the existence of new physics.

In nature we have already observed Higgs-type mechanisms. Ordinary
superconductivity and chiral symmetry breaking in QCD are two time-
honored examples. In both cases the mechanism has an underlying dynami-
cal origin with the Higgs-like particle being a composite object of fermionic
fields.

2.1. Superconductivity versus electroweak symmetry breaking

The breaking of the electroweak theory is a relativistic screening effect.
It is useful to parallel it to ordinary superconductivity which is also a screen-
ing phenomenon albeit non-relativistic. The two phenomena happen at a
temperature lower than a critical one. In the case of superconductivity one
defines a density of superconductive electrons ns and to it one associates a
macroscopic wave function ψ such that its modulus squared

|ψ|2 = nC =
ns
2
, (2.15)

is the density of Cooper’s pairs. That we are describing a nonrelativistic
system is manifest in the fact that the macroscopic wave function squared,
in natural units, has mass dimension three while the modulus squared of the
Higgs wave function evaluated at the minimum is equal to 〈|H|2 >= v2

weak/2
and has mass dimension two, i.e. is a relativistic wave function. One can
adjust the units by considering, instead of the wave functions, the Meissner
mass of the photon in the superconductor which is
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M2 =
q2ns
4me

, (2.16)

with q = −2e and 2me the charge and the mass of a Cooper pair which is
constituted by two electrons. In the electroweak theory the Meissner mass
of the photon is compared with the relativistic mass of the W gauge boson

M2
W =

g2v2
weak

4
, (2.17)

with g the weak coupling constant and vweak the electroweak scale. In a
superconductor the relevant scale is given by the density of superconductive
electrons typically of the order of ns ∼ 4 × 1028 m−3 yielding a screening
length of the order of ξ = 1/M ∼ 10−6 cm. In the weak interaction case we
measure directly the mass of the weak gauge boson which is of the order of
80 GeV yielding a weak screening length ξW = 1/MW ∼ 10−15 cm.

For a superconductive system it is clear from the outset that the wave
function ψ is not a fundamental degree of freedom, however for the Higgs
we are not yet sure about its origin. The Ginzburg–Landau effective theory
in terms of ψ and the photon degree of freedom describes the spontaneous
breaking of the UQ(1) electric symmetry and it is the equivalent of the Higgs
Lagrangian.

If the Higgs is due to a macroscopic relativistic screening phenomenon
we expect it to be an effective description of a more fundamental system
with possibly an underlying new strong gauge dynamics replacing the role
of the phonons in the superconductive case. A dynamically generated Higgs
system solves the problem of the quadratic divergences by replacing the
cutoff Λ with the weak energy scale itself, i.e. the scale of compositness. An
underlying strongly coupled asymptotically free gauge theory, à la QCD, is
an example.

2.2. From color to technicolor

In fact even in complete absence of the Higgs sector in the SM the elec-
troweak symmetry breaks [25] due to the condensation of the following quark
bilinear in QCD: 〈

ūLuR + d̄LdR
〉 6= 0 . (2.18)

This mechanism, however, cannot account for the whole contribution to the
weak gauge bosons masses. If QCD would be the only source contributing
to the spontaneous breaking of the electroweak symmetry one would have

MW =
gFπ

2
∼ 29 MeV , (2.19)
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with Fπ ' 93 MeV the pion decay constant. This contribution is very
small with respect to the actual value of the MW mass that one typically
neglects it.

According to the original idea of technicolor [11, 12] one augments the
SM with another gauge interaction similar to QCD but with a new dy-
namical scale of the order of the electroweak one. It is sufficient that the
new gauge theory is asymptotically free and has global symmetry able to
contain the SM SUL(2) × UY (1) symmetries. It is also required that the
new global symmetries break dynamically in such a way that the embedded
SUL(2) × UY (1) breaks to the electromagnetic Abelian charge UQ(1). The
dynamically generated scale will then be fit to the electroweak one.

Note that, except in certain cases, dynamical behaviors are typically
nonuniversal which means that different gauge groups and/or matter repre-
sentations will, in general, posses very different dynamics.

The simplest example of technicolor theory is the scaled up version of
QCD, i.e. an SU(NTC) non-Abelian gauge theory with two Dirac fermions
transforming according to the fundamental representation or the gauge group.
We need at least two Dirac flavors to realize the SUL(2)×SUR(2) symmetry
of the SM discussed in the SM Higgs section. One simply chooses the scale
of the theory to be such that the new pion decaying constant is:

FTC
π = vweak ' 246 GeV . (2.20)

The flavor symmetries, for any NTC larger than 2 are SUL(2) × SUR(2) ×
UV (1) which spontaneously break to SUV (2)×UV (1). It is natural to embed
the electroweak symmetries within the present technicolor model in a way
that the hypercharge corresponds to the third generator of SUR(2). This
simple dynamical model correctly accounts for the electroweak symmetry
breaking. The new technibaryon number UV (1) can break due to not yet
specified new interactions. In order to get some indication on the dynamics
and spectrum of this theory one can use the ’t Hooft large N limit [28–30].
For example the intrinsic scale of the theory is related to the QCD one via:

ΛTC ∼
√

3
NTC

FTC
π

Fπ
ΛQCD . (2.21)

At this point it is straightforward to use the QCD phenomenology for de-
scribing the experimental signatures and dynamics of a composite Higgs.

2.3. Constraints from electroweak precision data

The relevant corrections due to the presence of new physics trying to
modify the electroweak breaking sector of the SM appear in the vacuum
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polarizations of the electroweak gauge bosons. These can be parameter-
ized in terms of the three quantities S, T , and U (the oblique parameters)
[31–34], and confronted with the electroweak precision data. Recently, due
to the increase precision of the measurements reported by LEP II, the list of
interesting parameters to compute has been extended [35,36]. We show be-
low also the relation with the traditional one [31]. Defining with Q2 ≡ −q2

the Euclidean transferred momentum entering in a generic two point func-
tion vacuum polarization associated to the electroweak gauge bosons, and
denoting derivatives with respect to −Q2 with a prime we have [36]:

Ŝ ≡ g2 Π ′W 3B(0) , (2.22)

T̂ ≡ g2

M2
W

[ΠW 3W 3(0)−ΠW+W−(0)] , (2.23)

W ≡ g2M2
W

2
[
Π ′′W 3W 3(0)

]
, (2.24)

Y ≡ g′2M2
W

2
[
Π ′′BB(0)

]
, (2.25)

Û ≡ −g2
[
Π ′W 3W 3(0)−Π ′W+W−(0)

]
, (2.26)

V ≡ g2M2
W

2
[
Π ′′W 3W 3(0)−Π ′′W+W−(0)

]
, (2.27)

X ≡ gg′M2
W

2
Π ′′W 3B(0) . (2.28)

Here ΠV (Q2) with V = {W 3B, W 3W 3, W+W−, BB} represents the self-
energy of the vector bosons. Here the electroweak couplings are the ones
associated to the physical electroweak gauge bosons:

1
g2
≡ Π ′W+W−(0) ,

1
g′ 2
≡ Π ′BB(0) , (2.29)

while GF is
1√
2GF

= −4ΠW+W−(0) , (2.30)

as in [37]. Ŝ and T̂ lend their name from the well known Peskin–Takeuchi
parameters S and T which are related to the new ones via [36,37]:

αS

4s2
W

= Ŝ − Y −W , αT = T̂ − s2
W

1− s2
W

Y . (2.31)

Here α is the electromagnetic structure constant and sW = sin θW is the
weak mixing angle. Therefore in the case where W = Y = 0 we have the
simple relation
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Ŝ =
αS

4s2
W

, T̂ = αT . (2.32)

The result of the the fit is shown in Fig. 5. If the value of the Higgs mass
increases the central value of the S parameters moves to the left towards
negative values.

In technicolor it is easy to have a vanishing T parameter while typically
S is positive. Besides, the composite Higgs is typically heavy with respect to
the Fermi scale, at least for technifermions in the fundamental representation
of the gauge group and for a small number of techniflavors. The oldest
technicolor models featuring QCD dynamics with three technicolors and a
doublet of electroweak gauged techniflavors deviate a few sigma from the
current precision tests as summarized in the Fig. 8. Clearly it is desirable
to reduce the tension between the precision data and a possible dynamical
mechanism underlying the electroweak symmetry breaking. It is possible to
imagine different ways to achieve this goal and some of the earlier attempts
have been summarized in [38].

Fig. 8. T versus S for SU(3) technicolor with one technifermion doublet (the full
asterisk) versus precision data for a one TeV composite Higgs mass.

The computation of the S parameter in technicolor theories requires
the knowledge of nonperturbative dynamics rendering difficult the precise
knowledge of the contribution to S. For example, it is not clear what is the
exact value of the composite Higgs mass relative to the Fermi scale and, to
be on the safe side, one typically takes it to be quite large, of the order at
least of the TeV. However in certain models it may be substantially lighter
due to the intrinsic dynamics. We will discuss the spectrum of different
strongly coupled theories in Appendix E and its relation to the electroweak
parameters later in this chapter.
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It is, however, instructive to provide a simple estimate of the contribution
to S which allows to guide model builders. Consider a one-loop exchange of
ND doublets of techniquarks transforming according to the representation
RTC of the underlying technicolor gauge theory and with dynamically gen-
erated mass Σ(0) assumed to be larger than the weak intermediate gauge
bosons masses. Indicating with d(RTC) the dimension of the techniquark
representation, and to leading order in MW /Σ (0) one finds:

Snaive = ND
d(RTC)

6π
. (2.33)

This naive value provides, in general, only a rough estimate of the exact
value of S. However, it is clear from the formula above that, the more
technicolor matter is gauged under the electroweak theory the larger is the
S parameter and that the final S parameter is expected to be positive.

Attention must be paid to the fact that the specific model-estimate of
the whole S parameter, to compare with the experimental value, receives
contributions also from other sectors. Such a contribution can be taken
sufficiently large and negative to compensate for the positive value from the
composite Higgs dynamics. To be concrete: Consider an extension of the SM
in which the Higgs is composite but we also have new heavy (with a mass of
the order of the electroweak) fourth family of Dirac leptons. In this case a
sufficiently large splitting of the new lepton masses can strongly reduce and
even offset the positive value of S. We will discuss this case in detail when
presenting the Minimal Walking Technicolor model. The contribution of
the new sector (SNS) above, and also in many other cases, is perturbatively
under control and the total S can be written as:

S = STC + SNS . (2.34)

The parameter T will be, in general, modified and one has to make sure
that the corrections do not spoil the agreement with this parameter. From
the discussion above it is clear that technicolor models can be constrained,
via precision measurements, only model by model and the effects of possible
new sectors must be properly included. We presented the constraints coming
from S using the underlying gauge theory information. However, in practice,
these constraints apply directly to the physical spectrum.

The classical presentation above is utterly incomplete. In fact, it ne-
glects the constraints and back-reaction on the gauge sector coming from
the one giving masses to the SM fermions. To estimate these effects we
have considered two simple extensions able, in an effective way, to accom-
modate the SM masses. In [39], to estimate these corrections, the composite
Higgs sector was coupled directly to the SM fermions [19]. Here one gets
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relevant constraints on the W parameter while the corrections do not af-
fect the S parameter. The situation changes when an entirely new sector
is introduced in the flavor sector. Due to the almost inevitable interplay
between the gauge and the flavor sector the back-reaction of the flavor sec-
tor is very relevant [40]. Mimicking the new sector via a new (composite
or not) Higgs coupling directly to the SM fermions it was observed that
important corrections to the S and T parameters arise which can be used
to compensate a possible heavy composite Higgs scenario of the technicolor
sector [40]. To investigate these effects we adopted a straightforward and
instructive model according to which we have both a composite sector and
a fundamental scalar field (SM-like Higgs) intertwined at the electroweak
scale. This idea was pioneered in a series of papers by Simmons [41], Dine,
Kagan and Samuel [42–46], and Carone and Georgi [47, 48]. More recently
this type of model has been investigated also in [49–51]. Interesting related
work can be also found in [52,53].

2.4. Standard Model fermion masses

Since in a purely technicolor model the Higgs is a composite particle the
Yukawa terms, when written in terms of the underlying technicolor fields,
amount to four-fermion operators. The latter can be naturally interpreted as
a low energy operator induced by a new strongly coupled gauge interaction
emerging at energies higher than the electroweak theory. These type of
theories have been termed extended technicolor interactions (ETC) [54,55].

In the literature various extensions have been considered and we will
mention them later in the text. Here we will describe the simplest ETC
model in which the ETC interactions connect the chiral symmetries of the
techniquarks to those of the SM fermions (see left panel of Fig. 9).

When TC chiral symmetry breaking occurs it leads to the diagram drawn
in Fig. 9, right panel. Let us start with the case in which the ETC dynamics
is represented by a SU(NETC) gauge group with:

NETC = NTC +Ng , (2.35)

and Ng is the number of SM generations. In order to give masses to all
of the SM fermions, in this scheme, one needs a condensate for each SM
fermion. This can be achieved by using as technifermion matter a complete
generation of quarks and leptons (including a neutrino right) but now gauged
with respect to the technicolor interactions.

The ETC gauge group is assumed to spontaneously break Ng times down
to SU(NTC) permitting three different mass scales, one for each SM fam-
ily. This type of technicolor with associated ETC is termed the one family
model [56]. The heavy masses are provided by the breaking at low en-
ergy and the light masses are provided by breaking at higher energy scales.



Conformal Dynamics for TeV Physics and Cosmology 3551

�ETC

ψL

QL

QR

ψR

�QL

QR

ETC

ψL

ψR

Fig. 9. Left panel: ETC gauge boson interaction involving techniquarks and SM
fermions. Right panel: Diagram contribution to the mass to the SM fermions.

This model does not, per se, explain how the gauge group is broken sev-
eral times, neither is the breaking of weak isospin symmetry accounted for.
For example we cannot explain why the neutrino have masses much smaller
than the associated electrons. See, however, [57] for progress on these is-
sues. Schematically one has SU(NTC + 3) which breaks to SU(NTC + 2) at
the scale Λ1 providing the first generation of fermions with a typical mass
m1 ∼ 4π(FTC

π )3/Λ2
1 at this point the gauge group breaks to SU(NTC + 1)

with dynamical scale Λ2 leading to a second generation mass of the order of
m2 ∼ 4π(FTC

π )3/Λ2
2 finally the last breaking SU(NTC) at scale Λ3 leading

to the last generation mass m3 ∼ 4π(FTC
π )3/Λ2

3.
Without specifying an ETC one can write down the most general type

of four-fermion operators involving technicolor particles Q and ordinary
fermionic fields ψ. Following the notation of Hill and Simmons [13] we
write:

αab
Q̄γµT

aQψ̄γµT bψ

Λ2
ETC

+βab
Q̄γµT

aQQ̄γµT bQ

Λ2
ETC

+γab
ψ̄γµT

aψψ̄γµT bψ

Λ2
ETC

, (2.36)

where the T s are unspecified ETC generators. After performing a Fierz
rearrangement one has:

αab
Q̄T aQψ̄T bψ

Λ2
ETC

+ βab
Q̄T aQQ̄T bQ

Λ2
ETC

+ γab
ψ̄T aψψ̄T bψ

Λ2
ETC

+ . . . . (2.37)

The coefficients parametrize the ignorance on the specific ETC physics. To
be more specific, the α terms, after the technicolor particles have condensed,
lead to mass terms for the SM fermions

mq ≈ g2
ETC

M2
ETC

〈Q̄Q〉ETC , (2.38)

where mq is the mass of e.g. a SM quark, gETC is the ETC gauge coupling
constant evaluated at the ETC scale, METC is the mass of an ETC gauge
boson and 〈Q̄Q〉ETC is the technicolor condensate where the operator is
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evaluated at the ETC scale. Note that we have not explicitly considered the
different scales for the different generations of ordinary fermions but this
should be taken into account for any realistic model.

The β terms of Eq. (2.37) provide masses for pseudo Goldstone bosons
and also provide masses for techniaxions [13], see Fig. 10. The last class
of terms, namely the γ terms of Eq. (2.37) induce flavor changing neutral
currents. For example it may generate the following terms:

1
Λ2

ETC

(
s̄γ5d

) (
s̄γ5d

)
+

1
Λ2

ETC

(
µ̄γ5e

) (
ēγ5e

)
+ . . . , (2.39)

where s, d, µ, e denote the strange and down quark, the muon and the elec-
tron, respectively. The first term is a ∆S = 2 flavor-changing neutral current
interaction affecting the KL −KS mass difference which is measured accu-
rately. The experimental bounds on these type of operators together with
the very naive assumption that ETC will generate these operators with γ
of order one leads to a constraint on the ETC scale to be of the order of
or larger than 103 TeV [54]. This should be the lightest ETC scale which
in turn puts an upper limit on how large the ordinary fermionic masses can
be. The naive estimate is that one can account up to around 100 MeV mass
for a QCD-like technicolor theory, implying that the top quark mass value
cannot be achieved.

�ETCΠ Π

Fig. 10. Leading contribution to the mass of the TC pseudo Goldstone bosons via
an exchange of an ETC gauge boson.

The second term of Eq. (2.39) induces flavor changing processes in the
leptonic sector such as µ→ eēe, eγ which are not observed. It is clear that,
both for the precision measurements and the fermion masses, that a better
theory of the flavor is needed.

2.5. Walking

To better understand in which direction one should go to modify the
QCD dynamics we analyze the TC condensate. The value of the technicolor
condensate used when giving mass to the ordinary fermions should be eval-
uated not at the technicolor scale but at the extended technicolor one. Via
the renormalization group one can relate the condensate at the two scales
via:
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〈Q̄Q〉ETC = exp

 ΛETC∫
ΛTC

d(lnµ)γ(α(µ))

 〈Q̄Q〉TC , (2.40)

where γ is the anomalous dimension of the techniquark mass-operator. The
boundaries of the integral are at the ETC scale and the TC one. For TC the-
ories with a running of the coupling constant similar to the one in QCD, i.e.

α(µ) ∝ 1
lnµ

, forµ > ΛTC , (2.41)

this implies that the anomalous dimension of the techniquark masses γ ∝
α(µ). When computing the integral one gets

〈Q̄Q〉ETC ∼ ln
(

ΛETC

ΛTC

)γ
〈Q̄Q〉TC , (2.42)

which is a logarithmic enhancement of the operator. We can hence neglect
this correction and use directly the value of the condensate at the TC scale
when estimating the generated fermionic mass:

mq ≈ g2
ETC

M2
ETC

Λ3
TC , 〈Q̄Q〉TC ∼ Λ3

TC . (2.43)

The tension between having to reduce the FCNCs and at the same time
provide a sufficiently large mass for the heavy fermions in the SM as well
as the pseudo-Goldstones can be reduced if the dynamics of the underlying
TC theory is different from the one of QCD. The computation of the TC
condensate at different scales shows that if the dynamics is such that the
TC coupling does not run to the UV fixed point but rather slowly reduces
to zero one achieves a net enhancement of the condensate itself with respect
to the value estimated earlier. This can be achieved if the theory has a near
conformal fixed point. This kind of dynamics has been denoted of walking
type. In this case

〈Q̄Q〉ETC ∼
(

ΛETC

ΛTC

)γ(α∗)

〈Q̄Q〉TC , (2.44)

which is a much larger contribution than in QCD dynamics [58–61]. Here γ
is evaluated at the would be fixed point value α∗. Walking can help resolving
the problem of FCNCs in technicolor models since with a large enhancement
of the 〈Q̄Q〉 condensate the four-fermi operators involving SM fermions and
technifermions and the ones involving technifermions are enhanced by a
factor of ΛETC/ΛTC to the γ power while the one involving only SM fermions
is not enhanced.
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In figure 11 the comparison between a running and walking behavior
of the coupling is qualitatively represented. We note that walking is not
a fundamental property for a successful model of the origin of mass of the
elementary fermions featuring technicolor. In fact, several alternative ideas
already exist in the literature (see [40] and references therein). However, a
near conformal theory would still be useful to reduce the contributions to
the precision data and, possibly, provide a light composite Higgs of much
interest to LHC physics.

Fig. 11. Top left panel: QCD-like behavior of the coupling constant as function of
the momentum (Running). Top right panel: Walking-like behavior of the coupling
constant as function of the momentum (Walking). Bottom right panel: Cartoon of
the beta function associated to a generic walking theory.

2.6. Weinberg sum rules and electroweak parameters

Any strongly coupled dynamics, even of walking type, will generate a
spectrum of resonances whose natural splitting in mass is of the order of the
intrinsic scale of the theory which in this case is the Fermi scale. In order
to extract predictions for the composite vector spectrum and couplings in
presence of a strongly interacting sector and an asymptotically free gauge
theory, we make use of the time-honored Weinberg sum rules (WSR) [62]
but we will also use the results found in [63] allowing us to treat walking
and running theories in a unified way.

2.6.1. Weinberg sum rules

The Weinberg sum rules (WSRs) are linked to the two point vector–
vector minus axial–axial vacuum polarization which is known to be sensitive
to chiral symmetry breaking. We define
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iΠ a,b
µν (q) ≡

∫
d4x e−iqx

[〈
Jaµ,V (x)Jbν,V (0)

〉
−
〈
Jaµ,A(x)Jbν,A(0)

〉]
, (2.45)

within the underlying strongly coupled gauge theory, where

Π a,b
µν (q) =

(
qµqν − gµνq2

)
δabΠ

(
q2
)
. (2.46)

Here a, b = 1, . . . , N2
f−1, label the flavor currents and the SU(Nf ) generators

are normalized according to Tr
[
T aT b

]
= (1/2)δab. The function Π (q2)

obeys the unsubtracted dispersion relation

1
π

∞∫
0

ds
ImΠ (s)
s+Q2

= Π
(
Q2
)
, (2.47)

where Q2 = −q2>0, and the constraint −Q2Π (Q2)>0 holds for 0<Q2<∞
[64]. The discussion above is for the standard chiral symmetry breaking
pattern SU(Nf )×SU(Nf )→ SU(Nf ) but it is generalizable to any breaking
pattern.

Since we are taking the underlying theory to be asymptotically free,
the behavior of Π (Q2) at asymptotically high momenta is the same as in
ordinary QCD, i.e. it scales like Q−6 [65]. Expanding the left-hand side of
the dispersion relation thus leads to the two conventional spectral function
sum rules

1
π

∞∫
0

ds ImΠ (s) = 0 and
1
π

∞∫
0

ds s ImΠ (s) = 0 . (2.48)

Walking dynamics affects only the second sum rule [63] which is more sen-
sitive to large but not asymptotically large momenta due to fact that the
associated integrand contains an extra power of s.

We now saturate the absorptive part of the vacuum polarization. We
follow Ref. [63] and hence divide the energy range of integration in three
parts. The light resonance part. In this regime, the integral is saturated
by the Nambu–Goldstone pseudoscalar along with massive vector and axial-
vector states. If we assume, for example, that there is only a single, zero-
width vector multiplet and a single, zero-width axial-vector multiplet, then

ImΠ (s) = πF 2
V δ
(
s−M2

V

)− πF 2
Aδ
(
s−M2

A

)− πF 2
πδ (s) . (2.49)

The zero-width approximation is valid to leading order in the large N ex-
pansion for fermions in the fundamental representation of the gauge group
and it is even narrower for fermions in higher dimensional representations.
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Since we are working near a conformal fixed point the large N argument
for the width is not directly applicable. We will nevertheless use this simple
model for the spectrum to illustrate the effects of a near critical IR fixed
point.

The first WSR implies:

F 2
V − F 2

A = F 2
π , (2.50)

where F 2
V and F 2

A are the vector and axial mesons decay constants. This
sum rule holds for walking and running dynamics. A more general represen-
tation of the resonance spectrum would, in principle, replace the left-hand
side of this relation with a sum over vector and axial states. However, the
heavier resonances should not be included since in the approach of [63] the
walking dynamics in the intermediate energy range is already approximated
by the exchange of underlying fermions. The walking is encapsulated in
the dynamical mass dependence on the momentum dictated by the gauge
theory. The introduction of heavier resonances is, in practice, double count-
ing. Note that the approach is in excellent agreement with the Weinberg
approximation for QCD, since in this case, the approximation automatically
returns the known results.

The second sum rule receives important contributions from throughout
the near conformal region and can be expressed in the form of:

F 2
VM

2
V − F 2

AM
2
A = a

8π2

d(R)
F 4
π , (2.51)

where a is expected to be positive and O(1) and d(R) is the dimension of the
representation of the underlying fermions. We have generalized the result of
Ref. [63] to the case in which the fermions belong to a generic representation
of the gauge group. In the case of running dynamics the right-hand side of
the previous equation vanishes.

We stress that a is a non-universal quantity depending on the details of
the underlying gauge theory. A reasonable measure of how large a can be
is given by a function of the amount of walking which is the ratio of the
scale above which the underlying coupling constant start running divided
by the scale below which chiral symmetry breaks. The fact that a is positive
and of order one in walking dynamics is supported, indirectly, also via the
results of Kurachi and Shrock [66]. At the onset of conformal dynamics the
axial and the vector will be degenerate, i.e. MA = MV = M , using the first
sum rule one finds via the second sum rule a = d(R)M2/(8π2F 2

π ) leading
to a numerical value of about 4–5 from the approximate results in [66]. We
will, however, use only the constraints coming from the generalized WSRs
expecting them to be less model dependent.
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2.6.2. Relating WSRs to the effective theory and S parameter

The S parameter is related to the absorptive part of the vector–vector
minus axial–axial vacuum polarization as follows:

S = 4

∞∫
0

ds

s
ImΠ̄ (s) = 4π

[
F 2
V

M2
V

− F 2
A

M2
A

]
, (2.52)

where ImΠ̄ is obtained from ImΠ by subtracting the Goldstone boson con-
tribution.

Other attempts to estimate the S parameter for walking technicolor the-
ories have been made in the past [67] showing reduction of the S parame-
ter. S has also been evaluated using computations inspired by the original
AdS/CFT correspondence [68] in [69–74]. Recent attempts to use AdS/CFT
inspired methods can be found in [75–77,79,80].

Kurachi, Shrock and Yamawaki [81] have further confirmed the results
presented in [63] with their computations tailored for describing four dimen-
sional gauge theories near the conformal window. The present approach [63]
is more physical since it is based on the nature of the spectrum of states
associated directly to the underlying gauge theory.

Note that we will be assuming a rather conservative approach in which
the S parameter, although reduced with respect to the case of a running
theory, is positive and not small. After all, other sectors of the theory such
as new leptons further reduce or completely offset a positive value of S due
solely to the technicolor theory.

2.7. Naturalizing unparticle

It would be extremely exciting to discover new strong dynamics at the
Large Hadron Collider (LHC). It is then interesting to explore the possibility
to be able accommodate the unparticle scenario [82] into a natural setting
featuring four dimensional strongly interacting dynamics [83].

Georgi’s original idea is that at high energy there is an UV sector coupled
to the SM through the exchange of messenger fields with a large mass scale
MU . Below that scale two things happen consecutively. Firstly, the mes-
senger sector decouples, resulting in contact interactions between the SM
and the unparticle sector. Secondly, the latter flows into a non-perturbative
infrared (IR) fixed point at a scale ΛU �MU hence exhibiting scale invari-
ance;

L ∼ OUVOSM → OUOSM . (2.53)

The UV unparticle operator is denoted by OUV and it posses integer di-
mension dUV. When the IR fixed point is reached the operator OIR ≡ OU
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acquires a non-integer scaling dimension dU through dimensional transmu-
tation

|〈0|OU |P 〉| ∼
(√

P 2
)dU−1

. (2.54)

This defines the matrix element up to a normalization factor. In the regime
of exact scale invariance the spectrum of the operator OU is continuous,
does not contain isolated particle excitations and might be regarded as one
of the reasons for the name “unparticle”. The unparticle propagator carries
a CP-even phase4 [85, 86] for space-like momentum. Effects were found to
be most unconventional for non-integer scaling dimension dU , e.g. [82, 85]
and [87].

The coupling of the unparticle sector to the SM (2.53) breaks the scale
invariance of the unparticle sector at a certain energy. Such a possibility
was first investigated with naive dimensional analysis (NDA) in Ref. [88] via
the Higgs-unparticle coupling of the form

Leff ∼ OU |H|2 . (2.55)

The dynamical interplay of the unparticle and Higgs sector in connection
with the interaction (2.55) has been studied in [89]. It was found, for in-
stance, that the Higgs vev induces an unparticle vev, which turned out to
be infrared (IR) divergent for their assumed range of scaling dimension and
forced the authors to introduce various IR regulators [89,90].

In work [83] the unparticle scenario was elevated to a natural extension
of the SM by proposing a generic framework in which the Higgs and the
unparticle sectors are both composites of elementary fermions. We used
four dimensional, non-supersymmetric asymptotically free gauge theories
with fermionic matter. This framework allows to address, in principle, the
dynamics beyond the use of scale invariance per se.

The Higgs sector is replaced by a walking technicolor model (TC), where-
as the unparticle one corresponds to a gauge theory developing a nonper-
turbative5 IR fixed point (conformal phase)6. By virtue of TC there is no
hierarchy problem. We even sketched a possible unification of the two sec-
tors, embedding the two gauge theories in a higher gauge group. The model
resembles the ones of extended technicolor and leads to a simple explanation
of the interaction between the Higgs and the unparticle sectors.

4 The resulting CP violation was found to be consistent with the CPT theorem [84].
5 We note that the Banks–Zaks [91] type IR points, used to illustrate the unparticle
sector in [82], are accessible in perturbation theory. This yields anomalous dimensions
of the gauge singlet operators which are close to the perturbative ones, resulting in
very small unparticle type effects.

6 Strictly speaking conformal invariance is a larger symmetry than scale invariance but
we shall use these terms interchangeably throughout this paper. We refer the reader
to Ref. [92] for an investigation of the differences.
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2.7.1. The Higgs and unparticle as composites

According to [83] the building block is an extended GT×U ≡ SU(NT )×
SU(NU ) technicolor (TC) gauge theory. The matter content constitutes
of techniquarks Qaf charged under the representation RT of the TC group
SU(NT ) and Dirac techniunparticle fermions ΨA

s charged under the repre-
sentation RU of the unparticle group SU(NU ), where a/A = 1 . . . dim[RT/U ]
and f/s = 1 . . . F/S denote gauge and flavor indices respectively. We will
first describe the (walking) TC and (techni)unparticle sectors separately be-
fore addressing their common dynamical origin. A graphical illustration of
the scenario is depicted in Fig. 12 as a guidance for the reader throughout
this section.
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Fig. 12. Schematic scenario. The ordering of the energy scales ΛU and ΛT is not
of any importance.

In the TC sector the number of techniflavors, the matter representation
and the number of colors are arranged in such a way that the dynamics is
controlled by a near conformal (NC) IR fixed point. In this case the gauge
coupling reaches almost a fixed point around the scale ΛT �MW , withMW

the mass of the electroweak gauge boson. The TC gauge coupling, at most,
gently rises from this energy scale down to the electroweak one. Around the
electroweak scale the TC dynamics triggers the spontaneous breaking of the
electroweak symmetry through the formation of the technifermion conden-
sate, which therefore has the quantum numbers of the SM Higgs boson. As
we have explained earlier in the simplest TC models the technipion decay
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constant FT is related to the weak scale as 2MW = gFT (g is the weak
coupling constant) and therefore FT ' 250 GeV. The TC scale, analogous
to ΛQCD for the strong force, is roughly ΛTC ∼ 4πFT .

Now we turn our attention to the unparticle sector. Here the total num-
ber of massless techniunparticle flavors S is balanced against the total num-
ber of colors NU in such a way that the theory, per se, is asymptotically
free and admits a nonperturbative IR fixed point. The energy scale around
which the IR fixed point starts to set in is indicated with ΛU �MW .

It might be regarded as natural to assume that the unparticle and the
TC sectors have a common dynamical origin, e.g. are part of a larger gauge
group at energies above ΛT and ΛU . Note that the relative ordering between
ΛT and ΛU is of no particular relevance for this scenario. The low energy
relics of such a unified-type model are four-Fermi operators allowing the two
sectors to communicate with each other at low energy. The unparticle sector
will then be driven away from the fixed point due to the appearance of the
electroweak scale in the TC sector.

The model resembles models of extended technicolor (ETC) where the
techniunparticles play the role of the SM fermions. We refer to these type
of models as Extended Techni-Unparticle (ETU) models7. At very high
energies E � MU the gauge group GT×U is thought to be embedded in a
simple group GTU ⊃ GT×U . At around the scale MU the ETU group is
broken to GTU → GT×U and the heavy gauge fields receive masses of the
order of MU and play the role of the messenger sector. Below the scale MU
the massive gauge fields decouple and four-Fermi operators emerge, which
corresponds to the first step of the scenario, e.g. Eq. (2.53) and Fig. 12.
Without committing to the specific ETU dynamics the interactions can be
parametrized as:

Leff
<MU = α

Q̄Q Ψ̄Ψ
M2
U

+ β
Q̄QQ̄Q

M2
U

+ γ
Ψ̄ΨΨ̄Ψ
M2
U

. (2.56)

The coefficients α, β and γ (the latter should not be confused with an
anomalous dimension) are of order one, which can be calculated if the gauge
coupling gTU is perturbative. The Lagrangian (2.56) is the relic of the
ETU(ETC) interaction and gives rise to two sources of dynamical chiral sym-
metry breaking in addition to the intrinsic dynamics of the groups GT/U .
These are contact interactions of the type emphasized in [94]. Firstly, when
one fermion pair acquires a vev then the α term turns into a tadpole and
induces a vev for the other fermion pair. This is what happens to the unpar-
ticle sector when the TC sector, or the SM Higgs [89], breaks the electroweak
symmetry. Secondly, the γ term corresponds to a Nambu–Jona-Lasino type

7 The work by Georgi and Kats [93] on a two dimensional example of unparticles has
triggered this work.
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interaction which may lead to the formation of a vev, for sufficiently large γ.
This mechanism leads to breaking of scale invariance even in the absence of
any other low energy scale. Note that this mechanism is operative in models
of top condensation, cf. the TC report [13] for an overview. However, based
on the analysis in Appendix A of [83] we shall neglect this mechanism in the
sequel of this paper. We shall refer to these two mechanism as α/γ-induced
condensates.

At the scale ΛU �MW the unparticle gauge sector flows into an IR fixed
point and the UV operator OUV = Ψ̄Ψ becomes the composite unparticle
operator OIR ≡ OU with scaling dimension dU ≡ 3− γU 8,

(Ψ̄Ψ)UV ∼ ΛγUU OU ; MW � ΛU �MU . (2.57)

Note, the anomalous dimension γU of the operator has to satisfy γU ≤ 2 due
to unitarity bounds of the representations of the conformal group [95]. The
Lagrangian then simply becomes

Leff
ΛU = α ′

Q̄QΛγUU OU
M2
U

+ β′
Q̄QQ̄Q

M2
U

+ γ′
Λ2γU
U OUOU
M2
U

. (2.58)

This realizes the second step in the scenario, cf. Fig. 12 and Eq. (2.53). The
matching coefficients α ′, β′, γ′ (2.58) are related to α, β, γ (2.56) by order
one coefficients. The α term in Eq. (2.58) is similar to the unparticle-Higgs
interaction in Eq. (2.55).

The composite operator Q̄Q can be treated in analogy to Ψ̄Ψ in (2.57),

(Q̄Q)UV ∼ ΛγTT OT , ΛTC � ΛT �MU , (2.59)

up to logarithmic corrections which are negligible. Contrary to the un-
particle sector the TC gauge dynamics break scale invariance through the
formation of an intrinsic condensate

〈OT 〉ΛT ' w
γT
T ΛdTTC ≡ wγTT Λ3−γT

TC , wT ≡
(

ΛT
ΛTC

)
. (2.60)

The estimate of the vev is based on scaling from QCD and renormalization
group evolution.

The relevant terms contained in the low energy effective theory around
the electroweak scale are9:

Leff
ΛT = α ′wγTT

Λ3
TC ΛγUU OU
M2
U

+ γ′
Λ2γU
U OUOU
M2
U

+ . . . . (2.61)

8 The parametrization dU ≡ 3− γU will be standard throughout the entire paper and
in the text the scaling dimension dU and the anomalous dimension γU will be used
interchangeably.

9 Note that in QCD-like TC models (the gauge coupling displays a running behavior
rather than a walking one) one would set γT ' 0 in Eqs. (2.60) and (2.61).
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This step involves another matching procedure but we shall not introduce
further notation here and denote the matching coefficients by simple primes
only. As stated previously the TC condensate drives the TC gauge sector
away from the fixed point and the coupling increases towards the IR. The
sector is then replaced by a low energy effective chiral Lagrangian featuring
the relevant composite degrees of freedom [13, 19]. The details on how the
unparticle operator acquires a vev can be found in [83] together with the
suggestion of a UV model. Here we will simply summarize a schematic
ETU model and its low energy effective description which can be useful for
phenomenology.

2.7.2. A schematic ETU model and its low energy effective theory

We imagine that at an energy much higher than the electroweak scale
the theory is described by a gauge theory

LUV = −1
2Tr [FµνFµν ] +

F∑
F=1

ξ̄F (i/∂ + gTU /A)ξF + . . . , (2.62)

where A is the gauge field of the SU(NT +NU ) group and gauge indices are
suppressed. (ξAF )T = (Q1 · · ·QNT ,Ψ1 · · ·ΨNU )F is the fermion field unify-
ing the technifermion and TC matter content. The dots in (2.62) stand for
the SU(3) × SU(2)L × U(1)Y gauge fields and their interactions to the SM
fermions and technifermions. There is no elementary Higgs field in this for-
mulation. Unification of the TC and techniunparticle dynamics constrains
the flavor symmetry of the two sectors to be identical at high energies. The
matter content and the number of technifermions (TC + techniunparticles)
is chosen, within the phase diagram in [14], such that the theory is asymp-
totically free at high energies. The non-Abelian global flavor symmetry is
SUL(F )× SUR(F ).

At an intermediate scale MU , much higher than the scale where the
unparticle and TC subgroup become strongly coupled, the dynamics is such
that SU(NT +NU ) breaks to SU(NT )× SU(NU ). Only two flavors (i.e. one
electroweak doublet) are gauged under the electroweak group. The global
symmetry group breaks explicitly to GF = SUL(2) × SUR(2) × SUL(F −
2) × SUR(F − 2). At this energy scale the weak interactions are, however,
negligible and we can safely ignore it.

At the scale MU there are the Qic fermions — with i = 1, . . . , F and c =
1, . . . , NT — as well as the Ψ i

u ones — with i = 1, . . . , F and u = 1, . . . , NU .
Assigning the indices i = 1, 2 to the fermions gauged under the electroweak
group we observe that not only the TC fermions are gauged under the elec-
troweak but also the technunparticles. To ensure that the unparticle sector
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is experimentally not too visible we have to assume a mechanism that pro-
vides a large mass to the charged techniunparticle fermions. In reality this
is quite a difficult task, since we do not want to break the SM weak symme-
try explicitly10. Our treatment below, however, is sufficiently general to be
straightforwardly adapted to various model constructions.

As already stated in the first section, the number of flavors and colors
for the TC and unparticle gauge groups SU(NT ) and SU(NU ) have to be
arranged such that the former is NC and the latter is conformal. This
enforces the conditions:

F ≤ F ∗NT , F ∗NU ≤ F − 2 . (2.63)

F ∗N denotes the critical number of flavors, for a given number of colors N ,
above which the theory develops an IR fixed point. Recall that two unpar-
ticle flavors are decoupled and hence F → F − 2 in the second inequality
in (2.63). The use of the phase diagram we will describe in the following
chapter will be relevant to determine F ∗.

Below the scale MU all four-Fermi interactions have to respect the flavor
symmetry GF. The most general four-Fermi operators have been classified
in [96] and the coefficient of the various operators depend on the specific
model used to break the unified gauge theory. Upon Fierz rearrangement,
the operators of greatest phenomenological relevance are,

Leff =
(
G

2
Ψ̄LΣΨR + h.c.

)
+

G ′

2M2
U

(
Ψ̄LΨR

) (
Ψ̄RΨL

)
+ . . . , (2.64)

the scalar–scalar interactions of Eq. (2.56). Here Σ is the quark bilinear,

Σ j
i ∼ (QLiQ̄

j
R)UV , i = 1, . . . , F . (2.65)

The flavor indices are contracted and the sum starts from the index value 3;
the first two indices correspond to the Ψs charged under the electroweak
force, which are decoupled at low energy. The fermion bilinear becomes the
unparticle operator (2.59),

(OU) ji =
ΨLiΨ̄

j
R

ΛγUU
. (2.66)

The matrix Σ at energies near the electroweak symmetry breaking scale is
identified with the interpolating field for the mesonic composite operators.

10 One could for instance unify the flavor symmetry of the unparticles with the tech-
nicolor gauge group into an ETC group. This would also produce a Lagrangian of
the type (2.56). The TC fermions would be charged under the electroweak group
separately.
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To investigate the coupling to the composite Higgs we write down the
low energy effective theory using linear realizations. We parameterize the
complex F × F matrix Σ by

Σ =
σ + iΘ√

F
+
√

2
(
iΠ a + Π̃ a

)
T a , (2.67)

where (σ,Π̃ ) and (Θ ,Π ) have 0++ and 0−+ quantum numbers, respectively.
The Lagrangian is given by

Leff = 1
2Tr

[
(DΣ )†DΣ

]
− k1

(
T̂r
[
Σ †OU

]
+ h.c.

)
− k2T̂r

[
OUOU†

]
−m2

ETC

F 2−1∑
a=4

Π aΠ a

2
− V

(
Σ ,Σ †

)
, (2.68)

where

DΣ = ∂Σ − igWΣ + ig ′ΣBT 3
R , and W = W aT aL , (2.69)

and Tr [T aL/RT
b
L/R] = δab/2. The coefficients k1 and k2 are directly propor-

tional to the α ′ and γ ′ coefficients in (2.58). The hat on some of the traces
indicates that the summation is only on the flavor indices from 3 to F . Three
of the Goldstone bosons play the role of the longitudinal gauge bosons and
the remaining ones receive a mass m2

ETC from an ETC mechanism. We refer
the reader to Ref. [13] for discussion of different ETC models with mecha-
nisms for sufficiently large mass generation. The first term in the Lagrangian
is responsible for the mass of the weak gauge bosons and the kinetic term for
the remaining Goldstone bosons. The vevs for the flavor-diagonal part of the
unparticle operator, reduces to the computation performed in the previous
section. The potential term preserves the global flavor symmetry GF. Up
to dimension four, including the determinant responsible for the η′ mass in
QCD, the terms respecting the global symmetries of the TC theory are:

V
(
Σ ,Σ †

)
= −m

2

2
Tr
[
Σ †Σ

]
+
λ1

F
Tr
[
Σ †Σ

]2
+ λ2Tr

[
(Σ †Σ )2

]
−λ3

(
detΣ + detΣ †

)
. (2.70)

The coefficient m2 is positive to ensure chiral symmetry breaking in the TC
sector. The Higgs vev enters as follows,

σ = v + h , with FT =

√
2
F
v ' 250 GeV . (2.71)



Conformal Dynamics for TeV Physics and Cosmology 3565

F here is the number of flavors and h the composite field with the same
quantum numbers as the SM Higgs. The particles σ,Θ , Π̃ all have masses
of the order of v. The Higgs mass, the Higgs vev and the Θ mass, for
instance, are

v2 =
m2

(λ1 + λ2 − λ3)
, m2

h = 2m2 , m2
Θ = 4v2λ2

3 , (2.72)

up to corrections of the order of O(Λ2
TC/M

2
U ) due to contributions from α

terms.
The lightest pesudoscalars of the unparticle sector are the pseudo Gold-

stone bosons emerging from the explicit breaking of the global flavor sym-
metry in the unparticle sector. Their mass can be read off from the linear
term in OU of the effective Largrangian (2.68)

m2
ΠU ' Λ2

TC

(
ΛTC

M2
U

)2( ΛU
ΛTC

)γU ( ΛT
ΛTC

)γT
. (2.73)

The unparticle propagator to be used for phenomenology, defined from
the the Källén–Lehmann representation is

∆U
(
q2,Λ2

UV,Λ
2
IR

)
= −BdU

2π

Λ2
UV∫

Λ2
IR

ds sdU−2

s− q2 − i0 + s.t. (2.74)

The explicit form for different values of the anomalous dimension can be
found in [83]. We shall now turn to the question of the mixing of the un-
particle and the Higgs11.

The interaction term from Eq. (2.68)

Lmix = −ghOU hOU , ghOU =
k1(F − 2)√

F
, (2.75)

introduces a mixing between the Higgs and the unparticle. The constant k1

has mass dimension γU . The Higgs propagator is obtained from inverting
the combined Higgs-unparticle system

∆hh

(
q2
)

=
1

q2 −m2
h − g2

hOU∆U
(
q2,Λ2

UV,Λ
2
IR

) . (2.76)

11 The findings in [83] resemble results from extra dimensional models such as the model
called HEIDI [97], where the continuous spectrum is mimicked by an infinite tower of
narrowly spaced Kaluza–Klein modes. The difference is that this model is inherently
four dimensional and that the parameters, such as the IR cut off and the strength of
the unparticle-Higgs coupling, are related to each other. This model is also different
from the one in Ref. [89] since, although both are in four dimensions, the Higgs and
unparticle coupling emerges dynamically within a UV complete theory.
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This, of course, results in unparticle corrections controlled by ghOU . The
propagator can be rewritten in terms of a dispersion representation

∆hh

(
q2
)

= −
∫

ds ρhh(s)
s− q2 − i0 , (2.77)

where the density, ∫
dsρhh(s) = 1 , (2.78)

is automatically normalized to unity. The non zero value of the coupling
ghOU results solely in a change of basis (or poles and cuts) of the intermediate
particles but does not change the overall density of states. To a large extent
the spectral function is characterized by the zeros of the pole equation and
the onset of the continuum relative to the poles. This will depend on the
strength of the mixing and the anomalous dimension. Somewhat exotic
effects can be obtained when the mixing term is made very large [98,99]. In
the present model the mixing is determined by k1 (2.75):

k1 ∼ α ′ΛγUTC

(
ΛTC

MU

)2( ΛU
ΛTC

)γU
wγTT , wT =

(
ΛT
ΛTC

)
(2.79)

which we have normalized to the TC scale.
The value of k1 is, of course, suppressed by the large scaleMU per se, but

receives enhancements from the powers of the anomalous dimensions. For
the maximal allowed anomalous dimensions γU ' γT ' 2 and a hierarchy
of scale envisioned earlier one finds k1Λ

−γU
TC ' α ′ · O(10−2). We, therefore,

expect the coupling ghOUΛ
−γU
TC (2.75) to be considerably smaller than one.

In this case there is generally a unique solution to the pole equation [83].
At the qualitative level it is an interesting question of whether the Higgs
resonance is below or above the threshold [89,97].

Here we introduced a framework in which the Higgs and the unparticle
are both composite. The underlying theories are four dimensional, asymp-
totically free, nonsupersymmetric gauge theories with fermionic matter. We
sketched a possible unification of these two sectors at a scale much higher
than the electroweak scale. The resulting model resembles extended techni-
color models and we termed it extended technicolor unparticle (ETU). The
coupling of the unparticle sector to the SM emerges in a simple way and
assumes the form of four-Fermi interactions below MU .

In the model the unparticle sector is coupled to the composite Higgs.
Another possibility is to assume that the Higgs sector itself is unparticle-
like, with a continuous mass distribution. This UnHiggs [100,101] could find
a natural setting within walking technicolor, which is part of the present
framework. Of course it is also possible to think of an unparticle scenario
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that is not coupled to the electroweak sector, where scale invariance is broken
at a (much) lower scale. This could result in interesting effects on low energy
physics as extensively studied in the literature.

With respect to this model, in the future, one can:

• Study the composite Higgs production in association with a SM gauge
boson, both for proton–proton (LHC) and proton–antiproton (Teva-
tron) collisions via the low energy effective theory (2.68). In Refs.
[102, 103] it has been demonstrated that such a process is enhanced
with respect to the SM, due to the presence of a light composite
(techni)axial resonance12. The mixing of the light composite Higgs
with the unparticle sector modifies these processes in a way that can
be explored at colliders. Concretely, the transverse missing energy
spectrum can be used to disentangle the unparticle sector from the
TC contribution per se.
• Use first principle lattice simulations to gain insight on the nonpertur-

bative (near) conformal dynamics. It is clear from our analysis that
this knowledge is crucial for describing and understanding unparticle
dynamics. As a model example in [83] was considered partially gauge
technicolor introduced in [17]. These gauge theories are being studied
on the lattice [105–107]. Once the presence of a fixed point is estab-
lished, for example via lattice simulations [108–111], the anomalous
dimension of the fermion mass can be determined from the conjec-
tured all order beta function [14, 21], or deduced directly via lattice
simulations (see [112–114] for recent attempts). Moreover, on the lat-
tice one should be able to directly investigate the two-point function,
i.e. the unparticle propagator.
• Investigate different models at the ETU level. For example one could

adapt some models, introduced to generate masses to the SM fermions,
in [57, 115–120] to improve on the present ETU model.
• Study possible cosmological consequences of our framework. The light-

est baryon of the unparticle gauge theory, the Unbaryon, is naturally
stable (due to a protected U(1) unbaryon number) and therefore it is
a possible dark matter candidate. Due to the fact that we expect a
closely spaced spectrum of Unbaryons and unparticle vector mesons, it
shares properties in common with secluded models of dark matter [121]
or previously discussed unparticle dark matter models [122].

Within the present framework unparticle physics emerges as a natural
extension of dynamical models of electroweak symmetry breaking. As seen
above, the link opens the doors to yet unexplored collider phenomenology
and possible new avenues for dark matter, such as the use of the unbaryon.

12 A similar analysis within an extradimensional set up has been performed in [104].
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3. Techni-dark cosmology: the TIMP

The Wilkinson Microwave Anisotropy Probe (WMAP) is a NASA Ex-
plorer mission. By detecting the first full-sky map of the microwave sky —
and thus of the cosmic microwave background (CMB) — with a resolution of
under a degree (about the angular size of the moon), WMAP gave a wealth
of cosmological information. It has produced a convincing consensus on the
contents of the Universe. WMAP has also determined the age, the epochs
of the key transitions, and the geometry of the Universe, while providing
the most stringent data yet on events in the first fraction of a second of the
Universe’s existence.

Fig. 13. Evolution of the Universe.

More specifically, recent WMAP data [123] combined with independent
observations strongly indicate that the Universe is flat and it is predom-
inantly made of unknown forms of matter. Defining with Ω the ratio of
the density to the critical density, observations indicate that the fraction
of matter amounts to Ωmatter ∼ 0.3 of which the normal baryonic one is
only Ωbaryonic ∼ 0.044. The amount of non-baryonic matter is termed dark
matter. The total Ω in the universe is dominated by dark matter and pure
energy (dark energy) with the latter giving a contribution ΩΛ ∼ 0.7 (see for
example [124, 125]). Most of the dark matter is “cold” (i.e. non-relativistic
at freeze-out) and significant fractions of hot dark matter are hardly com-
patible with data. What constitutes dark matter is a question relevant for
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particle physics and cosmology. There is a fair chance that LHC could help
to solve this puzzle by providing direct or indirect evidence for such a new
type of matter. A WIMP (Weakly Interacting Massive Particles) can be the
dominant part of the non-baryonic dark matter contribution to the total Ω .
Axions can also be dark matter candidates but only if their mass and cou-
plings are tuned for this purpose. If the dark matter candidate is discovered
at the LHC it would be of tremendous help to cosmology since many of its
properties can then be studied directly in laboratory.

The future Planck ESA mission will be the third generation of CMB
space missions following the cosmic background explorer (COBE) satellite
and WMAP. The primary goal of Planck is the production of high-sensitivity
(one part per million), high-angular resolution (10 arcminutes) maps of the
microwave sky. The mission goals include:
• the precise determination of the primordial fluctuation spectrum, pro-

viding the information necessary for the theory of large scale structure
formation;
• the detection of primordial gravitons/gravity waves, allowing to test

the relationships expected from inflation;
• to uncover the statistics underlying the CMB anisotropies, for instance

by looking at non-gaussianities in the bispectrum (inflation generally
predicts a Gaussian parent distribution while topological defects pre-
dict deviation from Gaussian distributions and rare peak fluctuations).

It would be theoretically very pleasing to be able to relate the DM and the
baryon energy densities in order to explain the ratio ΩDM/ΩB ∼ 5 [126]. We
know that the amount of baryons in the Universe ΩB ∼ 0.04 is determined
solely by the cosmic baryon asymmetry nB/nγ ∼ 6× 10−10. This is so since
the baryon–antibaryon annihilation cross-section is so large, that virtually
all antibaryons annihilate away, and only the contribution proportional to
the asymmetry remains. This asymmetry can be dynamically generated
after inflation. We do not know, however, if the DM density is determined
by thermal freeze-out, by an asymmetry, or by something else. Thermal
freeze-out needs a σv ≈ 3 10−26 cm3/ sec which is of the electroweak size,
suggesting a DM mass in the TeV range. If ΩDM is determined by thermal
freeze-out, its proximity to ΩB is just a fortuitous coincidence and is left
unexplained.

If instead ΩDM ∼ ΩB is not accidental, then the theoretical challenge is
to define a consistent scenario in which the two energy densities are related.
Since ΩB is a result of an asymmetry, then relating the amount of DM to
the amount of baryon matter can very well imply that ΩDM is related to
the same asymmetry that determines ΩB. Such a condition is straightfor-
wardly realized if the asymmetry for the DM particles is fed in by the non-
perturbative electroweak sphaleron transitions, that at temperatures much
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larger than the temperature T∗ of the electroweak phase transition (EWPT)
equilibrates the baryon, lepton and DM asymmetries. Implementing this
condition implies the following requirements:

1. DM must be (or must be a composite state of) a fermion, chiral (and
thereby non-singlet) under the weak SU(2)L, and carrying an anoma-
lous (quasi)-conserved quantum number B′.

2. DM (or its constituents) must have an annihilation cross-section much
larger than electroweak σann � 3 10−26 cm3/ sec, to ensure that ΩDM

is determined dominantly by the B′ asymmetry.

The first condition ensures that a global quantum number corresponding
to a linear combination of B, L and B′ has a weak anomaly, and thus DM
carrying B′ charge is produced in anomalous processes together with left-
handed quarks and leptons [127,128]. At temperatures T � T∗ electroweak
anomalous processes are in thermal equilibrium, and equilibrate the various
asymmetries Y∆B = cLY∆L = cB′Y∆B′ ∼ O(10−10). Here the Y∆s represent
the difference in particle number densities n− n̄ normalized to the entropy
density s, e.g. Y∆B = (nB − n̄B)/s. These are convenient quantities since
they are conserved during the Universe thermal evolution.

At T �MDM all particle masses can be neglected, and cL and cB′ are or-
der one coefficients, determined via chemical equilibrium conditions enforced
by elementary reactions faster than the Universe expansion rate [129]. These
coefficients can be computed in terms of the particle content, finding e.g.
cL = −28/51 in the SM and cL = −8/15 in the MSSM.

At T � MDM, the B′ asymmetry gets suppressed by a Boltzmann ex-
ponential factor e−MDM/T . A key feature of sphaleron transitions is that
their rate gets suddenly suppressed at some temperature T∗ slightly below
the critical temperature at which SU(2)L starts to be spontaneously bro-
ken. Thereby, if MDM < T∗ the B′ asymmetry gets frozen at a value of
O(Y∆B), while if instead MDM > T∗ it gets exponentially suppressed as
Y∆B′/Y∆B ∼ e−MDM/T .

More in detail, the sphaleron processes relate the asymmetries of the
various fermionic species with chiral electroweak interactions as follows. If
B ′, B and L are the only quantum numbers involved then the relation is:

Y∆B ′

Y∆B
= c · S

(
MDM

T∗

)
, c = c̄B ′ + c̄L

Y∆L

Y∆B
, (3.80)

where the order-one c̄L,B ′ coefficients are related to the cL,B ′ above in a
simple way. The explicit numerical values of these coefficients depend also
on the order of the finite temperature electroweak phase transition via the
imposition or not of the weak isospin charge neutrality. In [130, 131] the
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dependence on the order of the electroweak phase transition was studied in
two explicit models, and it was found that in all cases the coefficients remain
of order one. The statistical function S is:

S(z) =


6

4π2

∞∫
0

dxx2 cosh−2
(

1
2

√
x2 + z2

)
for fermions ,

6
4π2

∞∫
0

dxx2 sinh−2
(

1
2

√
x2 + z2

)
for bosons .

(3.81)

with S(0) = 1(2) for bosons (fermions) and S(z) ' 12 (z/2π)3/2e−z at
z � 1. We assumed the SM fields to be relativistic and checked that this
is a good approximation even for the top quark [130, 131]. The statistic
function leads to the two limiting results:

Y∆B′

Y∆B
= c×

{ S(0) for MDM � T∗
12 (MDM/2πT∗)

3/2 e−MDM/T∗ for MDM � T∗
. (3.82)

Under the assumption that all antiparticles carrying B and B′ charges are
annihilated away we have Y∆B′/Y∆B = nB′/nB. The observed DM density

ΩDM

ΩB
=
MDM nB′

mp nB
≈ 5 , (3.83)

(where mp ≈ 1GeV) can be reproduced for two possible values of the DM
mass:

(i) MDM ∼ 5GeV if MDM � T∗, times model dependent order one coeffi-
cients.

(ii) MDM ≈ 8T∗ ≈ 2TeV if MDM � T∗, with a mild dependence on the
model-dependent order unity coefficients.

The first solution is well known [127] and not interesting for our purposes.
The second solution matches the DM mass suggested by ATIC, in view of
T∗ ∼ v [128], where v ' 250GeV is the value of the electroweak breaking
order parameter13.

3.1. Introducing the TIMP

An ideal DM candidate, in agreement with PAMELA anomalies [133],
and compatible with direct DM searches, is a TeV particle that decays dom-
inantly into leptons, and that has a negligible coupling to the Z.

13 More precisely, for a Higgs mass mh = 120 (300) GeV, Ref. [132] estimates T∗ ≈
130 (200) GeV, where the larger T∗ values arise because of the larger values Higgs self
coupling. For the large masses that are typical of composite Higgs models, the self
coupling is in principle calculable and generally large [131], so that taking T∗ ∼ v is
not unreasonable.
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If DM is an elementary particle, this scenario needs DM to be a chiral
fermion with SU(2)L interactions, which is very problematic. Bounds from
direct detection are violated. Furthermore, a Yukawa coupling λ of DM to
the Higgs gives the desired DM mass MDM ∼ λv ∼ 2TeV if λ ∼ 4π is non-
perturbative, hinting to a dynamically generated mass associated to some
new strongly interacting dynamics [128,130,131,134]. This assumption also
solves the problem with direct detection bounds, which are satisfied if DM
is a composite SU(2)L-singlet state, made of elementary fermions charged
under SU(2)L.

This can be realized by introducing a strongly-interacting ad hoc ‘hid-
den’ gauge group. A more interesting identification comes from Technicolor.
In such a scenario, DM would be the lightest (quasi)-stable composite state
carrying a B′ charge of a theory of dynamical electroweak breaking featuring
a spectrum of technibaryons (B′) and technipions (Π ). The TIMP (Techni-
color Interacting Massive Particle) can have a number of phenomenologically
interesting properties.
(i) A traditional TIMP mass can be approximated by mB ′ = MDM ≈

nQΛTC where nQ is the number of techniquarksQ bounded into B′ and
ΛTC is the constituent mass, so that MDM/mp ≈ nQΛTC/3ΛQCD. De-
noting by fπ (FΠ ) the (techni)pion decay constant, we have FΠ /fπ=√
D/3 ΛTC/ΛQCD where DQ is the dimension of the constituent fer-

mions representation (D = 3 in QCD)14. Finally, the electroweak
breaking order parameter is obtained as v2 = NDF

2
Π , from the sum

of the contribution of the ND electroweak techni-doublets. Putting all
together yields the estimate:

MDM ≈ nQ√
3DQND

v

fπ
mp = 2.2 TeV , (3.84)

where the numerical value corresponds to the smallest number of con-
stituents and of techniquarks nQ = DQ = 2 and ND = 1.

(ii) A generic dynamical origin of the breaking of the electroweak sym-
metry can lead to several natural interesting DM candidates (see [14]
for a list of relevant references). A very interesting case is the one in
which the TIMP is a pseudo-Goldstone boson [130, 131]. In this case
one can observe these states also at colliders experiments [135].

It is worth mentioning that models of dynamical breaking of the elec-
troweak symmetry do support the possibility of generating the experimen-
tally observed baryon (and possibly also the technibaryon/DM) asymmetry
of the Universe directly at the electroweak phase transition [139–141]. Elec-
troweak baryogenesis [142] is, however, impossible in the SM [143].

14 The large-N counting relevant for a generic extension of technicolor type can be found
in Appendix F of [14].
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3.2. TIMP lifetime and decay modes

According to [144] the sphaleron contribution to the technibaryon decay
rate is negligible because exponentially suppressed, unless the technibaryon
is heavier than several TeV.

Grand unified theories (GUTs) suggest that the baryon number B is
violated by dimension-6 operators suppressed by the GUT scale MGUT ∼
2× 1016 GeV, yielding a proton life-time [145]

τ
(
p→ π0e+

) ∼ M4
GUT

m5
p

∼ 1041 sec . (3.85)

If B′ is similarly violated at the same high scale MGUT, our TIMP would
decay with life-time

τ ∼ M4
GUT

M5
DM

∼ 1026 sec (3.86)

which falls in the ball-park required by the phenomenological analysis to ex-
plain the PAMELA anomaly [133]. Models of unification of the SM couplings
in the presence of a dynamical electroweak symmetry breaking mechanism
have been recently explored [116,120]. Interestingly, the scale of unification
suggested by the phenomenological analysis emerges quite naturally [120].

Low energy TIMP and nucleon (quasi)-stability imply that, in the pri-
meval Universe, at temperatures T <∼MGUT perturbative violation of the
B′ and B global charges is strongly suppressed. Since this temperature is
presumably larger than the reheating temperature, it is unlikely that ΩB
and ΩDM result directly from an asymmetry generated in B′ or B. More
likely, the initial seed yielding ΩDM and ΩB could be an initial asymmetry in
lepton number L that, much along the lines of well studied leptogenesis sce-
narios [146], feeds the B and B′ asymmetries through the sphaleron effects.
Indeed, it has been shown that it is possible to embed seesaw-types of sce-
narios in theories of dynamical symmetry breaking, while keeping the scale
of the L-violating Majorana masses as low as ∼ 103 TeV [147]. In Minimal
Walking Technicolor [17, 19], one additional (techni-singlet) SU(2)-doublet
must be introduced to cancel the odd-number-of-doublets anomaly [148].
An asymmetry in the L′ global charge associated with these new states can
also serve as a seed for the B and B′ asymmetries. In [149] we have shown
that it is possible to embed a low energy see-saw mechanism for the fourth
family Leptons in the Minimal Walking Technicolor extension of the SM.

Assuming that TIMP decays is dominantly due to effective four-fermion
operators, its decay modes significantly depend on the technicolor gauge
group. In the following L generically denotes any SM fermion, quark or
lepton, possibly allowed by the Lorentz and gauge symmetries of the theory.
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• If the technicolor group is SU(3), the situation is analogous to ordi-
nary QCD: the TIMP is a fermionic QQQ state, and effective QQQL
operators gives TIMP → Π−`+ decays. This leads to hard leptons,
but together with an excess of p̄, from the Π− → c̄ decay (in view of
Π− 'W−L ).

• If the technicolor group is SU(4) the situation is that the TIMP is a
bosonic QQQQ state, and effective QQQQ operators lead to its decay
into technipions.

• Finally, if the technicolor gauge group is SU(2) the TIMP is a bosonic
QQ state, (as put forward in [130]), and effective QQLL operators lead
to TIMP decays into two L. Since the fundamental representation of
SU(2) is pseudoreal, one actually gets an interesting dynamics ana-
lyzed in detail in [130]. Here the TIMP is a pseudo-Goldstone boson
of the underlying gauge theory.

An SU(2) technicolor model compatible with the desired features is obtained
assuming that the left component of the Dirac field Q has zero hypercharge
and is a doublet under SU(2)L, so that the TIMP is a scalar QQ with
no overall weak interactions, and the four-fermion operator (QQ)∂µ(L̄γµL)
allows it to decay. Such operator is possible for both SM leptons and quarks,
so that the TIMP branching ratios into `+`− and qq̄ is a free parameter.

3.3. Effective Lagrangian for the simplest TIMP and earth based constraints

We identify the TIMP with a complex scalar φ, singlet under the SM
interactions, charged under the U(1) technibaryon symmetry of a generic
TC theory. For example UMT includes such a state [130]. The main dif-
ferences with other models featuring an extra U(1) scalar DM are: (i) The
U(1) is natural, i.e. it is identified with a technibaryon symmetry; (ii) Com-
positeness requires the presence around the electroweak scale of spin one
resonances leading to striking collider signatures; (iii) The DM relic density
is naturally linked to the baryon one via an asymmetry. We also introduce a
(light) composite Higgs particle since it appears in several strongly coupled
theories as shown in Appendix F of [14]. We consider only the TC global
symmetries relevant for the electroweak sector, i.e. the SU(2)×SU(2) spon-
taneously breaking to SU(2). The low energy spectrum contains, besides
the composite Higgs, two SU(2) triplets of (axial-) vector spin one mesons.
The effective Lagrangian, before including the TIMP, has been introduced
in [19, 102] in the context of minimal walking theories. Here we add the
TIMP φ with the following interaction terms:
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LDM = 1
2 ∂µφ

∗∂µφ− M2
φ − dMv2

2
φ∗φ+

dF
2Λ2

Tr
[
FLµνF

µν
L + FRµνF

µν
R

]
φ∗φ

+dC g̃2 Tr
[
C2

Lµ + C2
Rµ

]
φ∗φ− dM

2
Tr
[
MM †

]
φ∗φ . (3.87)

The matrix M contains the composite Higgs and the pions eaten by the
electroweak bosons,

M =
1√
2

[v +H + 2 i T a πa] , (3.88)

where v is the vacuum expectation value, and T a = 2σa, a = 1, 2, 3, where
σa are the Pauli matrices. Λ is a scale associated to the breakdown of the low
energy effective theory and it is in the TeV energy range. CLµ and CRµ are
the electroweak covariant linear combinations CLµ = AaLµ T

a − g/g̃ W̃ a T a

and CRµ = AaRµ T
a − g′/g̃ B̃ T 3, where W̃ a and B̃ are the electroweak gauge

fields (before diagonalization). FL, FR are the fields strength tensors asso-
ciated to the vector meson fields AaLµ and AaRµ, respectively. The associated
spin one mass eigenstates are indicated with R1 and R2.

In earth based experiments the TIMP interacts with nuclei mainly via
the exchange of a composite Higgs (the dM term in the above Lagrangian)
and a photon. The photon interaction was considered in [150] and it is due
to a nonzero electromagnetic charge radius of φ. Here we stress the relevance
of the composite Higgs exchange. Similar exchanges (although not from a
composite theory) were studied also in [151, 152]. The Lagrangian term for
the charge radius interaction is:

LB = ie
dB
Λ2
φ∗
←→
∂µφ∂νF

µν . (3.89)

The non-relativistic cross-section for scattering off a nucleon from the photon
and Higgs exchanges respectively are:

σγp =
µ2

4π

[
8π α dB

Λ2

]2

, σHnucleon =
µ2

4π

[
dM fmN

M2
HMφ

]2

(3.90)

with µ = MφmN/(Mφ + mN ). Here mN is the mass of the nucleon and
the Higgs to nucleon coupling f can range between 0.14 and 0.66 [153,154].
The composite Higgs can be light in theories with higher dimensional rep-
resentations [14, 155] as well as in near-conformal TC models [17]. Simi-
larly φ can also be light [130]. These observations justify considering both
contributions for the cross-section. The nucleus-dark matter cross-section
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must be, however, still corrected by the nucleus form factor ξ(Mφ) as de-
scribed in [151, 156]. We use the same Gaussian form factor as in [151]
which is found to be precise to within 10% for Mφ . 100 GeV, while for
Mφ > 100 GeV the Gaussian form factor correction still overestimates the
true cross-section [156]. However, in the latter region CDMS and XENON
currently have insufficient sensitivity even using the Gaussian form factor.

In Fig. 14 we plot the cross-sections independently. The Higgs exchange
is shown in solid red for a reference value of MH = 300 eV and dM = 1.
The solid black and dashed cross-sections (adjusted for 73Ge) are the pho-
ton exchange cross-sections for two values of Λ, i.e. 4πFTC ≈ 3 TeV and
1 TeV. The latter value would be a reasonable guess for low scale techni-
color models [157]. We have also taken the fiducial value of |dB| = 1. In
the same plot we compare our curves with the CDMS (solid-thick-blue) and
XENON (dashed-thick-blue) exclusion limits. The long-dashed-blue line is
the projected superCDMS exclusion curve.
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Fig. 14. TIMP — nucleon cross-section: thin straight solid (red) line corresponds
to the composite Higgs exchange where we used dM = 1 and MH = 300 GeV.
The lowest solid and the dashed (black) lines correspond to the photon exchange
cross-section with dB = 1 and Λ = 3 TeV (solid) and 1 TeV (dashed). We use
for reference f = 0.3. Also plotted is the approximate exclusion limit from CDMS
II Ge Combined solid-thick-(blue) and XENON10 2007 dashed-thick-(blue). The
long-dashed-(blue) line is the projected superCDMS exclusion curve. The allowed
region is below the CDMS and XENON curves.

At low values of the TIMP mass the composite Higgs exchange dominates
and the experimental constraints become relevant. We also expect important
interference effects which are obtained by simply combining the amplitudes
of the two competing processes. The effective TIMP Lagrangian has also
been used to deduce interesting collider phenomenology [135].
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There exist several interesting models of dark matter inspired to techni-
color and we refer to [136,138] for a list of relevant literature.

4. Conformal dynamics

We have seen that models of dynamical breaking of the electroweak sym-
metry are theoretically appealing and constitute one of the best motivated
natural extensions of the SM. These are also among the most challenging
models to work with since they require deep knowledge of gauge dynamics
in a regime where perturbation theory fails. In particular, it is of utmost
importance to gain information on the nonperturbative dynamics of non-
Abelian four dimensional gauge theories.

4.1. Phases of gauge theories

Non-Abelian gauge theories exist in a number of distinct phases which
can be classified according to the characteristic dependence of the poten-
tial energy on the distance between two well separated static sources. The
collection of all of these different behaviors, when represented, for exam-
ple, in the flavor-color space, constitutes the phase diagram of the given
gauge theory. The phase diagram of SU(N) gauge theories as functions of
number of flavors, colors and matter representation has been investigated
in [14,16,20,21,158].

The analytical tools we will use for such an exploration are: (i) The
conjectured physical all orders beta function for nonsupersymmetric gauge
theories with fermionic matter in arbitrary representations of the gauge
group [21]; (ii) The truncated Schwinger–Dyson equation (SD) [159–161] (re-
ferred also as the ladder approximation in the literature); The Appelquist–
Cohen–Schmaltz (ACS) conjecture [162] which makes use of the counting of
the thermal degrees of freedom at high and low temperature.

We will show that relevant constraints can be deduced for any gauge
theory and any representation via the all orders beta function and the SD
methods. The ACS conjecture is not sufficiently constraining when studying
theories with matter in higher dimensional representations of a generic gauge
theory [163,164].

We wish to study the phase diagram of any asymptotically free non-
supersymmetric theories with fermionic matter transforming according to a
generic representation of an SU(N) gauge group as function of the number
of colors and flavors.

We start by characterizing the possible phases via the potential V (r)
between two electric test charges separated by a large distance r. The list
of possible potentials is given below:



3578 F. Sannino

Coulomb : V (r) ∝ 1
r

; (4.91)

Free electric : V (r) ∝ 1
r log(r)

; (4.92)

Free magnetic : V (r) ∝ log(r)
r

; (4.93)

Higgs : V (r) ∝ constant ; (4.94)

Confining : V (r) ∝ σr . (4.95)

A nice review of these phases can be found in [165] which here we re-review
for completeness. In the Coulomb phase, the electric charge e2(r) is a con-
stant while in the free electric phase massless electrically charged fields renor-
malize the charge to zero at long distances as, i.e. e2(r) ∼ 1/ log(r). QED
is an Abelian example of a free electric phase. The free magnetic phase
occurs when massless magnetic monopoles renormalize the electric coupling
constant at large distance with e2(r) ∼ log(r).

In the Higgs phase, the condensate of an electrically charged field gives
a mass gap to the gauge fields by the Anderson–Higgs–Kibble mechanism
and screens electric charges, leading to a potential which, up to an additive
constant, has an exponential Yukawa decay to zero at long distances. In the
confining phase, there is a mass gap with electric flux confined into a thin
tube, leading to the linear potential with string tension σ.

We will be mainly interested in finding theories possessing a non-Abelian
Coulomb phase or being close in the parameter space to these theories. In
this phase we have massless interacting quarks and gluons exhibiting the
Coulomb potential. This phase occurs when there is a non-trivial, infrared
fixed point of the renormalization group. These are thus non-trivial, inter-
acting, four dimensional conformal field theories.

To guess the behavior of the magnetic charge, at large distance separa-
tion, between two test magnetic charges one uses the Dirac condition:

e(r)g(r) ∼ 1 . (4.96)

Then it becomes clear that g(r) is constant in the Coulomb phase, increases
with log(r) in the free electric phase and decreases as 1/ log(r) in the free
magnetic phase. In these three phases the potential goes like g2(r)/r. A
linearly rising potential in the Higgs phase for magnetic test charges corre-
sponds to the Meissner effect in the electric charges.
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Confinement does not survive the presence of massless matter in the
fundamental representation, such as light quarks in QCD. This is so since it
is more convenient for the underlying theory to pop from the vacuum virtual
quark–antiquark pairs when pulling two electric test charges apart. The
potential for the confining phase will then change and there is no distinction
between Higgs and confining phase.

Under electric–magnetic duality one exchanges electrically charged fields
with magnetic ones then the behavior in the free electric phase is mapped in
that of the free magnetic phase. The Higgs and confining phases are also ex-
pected to be exchanged under duality. Confinement can then be understood
as the dual Meissner effect associated with a condensate of monopoles.Turning Gauge Theory Knobs

Fig. 15. A generic gauge theory has different Knobs one can tune. For example by
changing the number of flavors one can enter in different phases. The gray (pink)
region is the conformal region, i.e. the one where the coupling constant freezes at
large distances (small energy). The region above the pink one corresponds to a non-
Abelian QED like theory and below to a QCD-like region. We have also plotted the
cartoon of the running of the various coupling constants in the regions away from
the boundaries of the conformal window. The diagram above is the qualitative one
expected for a gauge theory with matter in the adjoint representation.

4.2. Analytic methods
4.2.1. Physical all orders beta function — conjecture

Recently we have conjectured an all orders beta function which allows
for a bound of the conformal window [21] of SU(N) gauge theories for any
matter representation.
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It is written in a form useful for constraining the phase diagram of
strongly coupled theories. It is inspired by the Novikov–Shifman–Vainshtein–
Zakharov (NSVZ) beta function for supersymmetric theories [166, 167] and
the renormalization scheme coincides with the NSVZ one. The predictions of
the conformal window coming from the above beta function are nontrivially
supported by all the recent lattice results [105,106,108,168–171].

It reproduces the exact supersymmetric results when reducing the mat-
ter content to the one of supersymmetric gauge theories. In particular we
compared our prediction for the running of the coupling constant for the
pure Yang–Mills theories with the one studied via the Schroedinger func-
tional [171–173] and found an impressive agreement. We have also predicted
that the IRFP for SU(3) gauge theories could not extend below 8.25 num-
ber of flavors. Subsequent numerical analysis [105, 106, 174] confirmed our
prediction.

In [164] we further assumed the form of the beta function to hold for
SO(N) and Sp(2N) gauge groups. Consider a generic gauge group with
Nf (ri) Dirac flavors belonging to the representation ri, i = 1, . . . , k of the
gauge group. The conjectured beta function reads:

β(g) = − g3

(4π)2

β0 − 2
3

∑k
i=1 T (ri)Nf (ri) γi

(
g2
)

1− g2

8π2C2(G)
(

1 + 2β′0
β0

) , (4.97)

with

β0 = 11
3 C2(G)− 4

3

k∑
i=1

T (ri)Nf (ri) and β′0 = C2(G)−
k∑
i=1

T (ri)Nf (ri) .

(4.98)
The generators T ar , a = 1 . . . N2 − 1 of the gauge group in the representa-
tion r are normalized according to Tr

[
T ar T

b
r

]
= T (r)δab while the quadratic

Casimir C2(r) is given by T ar T ar = C2(r)I. The trace normalization factor
T (r) and the quadratic Casimir are connected via C2(r)d(r) = T (r)d(G)
where d(r) is the dimension of the representation r. The adjoint represen-
tation is denoted by G.

The beta function is given in terms of the anomalous dimension of the
fermion mass γ = −d lnm/d lnµ where m is the renormalized mass, similar
to the supersymmetric case [166, 167, 175]. The loss of asymptotic freedom
is determined by the change of sign in the first coefficient β0 of the beta
function. This occurs when

k∑
i=1

4
11T (ri)Nf (ri) = C2(G) , loss of AF . (4.99)
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At the zero of the beta function we have

k∑
i=1

2
11T (ri)Nf (ri) (2 + γi) = C2(G) . (4.100)

Hence, specifying the value of the anomalous dimensions at the IRFP yields
the last constraint needed to construct the conformal window. Having
reached the zero of the beta function the theory is conformal in the in-
frared. For a theory to be conformal the dimension of the non-trivial spin-
less operators must be larger than one in order not to contain negative norm
states [95, 176, 177]. Since the dimension of the chiral condensate is 3 − γi
we see that γi = 2, for all representations ri, yields the maximum possible
bound

k∑
i=1

8
11T (ri)Nf (ri) = C2(G) , γi = 2 . (4.101)

In the case of a single representation this constraint yields

Nf (r)BF ≥ 11
8
C2(G)
T (r)

, γ = 2 . (4.102)

The actual size of the conformal window can be smaller than the one deter-
mined by the bound above, Eq. (4.99) and (5.353). It may happen, in fact,
that chiral symmetry breaking is triggered for a value of the anomalous di-
mension less than two. If this occurs the conformal window shrinks. Within
the ladder approximation [159,160] one finds that chiral symmetry breaking
occurs when the anomalous dimension is close to one. Picking γi = 1 we
find:

k∑
i=1

6
11T (ri)Nf (ri) = C2(G) , γ = 1 . (4.103)

In the case of a single representation this constraint yields

Nf (r)BF ≥ 11
6
C2(G)
T (r)

, γ = 1 . (4.104)

When considering two distinct representations the conformal window be-
comes a three dimensional volume, i.e. the conformal house [158]. Of course,
we recover the results by Banks and Zaks [91] valid in the perturbative regime
of the conformal window.
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We note that the presence of a physical IRFP requires the vanishing of
the beta function for a certain value of the coupling. The opposite however
is not necessarily true; the vanishing of the beta function is not a sufficient
condition to determine if the theory has a fixed point unless the beta function
is physical. By physical we mean that the beta function allows to determine
simultaneously other scheme-independent quantities at the fixed point such
as the anomalous dimension of the mass of the fermions. This is exactly
what our beta function does. In fact, in the case of a single representation,
one finds that at the zero of the beta function one must have

γ =
11C2(G)− 4T (r)Nf

2T (r)Nf
. (4.105)

4.2.2. Schwinger–Dyson in the rainbow approximation

For nonsupersymmetric theories an old way to get quantitative estimates
is to use the rainbow approximation to the Schwinger–Dyson equation [178,
179], see Fig. 16.

�
Fig. 16. Rainbow approximation for the fermion self energy function. The boson is
a gluon.

Here the full nonperturbative fermion propagator in momentum space reads

iS−1(p) = Z(p)
(
/p− Σ (p)

)
, (4.106)

and the Euclidianized gap equation in Landau gauge is given by

Σ (p) = 3C2(r)
∫

d4k

(2π)4

α
(
(k − p)2

)
(k − p)2

Σ (k2)
Z(k2)k2 + Σ 2(k2)

, (4.107)

where Z(k2) = 1 in the Landau gauge and we linearize the equation by
neglecting Σ 2(k2) in the denominator. Upon converting it into a differen-
tial equation and assuming that the coupling α(µ) ≈ αc is varying slowly
(β(α) ' 0) one gets the approximate (WKB) solutions

Σ (p) ∝ p−γ(µ) , Σ (p) ∝ pγ(µ)−2 . (4.108)

The critical coupling is given in terms of the quadratic Casimir of the rep-
resentation of the fermions

αc ≡ π

3C2(r)
. (4.109)
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The anomalous dimension of the fermion mass operator is

γ(µ) = 1−
√

1− α(µ)
αc
∼ 3C2(r)α(µ)

2π
. (4.110)

The first solution corresponds to the running of an ordinary mass term
(hard mass) of nondynamical origin and the second solution to a soft mass
dynamically generated. In fact, in the second case one observes the 1/p2

behavior in the limit of large momentum.
Within this approximation spontaneous symmetry breaking occurs when

α reaches the critical coupling αc given in Eq. (4.109). From Eq. (4.110)
it is clear that αc is reached when γ is of order unity [58, 159, 160]. Hence
the symmetry breaking occurs when the soft and the hard mass terms scale
as function of the energy scale in the same way. In Ref. [159], it was noted
that in the lowest (ladder) order, the gap equation leads to the condition
γ(2 − γ) = 1 for chiral symmetry breaking to occur. To all orders in per-
turbation theory this condition is gauge invariant and also equivalent non-
perturbatively to the condition γ = 1. However, to any finite order in
perturbation theory these conditions are, of course, different. Interestingly
the condition γ(2− γ) = 1 leads again to the critical coupling αc when us-
ing the perturbative leading order expression for the anomalous dimension
which is γ = 3C2(r)

2π α .
To summarize, the idea behind this method is simple. One simply com-

pares the two couplings in the infrared associated to (i) an infrared zero in
the β function, call it α∗ with (ii) the critical coupling, denoted with αc,
above which a dynamical mass for the fermions generates nonperturbatively
and chiral symmetry breaking occurs. If α∗ is less than αc chiral symmetry
does not occur and the theory remains conformal in the infrared, vice versa
if α∗ is larger than αc then the fermions acquire a dynamical mass and the
theory cannot be conformal in the infrared. The condition α∗ = αc provides
the desired NSD

f as function of N . In practice to estimate α∗ one uses the
two-loop beta function while the truncated SD equation to determine αc as
we have done before. This corresponds to when the anomalous dimension
of the quark mass operator becomes approximately unity.

The two-loop fixed point value of the coupling constant is:

α∗

4π
= −β0

β1
. (4.111)

With the following definition of the two-loop beta function

β(g) = − β0

(4π)2
g3 − β1

(4π)4
g5 , (4.112)
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where g is the gauge coupling and the beta function coefficients are given by

β0 = 11
3 C2(G)− 4

3T (r)Nf , (4.113)

β1 = 34
3 C

2
2 (G)− 20

3 C2(G)T (r)Nf − 4C2(r)T (r)Nf . (4.114)

To this order the two coefficients are universal, i.e. do not depend on which
renormalization group scheme one has used to determine them. The pertur-
bative expression for the anomalous dimension reads:

γ(g2) = 3
2C2(r)

g2

4π2
+O

(
g4
)
. (4.115)

With γ = −d lnm/d lnµ and m the renormalized fermion mass.
For a fixed number of colors the critical number of flavors for which the

order of α∗ and αc changes is defined by imposing α∗=αc, and it is given by

NSD
f =

17C2(G) + 66C2(r)
10C2(G) + 30C2(r)

C2(G)
T (r)

. (4.116)

Comparing with the previous result obtained using the all orders beta func-
tion we see that it is the coefficient of C2(G)/T (r) which is different.

4.2.3. Thermal counting of the degrees of freedom — conjecture

The free energy can be seen as a device to count the relevant degrees of
freedom. It can be computed, exactly, in two regimes of a generic asymp-
totically free theory: the very hot and the very cold one.

The zero-temperature theory of interest is characterized using the quan-
tity fIR, related to the free energy by

fIR ≡ − lim
T→0

F(T )
T 4

90
π2

, (4.117)

where T is the temperature and F is the conventionally defined free energy
per unit volume. The limit is well defined if the theory has an IRFP. For
the special case of an infrared-free theory

fIR = ] real bosons + 7
4 ] Weyl fermions . (4.118)

The corresponding expression in the large T limit is

fUV ≡ − lim
T→∞

F(T )
T 4

90
π2

. (4.119)

This limit is well defined if the theory has an ultraviolet fixed point. For an
asymptotically free theory fUV counts the underlying ultraviolet d.o.f. in a
similar way.



Conformal Dynamics for TeV Physics and Cosmology 3585

In terms of these quantities, the conjectured inequality [162] for any
asymptotically free theory is

fIR ≤ fUV . (4.120)

This inequality has not been proven but it was shown to be consistent with
known results and then used to derive new constraints for several strongly
coupled, vector-like gauge theories. The ACS conjecture has been used also
for chiral gauge theories [180]. There it was also found that to make definite
predictions a stronger requirement is needed [181].

4.3. The SU(N) phase diagram

We consider here gauge theories with fermions in any representation
of the SU(N) gauge group [16, 20, 21, 158, 182] using the various analytic
methods described above. Part of our original results have already been
summarized in [14].

Here we simply plot in Fig. 17 the conformal windows for various repre-
sentations predicted with the physical all orders beta function and the SD
approaches.

Fig. 17. Phase diagram for non-supersymmetric theories with fermions in the: (i)
fundamental representation, the upper most band (black), (ii) two-index antisym-
metric representation, the second band counting from the top (blue), (iii) two-index
symmetric representation, the third band (red), (iv) adjoint representation, the low-
est band parallel to the number of color axis (green) as a function of the number
of flavors and the number of colors. The shaded areas depict the corresponding
conformal windows. Above the upper solid curve the theories are no longer asymp-
totically free. In between the upper and the lower solid curves the theories are
expected to develop an infrared fixed point according to the all orders beta func-
tion. The area between the upper solid curve and the dashed curve corresponds to
the conformal window obtained in the ladder approximation.
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The ladder result provides a size of the window, for every fermion repre-
sentation, smaller than the maximum bound found earlier. This is a conse-
quence of the value of the anomalous dimension at the lower bound of the
window. The unitarity constraint corresponds to γ = 2 while the ladder
result is closer to γ ∼ 1. Indeed if we pick γ = 1 our conformal window
approaches the ladder result. Incidentally, a value of γ larger than one, still
allowed by unitarity, is a welcomed feature when using this window to con-
struct walking technicolor theories. It may allow for the physical value of
the mass of the top while avoiding a large violation of flavor changing neu-
tral currents [183] which were investigated in [184] in the case of the ladder
approximation for minimal walking models.

4.4. The Sp(2N) phase diagram

Sp(2N) is the subgroup of SU(2N) which leaves the tensor Jc1c2 =
(1N×N ⊗ iσ2)c1c2 invariant. Irreducible tensors of Sp(2N) must be trace-
less with respect to Jc1c2 . Here we consider Sp(2N) gauge theories with
fermions transforming according to a given irreducible representation. Since
π4 [Sp(2N)] = Z2 there is a Witten topological anomaly [148] whenever the
sum of the Dynkin indices of the various matter fields is odd. The adjoint
of Sp(2N) is the two-index symmetric tensor.

4.4.1. Sp(2N) with vector fields

Consider 2Nf Weyl fermions qic with c = 1, . . . , 2N and i = 1, . . . , 2Nf in
the fundamental representation of Sp(2N). We have omitted the SL(2, C)
spinorial indices. We need an even number of flavors to avoid the Witten
anomaly since the Dynkin index of the vector representation is equal to one.
In the following table we summarize the properties of the theory

Fields [Sp(2N)] SU(2Nf ) T [ri] d[ri]

q 1
2 2N

Gµ Adj = 1 N + 1 N(2N + 1)

Chiral symmetry breaking

The theory is asymptotically free forNf ≤ 11(N+1)/2 while the relevant
gauge singlet mesonic degree of freedom is:

M [i,j] = εαβq[i
α,c1q

j]
β,c2

Jc1c2 . (4.121)

If the number of flavors is smaller than the critical number of flavors above
which the theory develops an IRFP we expect this operator to condense
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and to break SU(2Nf ) to the maximal diagonal subgroup which is Sp(2Nf )
leaving behind 2N2

f −Nf −1 Goldstone bosons. Also, there exist no Sp(2N)
stable operators constructed using the invariant tensor εc1c2,...c2N since they
will break up into mesons M . This is so since the invariant tensor εc1c2...c2N
breaks up into sums of products of Jc1c2 .

All-orders beta function

A zero in the numerator of the all orders beta function leads to the
following value of the anomalous dimension of the mass operator at the
IRFP:

γ =
11(N + 1)

Nf
− 2 . (4.122)

Since the (mass) dimension of any scalar gauge singlet operator must be, by
unitarity arguments, larger than one at the IRFP, this implies that γ ≤ 2.
Defining with γ∗ the maximal anomalous dimension above which the theory
loses the IRFP the conformal window is:

11
4

(N + 1) ≤ 11
2 + γ∗

(N + 1) ≤ Nf ≤ 11
2

(N + 1) . (4.123)

For the first inequality we have taken the maximal value allowed for the
anomalous dimension, i.e. γ∗ = 2.

SD

The estimate from the truncated SD analysis yields as critical value of
Weyl flavors:

NSD
f =

2(1 +N)(67 + 100N)
35 + 50N

. (4.124)

Thermal degrees of freedoms

In the UV we have 2N(2N + 1) gauge bosons, where the extra factor
of two comes from taking into account the two helicities of each massless
gauge boson, and 4NNf Weyl fermions. In the IR we have 2N2

f − Nf − 1
Goldstones and hence we have:

fUV = 2N(2N + 1) + 7NNf , fIR = 2N2
f −Nf − 1 . (4.125)

The number of flavors for which fIR = fUV is

N therm
f =

1 + 7N +
√

3(3 + 10N + 27N2)
4

. (4.126)

No information can be obtained about the value of the anomalous dimension
of the fermion bilinear at the fixed point. Assuming the conjecture to be
valid the critical number of flavors cannot exceed N therm

f . In Fig. 18 we
summarize the resulting phase diagram.
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Fig. 18. Phase diagram of Sp(2N) gauge theories with 2Nf fundamental Weyl
fermions. Left panel: The upper solid (blue) line corresponds to the loss of asymp-
totic freedom and it is labeled by AF; the dashed (black) curve corresponds to
the SD prediction for the breaking/restoring of chiral symmetry. The solid gray
(magenta) line corresponds to the ACS bound stating that the conformal region
should start above this line. According to the all orders beta function (BF) the
conformal window cannot extend below the solid (blue) line, as indicated by the
arrows. This line corresponds to the anomalous dimension of the mass reaching
the maximum value of 2. Right panel: The BF line is plotted assuming the value
of the anomalous dimension to be one.

4.4.2. On the limit N = 1 corresponding to SU(2)

In this case N therm
f = 2 +

√
15
2 ' 4.74 and not 4

√
4− 16/81 ' 7.8 as

one deduces from equation (11) of [162]. The reason of the discrepancy is
due to the fact that the fundamental representation of SU(2) = Sp(2) is
pseudoreal and hence the flavor symmetry is enhanced to SU(2Nf ). This
enhanced symmetry is expected to break spontaneously to Sp(2Nf ). This
yields 2N2

f −Nf−1 Goldstone bosons rather than N2
f −1 obtained assuming

the global symmetry to be SU(Nf )×SU(Nf )×U(1) spontaneously broken to
SU(Nf )×U(1). The corrected N therm

f value for SU(2) is substantially lower
than the SD one which is 7.86. The all orders beta function result is instead
5.5 for the lowest possible value of Nf below which chiral symmetry must
break (corresponding to γ = 2). Imposing γ = 1 (suggested by the SD
approach) the all orders beta function returns 7.3 which is closer to the SD
prediction. Note that there is some phenomenological interest in the SU(2)
gauge theory with fermionic matter in the fundamental representation. For
example the case of Nf = 8 has been employed in the literature as a possible
template for early models of walking technicolor [185].

These results indicate that it is interesting to study the SU(2) gauge
theory with Nf = 5 Dirac flavors via first principles lattice simulation. This
will allow to discriminate between the two distinct predictions, the one from
the ACS and the one from the all orders beta function.
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4.4.3. Sp(2N) with adjoint matter fields

Consider Nf Weyl fermions qi{c1,c2} with c1 and c2 ranging from 1 to 2N
and i = 1, . . . , Nf . This is the adjoint representation of Sp(2N) with Dynkin
index 2(N + 1). Since it is even for any N there is no Witten anomaly for
any Nf . In the following table we summarize the properties of the theory

Fields [Sp(2N)] SU(Nf ) T [ri] d[ri]

q N + 1 N(2N + 1)
Gµ Adj = 1 N + 1 N(2N + 1)

Chiral symmetry breaking

The theory is asymptotically free for Nf ≤ 11/2 (recall that Nf here
is the number of Weyl fermions) while the relevant gauge singlet mesonic
degree of freedom is:

M{i,j} = εαβq
{i
α,{c1,c2}q

j}
β,{c3,c4}J

c1c3Jc2c4 . (4.127)

If the number of flavors is smaller than the critical number of flavors above
which the theory develops an IRFP we expect this operator to condense and
to break SU(Nf ) to the maximal diagonal subgroup which is SO(Nf ) leaving
behind (N2

f +Nf − 2)/2 Goldstone bosons.

All-orders beta function

Here the anomalous dimension of the mass operator at the IRFP is:

γ =
11
Nf
− 2 . (4.128)

Since the dimension of any scalar gauge singlet operator must be larger than
one at the IRFP, this implies that γ ≤ 2. Defining with γ∗ the maximal
anomalous dimension above which the theory loses the IRFP the conformal
window is:

11
4
≤ 11

2 + γ∗
≤ Nf ≤ 11

2
. (4.129)

SD

The estimate from the truncated SD analysis yields as critical value of
flavors:

NSD
f = 4.15 . (4.130)
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Thermal degrees of freedoms

In the ultraviolet we have 2N(2N + 1) gauge bosons and N(2N + 1)Nf

Weyl fermions. In the IR we have (N2
f +Nf−2)/2 Goldstone bosons. Hence:

fUV = 2N(2N + 1) +
7
4
N(2N + 1)Nf , fIR =

N2
f +Nf − 2

2
. (4.131)

The number of flavors for which fIR = fUV is

N therm
f =

−2 + 7N + 14N2 +
√

36 + 36N + 121N2 + 196N3 + 196N4

4
.

(4.132)
This is a monotonically increasing function of N which even for a value
of N as low as 2 yields N therm

f = 35.2 which is several times higher than the
limit set by asymptotic freedom. Although this fact does not contradict the
statement that the critical number of flavors is lower than N therm

f it shows
that this conjecture does not lead to useful constraints when looking at
higher dimensional representations as we observed in [163] when discussing
higher dimensional representations for SU(N) gauge groups. In Fig. 19 we
summarize the resulting phase diagram.
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Fig. 19. Phase diagram of Sp(2N) gauge theories with Nf adjoint Weyl fermions.
Left panel: The upper solid (red) line corresponds to the loss of asymptotic freedom
and it is labeled by AF; the dashed (black) curve corresponds to the SD prediction
for the breaking/restoring of chiral symmetry. According to the all orders beta
function (BF) the conformal window cannot extend below the solid (red) line, as
indicated by the arrows. This line corresponds to the anomalous dimension of
the mass reaching the maximum value of 2. Right panel: The BF line is plotted
assuming the value of the anomalous dimension to be one.

4.4.4. Sp(2N) with two-index anti-symmetric representation

Consider Nf Weyl fermions qi[c1,c2] with c1 and c2 ranging from 1 to 2N
and i = 1, . . . , Nf . As for the two-index symmetric case here too the Dynkin
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index is even and hence we need not to worry about the Witten anomaly.
In the following table we summarize the properties of the theory

Fields [Sp(2N)] SU(Nf ) T [ri] d[ri]

q N − 1 N(2N − 1)− 1
Gµ Adj = 1 N + 1 N(2N + 1)

Chiral symmetry breaking

The theory is asymptotically free for Nf ≤ 11(N+1)
2(N−1) with the relevant

gauge singlet mesonic degree of freedom being:

M{i,j} = εαβq
{i
α,[c1,c2]q

j}
β,[c3,c4]J

c1c3Jc2c4 . (4.133)

If the number of flavors is smaller than the critical number of flavors above
which the theory develops an IRFP we expect this operator to condense and
to break SU(Nf ) to the maximal diagonal subgroup which is SO(Nf ) leaving
behind (N2

f +Nf − 2)/2 Goldstone bosons.

All-orders beta function

The anomalous dimension of the mass operator at the IRFP is:

γ =
11(N + 1)− 2Nf (N − 1)

Nf (N − 1)
. (4.134)

Defining with γ∗ the maximal anomalous dimension above which the theory

loses the IRFP the conformal window is:

11
4
N + 1
N − 1

≤ 11
2 + γ∗

N + 1
N − 1

≤ Nf ≤ 11
2
N + 1
N − 1

. (4.135)

The maximal value allowed for the anomalous dimension is γ∗ = 2.

SD

The SD analysis yields as critical value of flavors:

NSD
f =

(1 +N)(83N + 17)
5(4N2 − 3N − 1)

. (4.136)
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Thermal degrees of freedoms

In the ultraviolet we have 2N(2N + 1) gauge bosons and (N(2N − 1)−
1)Nf Weyl fermions. In the IR we have (N2

f +Nf − 2)/2 Goldstone bosons.
Hence:

fUV = 2N(2N + 1) + 7
4(N(2N − 1)− 1)Nf , fIR =

N2
f +Nf − 2

2
.

(4.137)
The number of flavors for which fIR = fUV is

N therm
f =

−9− 7N + 14N2 +
√

113 + 190N − 75N2 − 196N3 + 196N4

4
.

(4.138)
As explained above no useful constraint can be set with this criterion [163].
In Fig. 20 we summarize the phase diagram.
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Fig. 20. Phase diagram of Sp(2N) gauge theories with Nf two-index antisymmetric
Weyl fermions. Left panel: The upper solid (blue) curve corresponds to the loss of
asymptotic freedom and it is labeled by AF; the dashed (black) curve corresponds
to the SD prediction for the breaking/restoring of chiral symmetry. According to
the all orders beta function (BF) the conformal window cannot extend below the
lower solid (blue) curve, as indicated by the arrows. This curve corresponds to the
anomalous dimension of the mass reaching the maximum value of 2. Right panel:
The BF curve is plotted assuming the value of the anomalous dimension to be one.

Summary of the results for SP(2N) gauge theories

In Fig. 21 we summarize the relevant zero temperature and matter den-
sity phase diagram as function of the number of colors and Weyl flavors
(NWf ) for Sp(2N) gauge theories. For the vector representationNWf = 2Nf

while for the two-index theoriesNWf = Nf . The shape of the various confor-
mal windows are very similar to the ones for SU(N) gauge theories [16,20,21]
with the difference that in this case the two-index symmetric representation
is the adjoint representation and hence there is one less conformal window.



Conformal Dynamics for TeV Physics and Cosmology 3593

2 3 4 5 60

5

10

15

20

25

30

35

N

N W
f

A.F. B.F. & γ= 2  SD

SP(2N)

Fig. 21. Phase Diagram, from top to bottom, for Sp(2N) Gauge Theories with
NWf = 2Nf Weyl fermions in the vector representation — upper part (light blue),
NWf = Nf in the two-index antisymmetric representation middle part (light red)
and finally in the two-index symmetric (adjoint) lower part (light green). The
arrows indicate that the conformal windows can be smaller and the associated
solid curves correspond to the all orders beta function prediction for the maximum
extension of the conformal windows.

4.5. The SO(N) phase diagram

We shall consider SO(N) theories (for N > 5) since they do not suffer
of a Witten anomaly [148] and, besides, for N < 7 can always be reduced to
either an SU or an Sp theory.

4.5.1. SO(N) with vector fields

Consider Nf Weyl fermions qic with c = 1, . . . , N and i = 1, . . . , Nf in
the vector representation of SO(N). In the following table we summarize
the properties of the theory

Fields [SO(N)] SU(Nf ) T [ri] d[ri]

q 1 N

Gµ Adj = 1 N − 2 N(N−1)
2

Chiral symmetry breaking

The theory is asymptotically free for Nf ≤ 11(N−2)
2 . The relevant gauge

singlet mesonic degree of freedom is:

M{i,j} = εαβq{iα,c1q
j}
β,c2

δc1c2 . (4.139)
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If the number of flavors is smaller than the critical number of flavors above
which the theory develops an IRFP we expect this operator to condense and
to break SU(Nf ) to the maximal diagonal subgroup which is SO(Nf ) leaving
behind (N2

f +Nf − 2)/2 Goldstone bosons.

All-orders beta function

The anomalous dimension of the mass operator at the IRFP is:

γ =
11(N − 2)

Nf
− 2 . (4.140)

Defining with γ∗ the maximal anomalous dimension above which the theory
loses the IRFP the conformal window reads:

11
4 (N − 2) ≤ 11

2 + γ∗
(N − 2) ≤ Nf ≤ 11

2 (N − 2) . (4.141)

The maximal value allowed for the anomalous dimension is γ∗ = 2.

SD

The SD analysis yields as critical value of flavors:

NSD
f =

2(N − 2)(50N − 67)
5(5N − 7)

. (4.142)

Thermal degrees of freedoms

In the ultraviolet we have N(N − 1) gauge bosons and NNf Weyl
fermions. In the IR we have (N2

f +Nf − 2)/2 Goldstone bosons. Hence:

fUV = N(N − 1) + 7
4NNf , fIR =

N2
f +Nf − 2

2
. (4.143)

The number of flavors for which fIR = fUV is

N therm
f =

−2 + 7N +
√

36− 60N + 81N2

4
. (4.144)

This value is larger than the SD result and it is larger than the asymp-
totic freedom constraint for N < 7. This is not too surprising since the
vector representation of SO(N) for small N becomes a higher representa-
tion of other groups for which we have already shown that this method is
unconstraining [163].

Note that the ACS line is always above the SD result. In Fig. 22 we
summarize the phase diagram.
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Fig. 22. Phase diagram of SO(N) gauge theories with Nf fundamental Weyl
fermions. Left panel: The upper solid (blue) line corresponds to the loss of asymp-
totic freedom and it is labeled by AF; the dashed (black) curve corresponds to the
SD prediction for the breaking/restoring of chiral symmetry. The middle solid gray
(magenta) line corresponds to the ACS bound stating that the conformal region
should start above this line. According to the all orders beta function (BF) the
conformal window cannot extend below the lower solid (blue) line, as indicated by
the arrows. This line corresponds to the anomalous dimension of the mass reaching
the maximum value of 2. Right panel: The BF line is plotted assuming the value
of the anomalous dimension to be one.

4.5.2. SO(N) with adjoint matter fields

Consider Nf Weyl fermions qi[c1,c2] with c1 and c2 varying in the range
1, . . . , N and i = 1, . . . , Nf . This is the adjoint representation of SO(N). In
the following table we summarize the properties of the theory

Fields [SO(N)] SU(Nf ) T [ri] d[ri]

q N − 2 N(N−1)
2

Gµ Adj = 1 N − 2 N(N−1)
2

The analysis leads to a conformal window which is an identical copy of
the one for the adjoint matter of the Sp gauge theory which is also identical
to the SU case with adjoint matter.

4.5.3. SO(N) with two-index symmetric representation

Consider Nf Weyl fermions qi{c1,c2} with c1 and c2 varying in the range
1, . . . , N and i = 1, . . . , Nf , i.e. in the two-index symmetric representation
of SO(N). In the following table we summarize the properties of the theory
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Fields [SO(N)] SU(Nf ) T [ri] d[ri]

q N + 2 N(N+1)
2 − 1

Gµ Adj = 1 N − 2 N(N−1)
2

Chiral symmetry breaking

The theory is asymptotically free for Nf ≤ 11(N−2)
2(N+2) . The relevant gauge

singlet mesonic degree of freedom is:

M{i,j} = εαβq
{i
α,{c1,c2}q

j}
β,{c3,c4}δ

c1c3δc2,c4 . (4.145)

If the number of flavors is smaller than the critical number of flavors above
which the theory develops an IRFP we expect this operator to condense and
to break SU(Nf ) to the maximal diagonal subgroup which is SO(Nf ) leaving
behind (N2

f +Nf − 2)/2 Goldstone bosons.

All-orders beta function

The anomalous dimension of the mass operator at the IRFP is:

γ =
11(N − 2)
Nf (N + 2)

− 2 . (4.146)

Defining with γ∗ the maximal anomalous dimension above which the the-
ory loses the IRFP the conformal window reads:

11
4
N − 2
N + 2

≤ 11
2 + γ∗

N − 2
N + 2

≤ Nf ≤ 11
2
N − 2
N + 2

. (4.147)

The maximal value allowed for the anomalous dimension is γ∗ = 2.

SD

The SD analysis yields as critical value of flavors:

NSD
f =

(N − 2)(83N − 34)
10(2N2 + 3N − 2)

. (4.148)
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Thermal degrees of freedoms

In the ultraviolet we have N(N − 1) gauge bosons and (N (N+1)
2 − 1)Nf

Weyl fermions. In the IR we have (N2
f +Nf−2)/2 Goldstone bosons. Hence:

fUV = N(N−1)+ 7
4(N

(N + 1)
2

− 1)Nf , fIR =
N2
f +Nf − 2

2
. (4.149)

The number of flavors for which fIR = fUV is

N therm
f =

−18+7N(1+N)+
√

452+N(−380+N(−75+49N(2+N)))
8

.

(4.150)
This value is several times larger than the asymptotic freedom result and

hence poses no constraint [163]. In Fig. 23 we summarize the phase diagram.
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Fig. 23. Phase diagram of SO(N) gauge theories with Nf Weyl fermions in the
two-index symmetric representation. Left panel: The upper solid (blue) curve
corresponds to the loss of asymptotic freedom and it is labeled by AF; the dashed
(black) curve corresponds to the SD prediction for the breaking/restoring of chiral
symmetry. According to the all orders beta function (BF) the conformal window
cannot extend below the solid (blue) curve, as indicated by the arrows. This curve
corresponds to the anomalous dimension of the mass reaching the maximum value
of 2. Right panel: The BF curve is plotted assuming the value of the anomalous
dimension to be one.

Summary for SO(N) gauge theories

In Fig. 24 we summarize the relevant zero temperature and matter den-
sity phase diagram as function of the number of colors and Weyl flavors
(Nf ) for SO(N) gauge theories. The shape of the various conformal win-
dows are very similar to the ones for SU(N) and Sp(2N) gauge with the
difference that in this case the two-index antisymmetric representation is
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Fig. 24. Phase diagram of SO(N) gauge theories with Nf Weyl fermions in the
vector representation, in the two-index antisymmetric (adjoint) and finally in the
two-index symmetric representation. The arrows indicate that the conformal win-
dows can be smaller and the associated solid curves correspond to the all orders
beta function prediction for the maximum extension of the conformal windows.

the adjoint representation. We have analyzed only the theories with N ≥ 6
since the remaining smaller N theories can be deduced from Sp and SU us-
ing the fact that SO(6) ∼ SU(4), SO(5) ∼ Sp(4), SO(4) ∼ SU(2) × SU(2),
SO(3) ∼ SU(2), and SO(2) ∼ U(1).

At infinite N it is impossible to distinguish theories with matter in the
two-index symmetric representation from theories with matter in the two-
index antisymmetric. This means that, in this regime, one has an obvious
equivalence between theories with these two types of matter. This statement
is independent on whether the gauge group is SU, Sp or SO(N). What dis-
tinguishes SU from both Sp and SO is the fact that in these two cases one
of the two two-index representations is, in fact, the adjoint representation.
This simple observation automatically implies that one Weyl flavor in the
two-index symmetric (antisymmetric) representation of SO(N)(Sp(2N)) be-
comes indistinguishable from pure super Yang–Mills at large N. The original
observation appeared first within the context of string theory and it is due
to Sugimoto [186] and Uranga [187]. A similar comment was made in [188].

4.6. Conformal house

Till now the investigations dealt with fermions in a single representation
of the gauge group. In fact, these constitute only a small fraction of all of
the possible gauge theories we can envision built out of fermions in several
representations. A priori there is no reason to exclude these theories from
interesting applications. In fact, we have very recently shown that one of
these theories leads to a novel model of dynamical electroweak symmetry
breaking possessing several interesting phenomenological features [130].
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In [182] we initiated the first systematic study of conformal gauge dy-
namics associated to nonsupersymmetric gauge theories featuring matter in
two different representations of the undelying gauge group. The region in
flavor/color space bounding the fraction of the theory developing a confor-
mal behavior at large distances is a three-dimensional volume. Two faces of
this volume correspond the the conformal areas of the gauge theory when
on of the flavor numbers is set to zero. These areas are often referred as
conformal windows. It is then natural to indicate the conformal volumes
as the conformal houses whose windows are the two dimensional conformal
areas.

Let us review the case of a single representation but with a little twist,
i.e. we draw it with the number of colors on the vertical axis. See Fig. 25
where we used the all orders beta function results.
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Fig. 25. Phase diagram for non-supersymmetric theories with fermions in the: (i)
fundamental representation, the right most band (black), (ii) two-indexed anti-
symmetric representation, the second band from the right (blue), (iii) two-indexed
symmetric representation, the third band from the right (red), (iv) adjoint rep-
resentation, the vertical band (green) as a function of the number of colors and
number of flavors. The shaded areas depict the corresponding conformal windows
stemming from the all orders beta function. To the right of the shaded ares the
theories are no longer asymptotically free while to the left of the shaded areas the
theories are expected to break chiral symmetry.

Let us now generalize to multiple representations. First, the loss of
asymptotic freedom is determined by the change of sign in the first coefficient
of the beta function. This occurs when

k∑
i=1

4
11T (ri)Nf (ri) = C2(G) . (4.151)
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Second, we note that at the zero of the beta function we have

k∑
i=1

2
11T (ri)Nf (ri) (2 + γi) = C2(G) . (4.152)

Therefore, specifying the value of the anomalous dimensions at the infrared
fixed point yields the last constraint needed to construct the conformal re-
gion. Having reached the zero of the beta function the theory is conformal in
the infrared. For a theory to be conformal the dimension of the non-trivial
spinless operators must be larger than one in order to not contain negative
norm states [95, 176, 177]. Since the dimension of each chiral condensate is
3 − γi we see that γi = 2, for all representations ri, yields the maximum
possible bound15

k∑
i=1

8
11T (ri)Nf (ri) = C2(G) . (4.153)

For two distinct representations the conformal region is a three dimensional
volume, i.e. the conformal house. The windows of the house correspond ex-
actly to the conformal windows presented in the previous section. In Fig. 26
we plot the bound of the conformal volume in the case of fundamental and
adjoint fermions. For completeness we also plot below in Fig. 27 the bound

Fig. 26. The conformal house for a non-supersymmetric gauge theory containing
fundamental and adjoint fermions. To the right of the right surface the theories
are non-asymptotically free while to the left of the left surface the theories break
chiral symmetry. Between the two surfaces the theories can develop an infrared
fixed point.

15 Note that γ ≤ 2 is an exact bound [95, 176, 177], i.e. does not depend on model
computations. If it turns out that dynamically a smaller value of γ actually delimits
the conformal window this value must be less than 2 and hence does not affect our
results on the bound of the conformal windows.



Conformal Dynamics for TeV Physics and Cosmology 3601

on the conformal house with one species of fermions in the fundamental rep-
resentation and the other in the two-index (anti)symmetric in the (right)left
panel. We consider only two-index representations in Fig. 28, more specif-
ically we consider the adjoint representation together with the two-index
(anti)symmetric in the 28 (right) left panel. Note that to the right of the
right surface the theories are non-asymptotically free while to the left of the
left surface the theories break chiral symmetry. Between the two surfaces
the theories can develop an infrared fixed point.

Fig. 27. The conformal house for a non-supersymmetric gauge theory containing
fermions in the fundamental and two-indexed symmetric representations (left) and
in the fundamental and two-indexed antisymmetric representations (right).

Fig. 28. The conformal house for a non-supersymmetric gauge theory containing
fermions in the adjoint and two-indexed symmetric representations (left) and in
the adjoint and two-indexed antisymmetric representations (right).

Finally in Fig. 29 we consider the last case in which one representation
corresponds to the two-index symmetric and the other one is the two-index
antisymmetric.
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Fig. 29. The conformal house for a non-supersymmetric gauge theory containing
fermions in the two-indexed symmetric and two-indexed antisymmetric represen-
tations.

4.7. On the behavior of physical β-functions

Often, in the literature, one finds plotted a cartoon of the running of the
coupling constant for either conformal or near conformal theories. Here we
provide yet another cartoon of this running but this time using the physical
form of the conjectured beta function [21] augmented with a simple ansatz
for the dependence of the anomalous dimension on the coupling constant.
The advantage is that we will be able to plot what happens when changing
the number of flavors in any gauge theory. It should provide a simple frame-
work allowing for a unified picture of the current lattice results for different
representations and gauge groups.

Let us start with the assumption that a specific theory does posses an
IRFP. In this case we have that:

• The anomalous dimension assumes a scheme independent value at the
fixed point which according to the all orders beta function is:

lim
µ→0

γ =
11C2(G)− 4T (r)Nf

2T (r)Nf
(4.154)

with r the fermion representation.

• At high energies γ must match the perturbative expansion of the
anomalous dimension.

µ is the renormalization energy scale. It is straightforward to show that if
one chooses, for the anomalous dimension, any continuous function of the
coupling constant then the all orders beta function will always require, at
the IRFP, that γ assume the value assumed above. To be able to draw the
running of the coupling constant we pick as a simple approximation for γ
the second order expression for γ:

γ = a0
g2

4π
+ a1

g4

(4π)2
+O (g6

)
, (4.155)
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with

a0 =
3

2π
C2(r) , a1 =

1
16π2

[
3C2(r)2 − 10

3 C2(r)Nf + 97
3 C2(r)C2(G)

]
.

(4.156)
We start here by showing the case of minimal conformal theories, more

specifically SU(2) gauge theories with Dirac fermions in the adjoint. In
Fig. 30 we plot γ up to second order, for two adjoint Dirac flavors as a red
solid line. To second order γ does not differ much for different flavors in the

0 1 2 3 4
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1.5

2.0

g

Γ

Fig. 30. Anomalous dimension of the mass as function of the coupling constant for
two Dirac flavors in the adjoint representation of SU(2). To second order does not
differ much for different flavors in the conformal window. The lowest horizontal
(blue) dashed corresponds to the fixed point value for Nf = 1.5 Dirac flavors
(i.e. three Weyl), the second from the bottom (red) dashed one to Nf = 2 (four
Weyl) and the third (black) one to Nf = 2.5, i.e. five Weyl. The black dashed line
marks the maximum value suggested by the SD equation. The value of the coupling
for which the solid and the different dashed lines meet is the fixed point value of
the coupling (determined by the vertical dashed lines). The solid lowest (green)
curve is the all orders anomalous dimension for super Yang-Mills, corresponding to
Nf = 0.5, i.e. one Weyl fermion.

conformal window. The horizontal blue dashed line corresponds to the fixed
point value for Nf = 1.5 Dirac flavors (i.e. 3 Weyl), the red dashed one to
Nf = 2 (four Weyl) and the black one to Nf = 2.5, i.e. five Weyl. The black
dashed line marks the maximum value suggested by the SD equation. The
value of the coupling for which the solid and the different dashed lines meet
is the fixed point value of the coupling (determined by the vertical dashed
lines). The green curve is the all orders anomalous dimension for super
Yang–Mills, corresponding to Nf = 0.5, i.e. one Weyl fermion. The analytic
expression of the anomalous dimension can now be used to determine the
beta functions. The different betas are shown in the left panel of Fig. 31.
The running of the coupling is, instead, plotted in the right panel of Fig. 31.
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Fig. 31. Left panel: Beta functions for different values of the number of Dirac flavors
in the adjoint representation of the SU(2) gauge group. The left most (black) solid
curve hitting an IR fixed point corresponds to Nf = 2.5, the second to left (red) to
Nf = 2, the dashed one is the two-loop beta function for Nf = 2 again, while the
right most (magenta) curve corresponds to Nf = 1.5.The curve that does not hit
an IR fixed point (green) is the beta function for super Yang-Mills. Right panel:
Running of the coupling constants for different numbers of Dirac flavors gauged
under the adjoint representation of SU(2). The lowest curve (red) corresponds to
Nf = 2, the second lowest (magenta) to Nf = 1.5 and the dashed (red) to Nf = 1.2
via the two loops beta function. The (green) line which keeps increasing at lower
values of mu corresponds to the running of the super Yang-Mills coupling.

We have also plotted the two-loop beta function for SU(2) with 2 Dirac
flavors in the plots of the various beta functions. It is the dashed black
line. Interestingly the fixed point is reached before the one obtained via
the two-loop beta function. This is consistent with the recent lattice results
obtained in [189].

For completeness we also present the results for SU(N) with fermions in
the fundamental representation, i.e. the QCD conformal window.
The analytic expression of the anomalous dimension can now be used to
determine the beta function in between the UV fixed point and the IRFP
one. The different betas are shown in right panel of Fig. 32. The general
message is that one can have large values of the anomalous dimensions and
yet have coupling constants at the IRFP which are small. In fact, for QCD
the coupling constant is always smaller than 4 in the conformal window.
Interestingly this is true also for the case of the fermions in the adjoint
representation. Moreover, for the case of 12 flavors in QCD and two flavors
in the adjoint representation we have a fixed point coupling that is close to
3 and a little larger than 2, respectively. Naively the expansion parameter
in perturbation theory is g2

4π . One gets for 12 flavors QCD a value close to
0.72 and for MWT 0.24. The picture resulting from our analysis is similar
to the one observed via first principle lattice simulations for QCD with 12
flavors as well as MWT and offers a possible theoretical understanding of
the physics behind these lattice explorations.
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Fig. 32. Left panel: Anomalous dimension of the mass as function of the coupling
constant for different number of Dirac flavors in the fundamental representation of
SU(3). The (black) solid most left line corresponds to Nf = 9, the (red) second
most left one to Nf = 10, (magenta) the third to Nf = 12, (blue) the fourth to
Nf = 14 and (green) the right most one to Nf = 16. The dashed black line for
γ = 1 marks the maximum value suggested by the SD equation. Each dashed line
parallel to the g correspond to the specific value of at the fixed point. The value of
the coupling at the point where the dashed lines and the respective meet is the fixed
point one. Right panel: QCD beta functions for different values of the number of
Dirac flavors. The first to the right black solid curve corresponds to Nf = 9, the
second to the right (red) Nf = 10, the third solid line (magenta) to Nf = 12 and
the fourth (blue) to Nf = 14. The dashed line corresponds to the case of Nf = 12
beta function at two loops.

4.8. Conformal chiral dynamics

Our starting point is a nonsupersymmetric non-Abelian gauge theory
with sufficient massless fermionic matter to develop a nontrivial IRFP. The
cartoon of the running of the coupling constant is represented in Fig. 33.

�

Energy�U

�*

Fig. 33. Running of the coupling constant in an asymptotically free gauge theory
developing an infrared fixed point for a value α = α∗.

In the plot ΛU is the dynamical scale below which the IRFP is essentially
reached. It can be defined as the scale for which α is 2/3 of the fixed point
value in a given renormalization scheme. If the theory possesses an IRFP
the chiral condensate must vanish at large distances. Here we want to study
the behavior of the condensate when a flavor singlet mass term is added to
the underlying Lagrangian:
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∆L = −mψ̃ψ + h.c. (4.157)

with m the fermion mass and ψfc as well as ψ̃cf left transforming two compo-
nent spinors, c and f represent color and flavor indices. The omitted color
and flavor indices, in the Lagrangian term, are contracted. We consider
first the case of fermionic matter in the fundamental representation of the
SU(N) gauge group. We then generalize our results to the case of higher
dimensional representations.

The effect of such a term is to break the conformal symmetry together
with some of the global symmetries of the underlying gauge theory. The
composite operator:

O eψψf ′f = ψ̃f
′
ψf , (4.158)

has mass dimension d eψψ = 3− γ with γ the anomalous dimension of the
mass term. At the fixed point γ is a positive number smaller than two [95].
We assume m� ΛU . Dimensional analysis demands:

∆L→ −mΛγU Tr [O eψψ] + h.c. (4.159)

The mass term is a relevant perturbation around the IRFP driving the theory
away from the fixed point. It will induce a nonzero vacuum expectation value
for O eψψ itself proportional to δf

′

f . It is convenient to define Tr [O eψψ] = NfO
with O a flavor singlet operator. The relevant low energy Lagrangian term
is then:

−mΛγU NfO + h.c. (4.160)

To determine the vacuum expectation value of O we replace it, formally,
with a sum over an infinite number of canonically normalized single particle
states [190]:

O(x) =
∞∑
n=1

fnϕn(x) . (4.161)

Each state possesses a massMn whose value is controlled by an artificial mass
gap ∆ and a function of n, call it z(n), with the properties z(n+ 1) > z(n)
and z(1) = 1.

M2
n = ∆2z(n) . (4.162)

We also have [190]:

f2
n = Fd eψψ

dz(n)
dn

∆2
(
M2
n

)d eψψ−2
, (4.163)
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with Fd eψψ a function depending on the scaling dimension of the operator as
well as the details of the underlying dynamics [83]. Because of the presence
of the fictitious mass terms the potential reads:

V = mΛγU Nf

∞∑
n=1

fnϕn + m̄ΛγU Nf

∞∑
n=1

fnϕ̄n +
∞∑
n=1

M2
nϕnϕ̄n . (4.164)

The bar over the fields and the fermion mass indicates complex conjugation.
The extremum condition yields:

〈ϕ̄n〉 = −mΛγUNf
fn
M2
n

, (4.165)

yielding:

〈O〉 = −m̄ΛγUNf

∞∑
n=1

f2
n

M2
n

. (4.166)

We now take the limit ∆2 → 0 and the sum becomes an integral. For any
specific function z(n) it is easy to show that:

〈O〉 = −m̄ΛγUNfFd eψψΩ [ΛUV,ΛIR] , (4.167)

with
Ω [ΛUV,ΛIR] =

1
1− γ

[
Λ2(1−γ)

UV − Λ2(1−γ)
IR

]
. (4.168)

The ultraviolet and infrared cutoffs are introduced to tame the integral in
the respective regions. A simple physical interpretation of these cutoffs is the
following. At very high energies, at scales above ΛU , the underlying theory
flows to the ultraviolet fixed point and we have to abandon the description
in terms of the composite operator. This immediately suggests that ΛUV

is naturally identified with ΛU . The presence of the mass term induces a
mass gap, which is the quantity we are trying to determine. The induced
physical mass gap is a natural infrared cutoff. We, hence, identify ΛIR with
the physical value of the condensate. We find:〈

ψ̃fc ψ
c
f

〉
∝ −mΛ2

U , 0 < γ < 1 , (4.169)〈
ψ̃fc ψ

c
f

〉
∝ −mΛ2

U log
Λ2
U

|〈O〉| , γ → 1 , (4.170)〈
ψ̃fc ψ

c
f

〉
∝ −m(3−γ)/(1+γ)Λ4γ/(1+γ)

U , 1 < γ ≤ 2 . (4.171)

We used 〈ψ̃ψ〉 ∼ ΛγU 〈O〉 to relate the expectation value of O to the one of
the fermion condensate. Via an allowed axial rotation m is now real and
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positive. It is instructive to compare these results with the ones obtained
via naive dimensional analysis (NDA) [88] also discussed in [191] and in [83].
We find: 〈

ψ̃fc ψ
c
f

〉
NDA

∝ −m 3−γ
1+γΛ

4γ
1+γ

U . (4.172)

Note that one recovers the previous scaling as function of m (up to loga-
rithmic corrections) only for 1 ≤ γ ≤ 2. The failure of NDA for a smaller
anomalous dimension is due to the fact that the ultraviolet physics is not
captured by NDA [83]. The effects of the instantons on the conformal dy-
namics has been investigated in [192]. Here it was shown that the effects of
the instantons can be sizable only for a very small number of flavors given
that, otherwise, the instanton induced operators are highly irrelevant.

At any nonzero value of the fermion mass the chiral and conformal sym-
metries are explicitly broken and single particle states emerge at low energies.
A relevant set are the conformal pions, i.e. the would be Goldstones which in
the limit of zero fermion mass cannot be described via single particle states.
We identify them via〈

O eψψf ′f
〉

= 〈O〉U with U = ei
π
Fπ . (4.173)

π = πaT a and T a are the set of broken generators normalized according to
Tr
[
T aT b

]
= δab1/2. Substituting (4.173) in (4.159) and expanding up to

the second order in the pion fields we have:

m2
πF

2
π = −mΛγU 〈O[m]〉 . (4.174)

Having determined the dependence on m of 〈O[m]〉 the above generalizes
the similar one in QCD [193–195] known as the Gell-Mann–Oakes–Renner
(GMOR) relation. For example for the theories investigated above and for
a very small fermion mass, m2

πF
2
π = m2Λ2

U . At larger masses the scaling is
different for the three cases and it can be easily deduced from our results.
A similar effective Lagrangian was introduced in [83]. Assume now that the
underlying gauge theory has not developed an IRFP. In this case there are
only two possibilities: (i) chiral symmetry breaks spontaneously yielding a
condensate whose leading term in m is a constant; (ii) chiral symmetry is
intact but a scale is still generated. Chirally paired partners emerge together
with massless composite fermions appearing to saturate the ’t Hooft anomaly
matching conditions. One can investigate the finite volume effects using the
conformal pion Lagrangian in the ε-regime [196]. However much care must
be taken when constructing a low energy effective description of a near
conformal gauge theory given that the standard chiral counting no needs to
hold. Caveat lector that we assumed that a chiral Lagrangian approach is
valid, in deriving Eq. (4.174) in the extremely tiny m expansion over the only
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other scale of the theory which is ΛU . Another way to think at the problem
is that the mass of the fermions acts always as an heavy quark mass. Below
this mass scale one has a pure confining Yang–Mills theory whose mass scale
is directly controlled by the heavy quark mass. The latter observation seems
to best fit current lattice results [113,206] albeit for (near) conformal theories
the amount of fine-tuning needed to control the small mass approximation
is harder to tame.

4.9. Gauge duals and conformal window

One of the most fascinating possibilities is that generic asymptotically
free gauge theories have magnetic duals. In fact, in the late nineties, in a
series of ground breaking papers Seiberg [197, 198] provided strong support
for the existence of a consistent picture of such a duality within a super-
symmetric framework. Supersymmetry is, however, quite special and the
existence of such a duality does not automatically imply the existence of
nonsupersymmetric duals. One of the most relevant results put forward by
Seiberg has been the identification of the boundary of the conformal window
for supersymmetric QCD as function of the number of flavors and colors.
The dual theories proposed by Seiberg pass a set of mathematical consis-
tency relations known as ’t Hooft anomaly conditions (in [28]). Another
important tool has been the knowledge of the all orders supersymmetric
beta function [166,167,175]

Arguably the existence of a possible dual of a generic nonsupersymmetric
asymptotically free gauge theory able to reproduce its infrared dynamics
must match the ’t Hooft anomaly conditions [28].

We have exhibited several solutions of these conditions for QCD in [199]
and for certain gauge theories with higher dimensional representations in
[200]. An earlier exploration already appeared in the literature [201]. The
novelty with respect to these earlier results are: (i) The request that the
gauge singlet operators associated to the magnetic baryons should be in-
terpreted as bound states of ordinary baryons [199]; (ii) The fact that the
asymptotically free condition for the dual theory matches the lower bound
on the conformal window obtained using the all orders beta function [21].
These extra constraints help restricting further the number of possible gauge
duals without diminishing the exactness of the associate solutions with re-
spect to the ’t Hooft anomaly conditions.

We will briefly summarize here the novel solutions to the ’t Hooft anom-
aly conditions for QCD and the theories with higher dimensional represen-
tations. The resulting magnetic dual allows to predict the critical number of
flavors above which the asymptotically free theory, in the electric variables,
enters the conformal regime as predicted using the all orders conjectured
beta function [21].
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4.9.1. QCD duals

The underlying gauge group is SU(3) while the quantum flavor group is

SUL(Nf )× SUR(Nf )×UV (1) , (4.175)

and the classical UA(1) symmetry is destroyed at the quantum level by the
Adler–Bell–Jackiw anomaly. We indicate with Qiα;c the two component left
spinor where α = 1, 2 is the spin index, c = 1, . . . , 3 is the color index while
i = 1, . . . , Nf represents the flavor. Q̃α;c

i is the two component conjugated
right spinor. We summarize the transformation properties in the following
table.

TABLE I

Field content of an SU(3) gauge theory with quantum global symmetry SUL(Nf )×
SUR(Nf )×UV (1).

Fields [SU(3)] SUL(Nf ) SUR(Nf ) UV (1)

Q 1 1
Q̃ 1 −1
Gµ Adj 1 1 1

The global anomalies are associated to the triangle diagrams featuring
at the vertices three SU(Nf ) generators (either all right or all left), or two
SU(Nf ) generators (all right or all left) and one UV (1) charge. We indicate
these anomalies for short with:

SUL/R(Nf )3 , SUL/R(Nf )2 UV (1) . (4.176)

For a vector like theory there are no further global anomalies. We summa-
rize the anomalies in Fig. 34. The cubic anomaly factor, for fermions in
fundamental representations, is 1 for Q and −1 for Q̃ while the quadratic
anomaly factor is 1 for both leading to

SUL/R(Nf )3 ∝ ±3 , SUL/R(Nf )2UV (1) ∝ ±3 . (4.177)

We have mentioned already that requiring the absence of negative norm
states at the conformal point requires γ < 2 resulting in the maximum
possible extension of the conformal window bounded from below by:

Nf (r)BF ≥ 11
8
C2(G)
T (r)

, γ = 2 . (4.178)

Specializing to three colors and fundamental representation the prediction
from the all order beta function we find:

Nf (r)BF ≥ 33
4 = 8.25 , for QCD with γ = 2 . (4.179)
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Fig. 34. The ’t Hooft anomaly matching conditions are related to the saturation of
the global anomalies stemming out of the one-loop triangle diagrams represented,
for the theory of interest, here. According to ’t Hooft both theories, i.e. the electric
and the magnetic ones, should yield the same global anomalies.

The actual size of the conformal window can, however, be smaller than the
one determined above without affecting the validity of the beta function. It
may happen, in fact, that chiral symmetry breaking is triggered for a value
of the anomalous dimension less than two. If this occurs the conformal
window shrinks. As we have already mentioned the ladder approximation
approach [159–161,202], for example, predicts that chiral symmetry breaking
occurs when the anomalous dimension is larger than one. Remarkably the
all orders beta function encompass this possibility as well [21]. In fact, it
is much more practical to quote the value predicted using the beta function
by imposing γ = 1:

Nf (r) ≥ 11
6
C2(G)
T (r)

, γ = 1 . (4.180)

For QCD we have:

Nf (r)BF ≥ 11 , for QCD with γ = 1 . (4.181)

The result is very close to the one obtained using directly the ladder approx-
imation, i.e. Nf ≈ 4N , as shown in [21,164].

Lattice simulations of the conformal window for various matter repre-
sentations [105–108, 168–170, 174, 189, 203–210] are in agreement with the
predictions of the conformal window via the all orders beta function.

It would be desirable to have a novel way to determine the conformal
window which makes use of exact matching conditions.

4.9.2. Dual set up

If a magnetic dual of QCD does exist one expects it to be weakly coupled
near the critical number of flavors below which one breaks large distance
conformality in the electric variables. This idea is depicted in Fig. 35.

Determining a possible unique dual theory for QCD is, however, not
simple given the few mathematical constraints at our disposal, as already
observed in [201]. The saturation of the global anomalies is an important
tool but is not able to select out a unique solution. We shall see, however,
that one of the solutions, when interpreted as the QCD dual, leads to a
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Fig. 35. Schematic representation of the phase diagram as function of number of
flavors and colors. For a given number of colors by increasing the number flavors
within the conformal window we move from the lowest line (violet) to the upper
(black) one. The upper black line corresponds to the one where one looses asymp-
totic freedom in the electric variables and the lower line where chiral symmetry
breaks and long distance conformality is lost. In the magnetic variables the situa-
tion is reverted and the perturbative line, i.e. the one where one looses asymptotic
freedom in the magnetic variables, correspond to the one where chiral symmetry
breaks in the electric ones.

prediction of a critical number of flavors corresponding exactly to the one
obtained via the conjectured all orders beta function.

We seek solutions of the anomaly matching conditions for a gauge theory
SU(X) with global symmetry group SUL(Nf )×SUR(Nf )×UV (1) featuring
magnetic quarks q and q̃ together with SU(X) gauge singlet states identi-
fiable as baryons built out of the electric quarks Q. Since mesons do not
affect directly global anomaly matching conditions we could add them to
the spectrum of the dual theory. We study the case in which X is a linear
combination of number of flavors and colors of the type αNf + 3β with α
and β integer numbers.

We add to the magnetic quarks gauge singlet Weyl fermions which can be
identified with the baryons of QCD but massless. The generic dual spectrum
is summarized in Table II. The wave functions for the gauge singlet fields
A, C and S are obtained by projecting the flavor indices of the following
operator

εc1c2c3Qi1c1Q
i2
c2Q

i3
c3 , (4.182)
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over the three irreducible representations of SUL(Nf ) as indicated in the
Table II.

TABLE II

Massless spectrum of magnetic quarks and baryons and their transformation prop-
erties under the global symmetry group. The last column represents the multiplicity
of each state and each state is a Weyl fermion.

Fields [SU(X)] SUL(Nf ) SUR(Nf ) UV (1) # of copies

q 1 y 1
q̃ 1 −y 1

A 1 1 3 `A
S 1 1 3 `S

C 1 1 3 `C

BA 1 3 `BA

BS 1 3 `BS

DA 1 3 `DA

DS 1 3 `DS

Ã 1 1 −3 ` eA
S̃ 1 1 −3 `eS
C̃ 1 1 −3 ` eC

These states are all singlets under the SUR(Nf ) flavor group. Similarly
one can construct the only right-transforming baryons Ã, C̃ and S̃ via Q̃.
The B states are made by two Q fields and one right field Q̃ while the D
fields are made by one Q and two Q̃ fermions. y is the, yet to be determined,
baryon charge of the magnetic quarks while the baryon charge of composite
states is fixed in units of the QCD quark one.The `s count the number
of times the same baryonic matter representation appears as part of the
spectrum of the theory. Invariance under parity and charge conjugation of
the underlying theory requires `J = ` eJ with J = A,S, . . . , C and `B = −`D.

Having defined the possible massless matter content of the gauge the-
ory dual to QCD we compute the SUL(Nf )3 and SUL(Nf )2 UV (1) global
anomalies in terms of the new fields:
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SUL(Nf )3 ∝ X +
(Nf − 3)(Nf − 6)

2
`A +

(Nf + 3)(Nf + 6)
2

`S

+
(
N2
f − 9

)
`C + (Nf − 4)Nf `BA + (Nf + 4)Nf `BS

+
Nf (Nf − 1)

2
`DA +

Nf (Nf + 1)
2

`DS = 3 , (4.183)

SUL(Nf )2 UV (1) ∝ y X + 3
(Nf − 3)(Nf − 2)

2
`A + 3

(Nf + 3)(Nf + 2)
2

`S

+3
(
N2
f − 3

)
`C + 3(Nf − 2)Nf `BA + 3(Nf + 2)Nf `BS

+3
Nf (Nf − 1)

2
`DA + 3

Nf (Nf + 1)
2

`DS = 3 . (4.184)

The right-hand side is the corresponding value of the anomaly for QCD.

4.9.3. A realistic QCD dual

We have found several solutions to the anomaly matching conditions
presented above. Some were found previously in [201]. Here we start with a
new solution in which the gauge group is SU(2Nf − 5N) with the number
of colors N equal to 3. It is, however, convenient to keep the dependence on
N explicit. The solution above corresponds to the following value assumed
by the indices and y baryonic charge in Table II.

TABLE III

Massless spectrum of magnetic quarks and baryons and their transformation prop-
erties under the global symmetry group. The last column represents the multiplicity
of each state and each state is a Weyl fermion.

Fields [SU(2Nf − 5N)] SUL(Nf ) SUR(Nf ) UV (1) # of copies

q 1 N(2Nf−5)
2Nf−5N 1

q̃ 1 −N(2Nf−5)
2Nf−5N 1

A 1 1 3 2
BA 1 3 −2
DA 1 3 2

Ã 1 1 −3 2
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X = 2Nf − 5N , `A = 2 , `DA = −`BA = 2 ,

`S = `BS = `DS = `C = 0 , y = N
2Nf − 5
2Nf − 15

, (4.185)

with N = 3. X must assume a value strictly larger than one otherwise it
is an Abelian gauge theory. This provides the first nontrivial bound on the
number of flavors:

Nf >
5N + 1

2
, (4.186)

which for N = 3 requires Nf > 8.

Conformal window from the dual magnetic theory

Asymptotic freedom of the newly found theory is dictated by the coeffi-
cient of the one-loop beta function:

β0 = 11
3 (2Nf − 5N)− 2

3Nf . (4.187)

To this order in perturbation theory the gauge singlet states do not affect
the magnetic quark sector and we can hence determine the number of flavors
obtained by requiring the dual theory to be asymptotic free, i.e.:

Nf ≥ 11
4 N dual asymptotic freedom . (4.188)

Quite remarkably this value coincides with the one predicted by means of the
all orders conjectured beta function for the lowest bound of the conformal
window, in the electric variables, when taking the anomalous dimension of
the mass to be γ = 2. We recall that for any number of colors N the all
orders beta function requires the critical number of flavors to be larger than:

NBF
f

∣∣
γ=2

= 11
4 N . (4.189)

For N = 3 the two expressions yield 8.25 16. We consider this a nontrivial
and interesting result lending further support to the all orders beta function
conjecture and simultaneously suggesting that this theory might, indeed, be
the QCD magnetic dual. The actual size of the conformal window matching
this possible dual corresponds to setting γ = 2. We note that although
for Nf = 9 and N = 3 the magnetic gauge group is SU(3) the theory is
not trivially QCD given that it features new massless fermions and their
interactions with massless mesonic type fields.

16 Actually given that X must be at least 2 we must have Nf ≥ 8.5 rather than 8.25.



3616 F. Sannino

To investigate the decoupling of each flavor at the time one needs to
introduce bosonic degrees of freedom. These are not constrained by anomaly
matching conditions. Interactions among the mesonic degrees of freedom
and the fermions in the dual theory cannot be neglected in the regime when
the dynamics is strong. The simplest mesonic operator M j

i transforming
simultaneously according to the antifundamental representation of SUL(Nf )
and the fundamental representation of SUR(Nf ) leads to the following type
of interactions for the dual theory:

LM = Yqeq qM q̃ + YABA AMBA + YCBA CMBA + YCBS CMBS

+YSBS SMBS + YBADA BAM DA + YBADS BAM DS

+YBSDA BSM DA + YBSDS BSM DS + h.c. (4.190)

The coefficients of the various operators are matrices taking into account the
multiplicity with which each state occurs. The number of operators drasti-
cally reduces if we consider only the ones linear in M . The dual quarks and
baryons interact via mesonic exchanges. We have considered only the meson
field for the bosonic spectrum because is the one with the most obvious in-
terpretation in terms on the electric variables. One can also envision adding
new scalars charged under the dual gauge group [201] and in this case one
can have contact interactions between the magnetic quarks and baryons. We
expect these operators to play a role near the lower bound of the conformal
window of the magnetic theory where QCD is expected to become free. It is
straightforward to adapt the terms above to any anomaly matching solution.

In Seiberg’s analysis it was also possible to match some of the operators
of the magnetic theory with the ones of the electric theory. The situation for
QCD is, in principle, more involved although it is clear that certain magnetic
operators match exactly the respective ones in the electric variables. These
are the meson M and the massless baryons, A, Ã, . . . , S shown in Table II.
The baryonic type operators constructed via the magnetic dual quarks have
baryonic charge which is a multiple of the ordinary baryons and, hence,
we propose to identify them, in the electric variables, with bound states of
QCD baryons. We summarize the proposed operator matching constraints
in Fig. 36.

The generalization to a generic number of colors is currently under inves-
tigation. It is an interesting issue and to address it requires the knowledge
of the spectrum of baryons for arbitrary number of colors. It is reasonable
to expect, however, a possible nontrivial generalization to any number of
odd colors17.

17 For an even number of colors the baryons are bosons and a the analysis must modify.
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Baryonic 
bound states

Magnetic Electric

Baryons

M ∼ QQ

A, S, ....

M

�c1....cX
qc1 · · · qcX

Fig. 36. We propose the above correspondence between the gauge singlet operators
of the magnetic theory and the electric ones. The novelty introduced in [199] with
respect to any of the earlier approaches is the identification of the magnetic baryons,
i.e. the ones constructed via the magnetic quarks, with bound states of baryons in
the electric variables.

Earlier solutions

It is worth comparing the solution above with the ones found already in
the literature [201]. These are:

X = Nf − 6 , `A = `DA = −`BA = 1 ,

`S = `BS = `DS = `C = 0 , y = 3
Nf − 2
Nf − 6

, (4.191)

corresponding to α = 1 and β = −2, when taking the magnetic quark flavor
symmetry assignment as in Table II. However, assigning the magnetic quarks
q to the complex representation of SUL(Nf ) one has also the solution:

X = Nf + 6 , `S = `DS = −`BS = 1 ,

`A = `BA = `DA = `C = 0 , y = −3
Nf + 2
Nf + 6

. (4.192)

Assuming the gauge group to be SU(Nf ± 6) the one loop coefficient of the
beta function is:

β0 = 11
3 (Nf ∓ 6)− 2

3Nf , (4.193)
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where the sign corresponds to the two possibilities for X, i.e. Nf ∓ 6 and
we have only included the magnetic quarks18. The critical number of flavors
where asymptotic freedom is lost, in the case of the Nf −6 gauge group, cor-
responds to 7.33. On the other hand, we have a stronger constraint from the
fact that the gauge group must be at least SU(2) and hence Nf ≥ 8 while
no useful constraint can be obtained for the Nf + 6 gauge group. It was
argued in [201] that by taking SO or Sp as possible gauge group rather than
SU one might increase the critical number of flavors to around 10. However
choosing SO and Sp rather than SU implies that the global symmetry group
is enlarged to SU(2Nf ) and hence it is not clear how one can still match the
anomaly conditions, unless one assumes a simultaneous dynamical enhance-
ment of the QCD global symmetries at the fixed point.

We have uncovered a novel solution of the ’t Hooft anomaly match-
ing conditions for QCD. We have shown that in the perturbative regime the
new gauge theory, if interpreted as a possible QCD dual, predicts the critical
number of flavors above which QCD in the nonperturbative regime, devel-
ops an infrared stable fixed point. The value is identical to the maximum
bound predicted in the nonpertubative regime via the all orders conjectured
beta function for nonsupersymmetric gauge theories. Recent suggestions to
analyze the conformal window of nonsupersymmetric gauge theories based
on different model assumptions [211] are in qualitative agreement with the
precise results of the all orders beta function conjecture. It is worth noting
that the combination 2Nf − 5N appears in the computation of the mass
gap for gauge fluctuations presented in [211,212]. It would be interesting to
explore a possible link between these different approaches in the future.

Interestingly the present solution of the anomaly matching conditions
indicate a substantial larger extension of the conformal window than the
one predicted using the ladder approximation [159–161,202] and the thermal
count of the degree of freedom [162].

In fact, we have also find solutions for which the lower bound of the
conformal window is saturated for γ = 1. The predictions from the gauge
duals are, however, entirely and surprisingly consistent with the maximum
extension of the conformal window obtained using the all orders beta func-
tion [21]. Our main conclusion is that the ’t Hooft anomaly conditions alone
do not exclude the possibility that the maximum extension of the QCD con-
formal window is the one obtained for a large anomalous dimension of the
quark mass.

18 A complex scalar gauged under the dual gauge group was also added in the dual
spectrum of [201]. The scalar transformed according to the fundamental representa-
tion of the left and right SU(Nf ) groups. The resulting SU(Nf − 6) gauge theory is
never asymptotically free and for this reason we have not included this scalar in our
discussion.
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By computing the same gauge singlet correlators in QCD and its sug-
gested dual, one can directly validate or confute this proposal via lattice
simulations.

4.10. Higher representations duals
4.10.1. SU(3) gauge theory with 2-index symmetric matter

The underlying gauge group is SU(3) while the quantum flavor group is

SUL(Nf )× SUR(Nf )×UV (1) , (4.194)

and the classical UA(1) symmetry is destroyed at the quantum level by the
Adler–Bell–Jackiw anomaly. We indicate with Qiα;{c1,c2} the two component
left spinor where α = 1, 2 is the spin index, c1, c2 = 1, . . . , 3 is the color index
while i = 1, . . . , Nf represents the flavor. Q̃α;{c1,c2}

i is the two component
conjugated right spinor. We summarize the transformation properties in the
following table.

TABLE IV

Field content of an SU(3) gauge theory with quantum global symmetry SUL(Nf )×
SUR(Nf )×UV (1).

Fields [SU(3)] SUL(Nf ) SUR(Nf ) UV (1)

Q 1 1
Q̃ 1 −1
Gµ Adj 1 1 1

The global anomalies are associated to the triangle diagrams featuring
at the vertices three SU(Nf ) generators (either all right or all left), or two
SU(Nf ) generators (all right or all left) and one UV (1) charge. We indicate
these anomalies for short with:

SUL/R(Nf )3 , SUL/R(Nf )2 UV (1) . (4.195)

The cubic anomaly factor, for fermions in fundamental representations, is 1
for Q and −1 for Q̃ while the quadratic anomaly factor is 1 for both leading
to

SUL/R(Nf )3 ∝ ±6 , SUL/R(Nf )2UV (1) ∝ ±6 . (4.196)
Specializing to SU(N) with two-index symmetric representation the beta

function we have already found that:

Nf (r)BF ≥ 11N
4(N + 2)

, SU(N) for symmetric rep. with γ = 2 (4.197)

which for N = 3 implies Nf (r)BF ≥ 1.65.
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Assuming, instead, the lower bound to occur for γ = 1 we discover that:

Nf (r)BF ≥ 11N
3(N + 2)

, SU(N) for symmetric rep. with γ = 1 (4.198)

which for N = 3 implies: Nf (r)BF ≥ 2.2.
We seek solutions of the anomaly matching conditions for a gauge theory

SU(X) with global symmetry group SUL(Nf )×SUR(Nf )×UV (1) featuring
magnetic quarks q and q̃ together with SU(X) gauge singlet states identi-
fiable as baryons built out of the electric quarks Q. We study the case in
which X is a linear combination of number of flavors and colors of the type
αNf + Nβ with α and β integer numbers. In fact, in the following we will
consider N = 3. We will also require that the baryons constructed out of
the magnetic quarks have integer baryonic charges with respect to the orig-
inal baryon number. In this way they will be interpreted as possible bound
states of the original baryons. We will see that this is an important property
helping selecting possible duals.

4.10.2. Dual quarks in the fundamental representation

In this initial investigation we search for dual electric quarks in the fun-
damental representation of the gauge group X. This choice has the virtue
to keep linear in Nf the asymptotic freedom condition we will investigate
later. We have searched for the more complicate case of dual fermions in
higher dimensional representations and will present this possibility in the
following section.

We add to the magnetic quarks gauge singlet Weyl fermions which can
be identified with massless baryons of the electric theory. The generic dual
spectrum is summarized in Table V. The wave functions for the gauge singlet
fieldsA, C and S are obtained by projecting the flavor indices of the following
operator

εc1c2c3εd1d2d3Qi1{c1,d1}Q
i2
{c2,d2}Q

i3
{c3,d3} , (4.199)

over the three irreducible representations of SUL(Nf ) as indicated in the
Table II. These states are all singlets under the SUR(Nf ) flavor group. Sim-
ilarly one can construct the only right-transforming baryons Ã, C̃ and S̃

via Q̃. The B states are made by two Q fields and one right field Q̃ while
the D fields are made by one Q and two Q̃ fermions. y is the, yet to be
determined, baryon charge of the magnetic quarks while the baryon charge
of composite states is fixed in units of the electric quark one. The `s count
the number of times the same baryonic matter representation appears as
part of the spectrum of the theory. Invariance under parity and charge con-
jugation of the underlying theory requires `J = ` eJ with J = A,S, . . . , C and
`B = −`D.
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TABLE V

Massless spectrum of magnetic quarks and baryons and their transformation prop-
erties under the global symmetry group. The last column represents the multiplicity
of each state and each state is a Weyl fermion.

Fields [SU(X)] SUL(Nf ) SUR(Nf ) UV (1) # of copies

q 1 y 1
q̃ 1 −y 1

A 1 1 3 `A
S 1 1 3 `S

C 1 1 3 `C

BA 1 3 `BA

BS 1 3 `BS

DA 1 3 `DA

DS 1 3 `DS

Ã 1 1 −3 ` eA
S̃ 1 1 −3 `eS
C̃ 1 1 −3 ` eC

Having defined the possible massless matter content of the gauge theory
dual to the electric theory we compute the SUL(Nf )3 and SUL(Nf )2 UV (1)
global anomalies in terms of the new fields:

SUL(Nf )3 ∝ X +
(Nf − 3)(Nf − 6)

2
`A +

(Nf + 3)(Nf + 6)
2

`S

+
(
N2
f − 9

)
`C + (Nf − 4)Nf `BA + (Nf + 4)Nf `BS

+
Nf (Nf − 1)

2
`DA +

Nf (Nf + 1)
2

`DS = 6 , (4.200)

SUL(Nf )2 UV (1) ∝ y X + 3
(Nf − 3)(Nf − 2)

2
`A + 3

(Nf + 3)(Nf + 2)
2

`S

+3
(
N2
f − 3

)
`C + 3(Nf − 2)Nf `BA + 3(Nf + 2)Nf `BS

+3
Nf (Nf − 1)

2
`DA + 3

Nf (Nf + 1)
2

`DS = 6 . (4.201)

The left-hand expressions are identical to the ones of QCD while the
right-hand side provides the corresponding value of the anomaly for the
electric theory with two-index symmetric matter.
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We require, as done in the QCD case [199], that the baryonic type opera-
tors constructed via the magnetic dual quarks should have baryonic charges
multiple of the ordinary baryons ones. We identify them, in the electric
variables, with bound states of ordinary baryons. In the case of Nf = 2
the cubic anomaly vanishes identically and should not be considered. For
three colors the electric theory looses asymptotic freedom for 3.3 flavors and
hence there is only one value of Nf , i.e. Nf = 3 for which both anomalies
are relevant.

We have found different solutions to the anomaly matching conditions
which we will present here:

First solution: SU(2NF − 3) dual gauge group

The solutions correspond, for the case N = 3 to the following value
assumed by the indices and y baryonic charge:

X = 2Nf − 3 , `A = 0 , `DA = k1 = −`BA ,

`S = −1 + 2k1 + 5k2 , `DS = −2 + 4k1 + 9k2 = −`BS ,

`C = 0 , y = 3
a+ bNf + cN2

f

4Nf − 6
,

with k1 and k2 integer numbers and

a = 10− 12k1− 30k2, b = 2k2− k1− 1 , c = 3k1 + 4k2− 1 . (4.202)

We have asked that both anomaly matching conditions are satisfied for
Nf = 3 and that the solutions satisfy also the quadratic one for Nf = 2.

Of course X must assume a value strictly larger than one otherwise it
describes an Abelian gauge theory. This provides the first nontrivial bound
on the number of flavors:

Nf >
3 + 1

2
= 2 . (4.203)

This value is remarkably consistent with the maximum extension predicted
using the truncated SD equation and the all orders beta function for a value
of the anomalous dimension equal to one.

Asymptotic freedom of the newly found theory is dictated by the coeffi-
cient of the one-loop beta function :

β0 = 11
3 (2Nf − 3)− 2

3Nf . (4.204)
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To this order in perturbation theory the gauge singlet states do not affect
the magnetic quark sector and we can hence determine the number of flavors
obtained by requiring the dual theory to be asymptotic free. i.e.:

Nf ≥ 33
20 = 1.65 , dual asymptotic freedom I . (4.205)

This value coincides with the one predicted by means of the all orders con-
jectured beta function for the lowest bound of the conformal window, in the
electric variables, when taking the anomalous dimension of the mass to be
γ = 2. We recall that for any number of colors N the all orders beta function
requires the critical number of flavors to be larger than:

NBF
f

∣∣
γ=2

=
11N

4(N + 2)
. (4.206)

For N = 3 the two expressions yield 1.65. Actually given that X must be
larger than one this solution requires Nf > 2 rather than 1.65. This last
feature was also observed for the QCD dual case. We simply consider this
as a signal that we cannot arrive at the maximum value of γ, nevertheless
we can still arrive at a value for the anomalous dimension larger than one
according to this solution. If one requires an even more stringent constraint
X ≥ 2 we then find Nf > 2.5 which is very close to the result obtained
setting γ = 1 in the all orders beta function.

The baryon charge of the magnetic baryons is:

B
[
qX
]

= X×y = 3
2

(
a+ bNf + cN2

f

)
= operator matching = 3n , (4.207)

with n an integer requiring a+ bNf +cN2
f to be an even number. This extra

constraints is easily satisfied by choosing, for example, k1 = 1 and k2 = 0
yielding B[qX ] = 3 (N2

f −Nf − 1). Intriguingly for Nf = 2 one recovers the
standard baryonic charge.

Second solution: SU(7Nf − 15)

The solutions correspond to the following value assumed by the indices
and y baryonic charge:

X = 7Nf − 15 , `A = 0 , `DA = k1 = −`BA ,
`S = 2k1 + 5k2 , `DS = 4k1 + 9k2 = −`BS ,

`C = 0 , y = 3
a+ bNf + cN2

f

14Nf − 30
. (4.208)

with k1 and k2 integer numbers and

a = 4− 12k1 − 30k2 , b = 2k2 − k1 , c = 3k1 + 4k2 . (4.209)



3624 F. Sannino

The baryon charge of the magnetic baryons is:

B
[
qX
]

= X×y = 3
2

(
a+ bNf + cN2

f

)
= operator matching = 3n , (4.210)

with n an integer requiring a+ bNf +cN2
f to be an even number. This extra

constraints is also easily satisfied by choosing, for example, k1 = k2 = 0
yielding B

[
qX
]

= 6 for any Nf corresponding to a di-baryon charge. One
can also consider the case k2 = 1 and k1 = 0.

The condition X > 1 yields:

Nf >
16
7 ' 2.29 . (4.211)

This value is also remarkably consistent with the maximum extension pre-
dicted using the truncated SD equation and the all orders beta function for
a value of the anomalous dimension equal to one.

Asymptotic freedom of the newly found theory is dictated by the coeffi-
cient of the one-loop beta function :

β0 = 11
3 (7Nf − 15)− 2

3Nf , (4.212)

yielding

Nf ≥ 11
5 = 2.2 , dual asymptotic freedom II . (4.213)

This value coincides with the one predicted by means of the all orders con-
jectured beta function for the lowest bound of the conformal window, in the
electric variables, when taking the anomalous dimension of the mass to be
γ = 1. We recall that for any number of colors N the all orders beta function
requires the critical number of flavors to be larger than:

NBF
f

∣∣
γ=1

=
11N

3(N + 2)
. (4.214)

For N = 3 the two expressions yield 2.2. This value is even closer to the one
obtained imposing the condition X > 1 which is circa 2.29.

Interestingly the two class of solutions suggest that the electric theory
is not conformal but walking. We observe that the predictions from the
dual theory does not depend on the all orders beta function. However it is
remarkable that the predictions are very close to the ones predicted using
the beta function ansatz.

An interesting property of this solution is that one can saturate the
anomaly matching conditions directly via the presumed magnetic quarks.
It is, in fact, sufficient to set k1 = k2 = 0 to see this. If we apply the all
order beta function we can investigate when chiral symmetry is restored.
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Setting γ = 1 for the dual theory one finds that Nf should be less than
or equal to about 2.29 which is lower than the value for which the electric
theory looses asymptotic freedom. This seems to indicate that more matter
is needed and the solution k1 = k2 = 0 is not an exact dual according to the
all orders beta function. However one can investigate the nonperturbative
dynamics of this theory via first principle lattice simulations and test the
duality independently.

Third solution: SU(αNf(N+2)−βN+δ) and two-index symmetric magnetic
quarks.

We have investigated also the case in which the magnetic quarks are
in the same two-index representation of the gauge group X = αNf (N+2)
−βN + δ. In this case the first coefficient of both anomalies must be modi-
fied according to X → X(X+ 1)/2 to take into account of the change of the
representation of the dual quarks. We have found several solutions for dif-
ferent integer values of the coefficients α, β and δ. We present two examples
here for N = 3:

α = 2 , β = 5 and δ = 0 ,
X = 10Nf − 15 , `A = 0 , `DA = k1 = −`BA ,
`S = −2 + 2k1 + 5k2 , `DS = 4 + 4k1 + 9k2 = −`BS ,

`C = 0 , y = 3
a+ bNf + cN2

f

10(2Nf − 3)(5Nf − 7)
. (4.215)

with k1 and k2 integer numbers and

a = 16−12k1−30k2 , b = 22+2k2−k1 , c = 6+3k1 +4k2 . (4.216)

The one-loop coefficient of the beta function is:

β0 = 11
3 X − 2

3Nf (X + 2) . (4.217)

Asymptotic freedom requires the previous coefficient to be positive which
means:

1.58 ≤ Nf ≤ 5.22 , dual asymptotic freedom condition . (4.218)

The lower bound is now close to the value of the critical number of flavors
corresponding to the maximum extension (γ = 2) value where the all or-
ders beta function requires the electric theory to start developing an IRFP.
This time the condition X > 1 yields a weaker constraint, i.e. Nf > 1.5,
with respect to the asymptotic freedom constraint on the lowest value for
Nf . The trend is different with respect to the case in which we considered
magnetic quarks transforming according to the fundamental representation
of the SU(X) gauge group.
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α = 4, β = 11 and δ = 2
In this case the solution is:

X = 20Nf − 31 , `A = 0 , `DA = k1 = −`BA ,
`S = −2 + 2k1 + 5k2 , `DS = 25 + 4k1 + 9k2 = −`BS ,

`C = 0 , y = 3
a+ bNf + cN2

f

10(20Nf − 31)(2Nf − 3)
. (4.219)

with k1 and k2 integer numbers and

a = 16−12k1−30k2 , b = 85−k1+2k2 , c = 27+3k1+4k2 . (4.220)

Asymptotic freedom requires the previous coefficient to be positive which
means:

1.59 ≤ Nf ≤ 5.36 , dual asymptotic freedom condition . (4.221)

The lower bound is close again to the value of the critical number of flavors
corresponding to the maximum extension (γ = 2) value where the all orders
beta function requires the electric theory to start developing an IRFP. The
condition X > 1 yields a constraint, i.e. Nf > 1.6 consistent with the lowest
value of the asymptotic freedom window. Note that we have arranged X in
such a way that for X ≥ 2 we recover identically the all order beta function
bound for γ = 2.

We were able to find a solution for different values of α, in particular for
α = 3 the condition X ≥ 2 is consistent with the bound of the all orders beta
function but for γ = 1 and asymptotic freedom requires 2.15 < Nf < 5.28.

For duals with magnetic quarks in the two index symmetric representa-
tion we find more difficult to have a reasonable interpretation of the magnetic
baryons, i.e. possessing B

[
qX
]

= 3n. Our findings suggest that duals with
fermions in the fundamental representation are, actually, privileged.

We have found solutions matching the predictions coming from the con-
jectured all orders beta function also in the case of theories with fermions
in the two-index symmetric representation of the SU(3) gauge group. More-
over, if one uses dual quarks in the fundamental representation the typical
size of the allowed conformal window is consistent with the γ = 1 condition.
On the other hand, when using dual quarks in the two-index symmetric
representation the size of the conformal window compatible with ’t Hooft
anomaly matching can extend to match the one obtained using γ = 2 in the
all orders beta function. However the latter case is disfavored by the oper-
ator matching conditions given that the UV (1) charge of magnetic baryons
is typically not an integer number of ordinary baryons.
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4.10.3. Minimal conformal theories: SU(N) with adjoint Weyl matter

We considered till now only a fixed number of colors since the spectrum of
possible composite fermions increases when increasing the number of colors.
We turn our attention now to another class of two-index theories for which
the dependence on the number of colors, spectrum-wise, is trivial. These are
theories with a generic number of Weyl fermions transforming according to
the adjoint representation of the underlying SU(N) gauge group. The asso-
ciated quantum flavor group is simply SU(Nf ). We indicate with λiα;a the
two component left spinor where α = 1, 2 is the spin index, a = 1, . . . , N2−1
is the color index while i = 1, . . . , Nf represents the flavor. We summarize
the transformation properties in the following table:

TABLE VI

Field content of an SU(N) gauge theory with quantum global symmetry SU(Nf ).

Fields [SU(N)] SU(Nf )

λ Adj
Gµ Adj 1

The global anomalies are associated to the triangle diagrams featuring
at the vertices three SU(Nf ) generators. We indicate these anomalies for
short with:

SU(Nf )3 . (4.222)

For a vector like theory there are no further global anomalies. The cubic
anomaly factor, for fermions in the fundamental representation, is one lead-
ing to

SU(Nf )3 ∝ N2 − 1 . (4.223)

We seek solutions of the anomaly matching conditions for a possible dual
gauge theory SO(X) featuring magnetic Weyl quarks q transforming accord-
ing to the vector representation of the gauge group. The global symmetry
group is then SU(Nf ). We also add gauge singlet fields built out of the elec-
tric quarks λ. The dual spectrum is summarized in Table VII. The gauge
singlet state Λ is nothing but the gauge singlet built out of the gauge field
strength and λ. We can have several copies of Λ.

Having defined the possible massless matter content of the gauge theory
dual we compute the relevant anomaly:

SU(Nf )3 ∝ X + `Λ = N2 − 1 . (4.224)



3628 F. Sannino

TABLE VII

Massless spectrum of magnetic quarks and baryons and their transformation prop-
erties under the global symmetry group. The last column represents the multiplicity
of each state and each state is a Weyl fermion.

Fields [SO(X)] SU(Nf ) # of copies

q 1
Λ 1 `Λ

The right-hand side is the corresponding value of the anomaly for the electric
theory. For any X we have a solution which is:

`Λ = N2 − 1−X . (4.225)

The one-loop coefficient of the beta function is:

β0 = 11
3 (X − 2)− 2

3Nf . (4.226)

We find that for X = Nf − 1 asymptotical freedom is lost for:

Nf ≥ 11
3 , dual asymptotic freedom andNfWeyl fermions , (4.227)

in total agreement with the lower bound of the conformal window obtained
by imposing γ = 1 in the all orders beta function. In fact, Nf must be
larger or equal than four for the dual SO(Nf−1) theory to be a non-Abelian
gauge theory. Since Nf counts the number of Weyl fermions we have found
that the number of Dirac flavors above which we expect any SU(N) gauge
theory to develop an infrared fixed point must be equal or larger than two.
This is an extremely interesting result since it agrees with earlier analytical
expectations obtained using several different analytic methods as well as
recent first principle lattice results [168,170,189,205,206,213].

We have also explored the possibility to introduce dual fermions in the
adjoint representation of a SU dual gauge group. Although solutions to the
anomaly conditions are straightforward we find that the solution above is
the one which better fits the numerical and analytical results.

Higher representations duals summary

We provided the first investigation of the conformal window of non-
superymmetric gauge theories with sole fermionic matter transforming ac-
cording to higher dimensional representation of the underlying gauge group.
We argued that, if the duals exist, they are gauge theories with fermions
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transforming according to the defining representation of the dual gauge
group. The resulting conformal windows match the one stemming from
the all orders beta function results when taking the anomalous dimension
of the fermion mass to be unity. In particular, our results for the adjoint
representation indicate that for two Dirac flavors any SU(N) gauge theory
should enter the conformal window. These results are in excellent agreement
with numerical and previous analytical results [16,20,21,164,211]. The map-
ping of higher dimensional representations into duals with fermions in the
fundamental representation can be the source of the observed universality
of the size of the various phase diagrams for different representations noted
in [158].

4.11. Phases of chiral gauge theories

Chiral gauge theories, in which at least part of the matter field content
is in complex representations of the gauge group, play an important role in
efforts to extend the SM. These include grand unified theories, dynamical
breaking of symmetries, and theories of quark and lepton substructure. An
important distinction from vector-like theories such as QCD is that since
at least some of the chiral symmetries are gauged, mass terms that would
explicitly break these chiral symmetries are forbidden in the Lagrangian.
Another key feature is that the fermion content is subject to a constraint
not present in vectorial gauge theories, the cancellation of gauge and gravi-
tational anomalies.

Chiral theories received much attention in the 1980s [214], focusing on
their strong coupling behavior in the infrared. One possibility is confinement
with the gauge symmetry as well as global symmetries unbroken, realized
by the formation of gauge singlet, massless composite fermions. Another
is confinement with intact gauge symmetry but with some of the global
symmetries broken spontaneously, leading to the formation of gauge-singlet
Goldstone bosons. It is also possible for these theories to exist in the Higgs
phase, dynamically breaking their own gauge symmetries [215]. Depend-
ing on particle content, they might even remain weakly coupled. This will
happen if the theory has an interacting but weak infrared fixed point. The
symmetries will then remain unbroken, and the infrared and underlying de-
grees of freedom will be the same.

Supersymmetric (SUSY) chiral theories have also received considerable
attention over the years, since most of the known examples of dynamical
supersymmetry breaking involve these kinds of theories [216].

Studies of chiral gauge theories have typically made use of the ’t Hooft
global anomaly matching conditions [28] along with 1/N expansion, and
not-so-reliable most attractive channel (MAC) analysis and instanton com-
putations. Direct approaches using strong coupling lattice methods are still
difficult.
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Here we confront the results obtained in Ref. [180,181] using the thermal
degree of count freedom with the generalization of the all orders beta func-
tion useful to constrain these extremely interesting phase diagrams. The
two important class of theories we are going to investigate are the Bars–
Yankielowicz (BY) [217] model involving fermions in the two-index sym-
metric tensor representation, and the other is a generalized Georgi–Glashow
(GGG) model involving fermions in the two-index antisymmetric tensor rep-
resentation. In each case, in addition to fermions in complex representations,
a set of p anti fundamental–fundamental pairs are included and the allowed
phases are considered as a function of p. Several possible phases emerge,
consistent with global anomaly matching and the thermal inequality. It was
noted in [181] that in the real world case of two-flavor QCD (a vector-like
theory with all fermions in a real representation) nature prefers to minimize
fIR. Neglecting the small bare quark masses, global anomaly matching ad-
mits two possible low energy phases, broken chiral symmetry through the
formation of the bilinear 〈ψ̄ψ〉 condensate, or unbroken chiral symmetry
through the formation of confined massless baryons. Both effective low en-
ergy theories are infrared free. The three Goldstone bosons of the former
(chosen by nature) lead to fIR = 3, and the two massless composite Dirac
fermions of the latter lead to fIR = 7.

We focus almost completely on symmetry breaking patterns correspond-
ing to the formation of bilinear condensates. We suggested in [181] that
in general, the phase corresponding to confinement with all symmetries un-
broken, where all the global anomalies are matched by massless composite
fermions, is not preferred. Instead, the global symmetries associated with
fermions in real representations break spontaneously via bilinear condensate
formation as in QCD. With respect to the fermions in complex represen-
tations, however, the formation of bilinear condensates is suggested to be
disfavored relative to confinement and the preservation of the global sym-
metries via massless composite fermion formation.

Bilinear condensate formation is, of course, not the only possibility in a
strongly coupled gauge field theory. We extended our discussion to include
general condensate formation for one simple example, the SU(5) Georgi–
Glashow model, which has fermions in only complex representations and
has only a U(1) global symmetry. This symmetry can be broken via only
higher dimensional condensates. Interestingly, this breaking pattern, with
confinement and unbroken gauge symmetry, leads to the minimum value
of fIR. This highlights the important general question of the pattern of
symmetry breaking in chiral theories when arbitrary condensate formation
is considered. Higher dimensional condensates might play an important role,
for example, in the dynamical breaking of symmetries in extensions of the
SM [218].
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4.11.1. All-orders beta function for chiral gauge theories

A generic chiral gauge theory has always a set of matter fields for which
one cannot provide a mass term, but it can also contain vector-like matter.
We hence suggest the following minimal modification of the all orders beta
function [21] for any nonsupersymmetric chiral gauge theory:

βχ(g) = − g3

(4π)2

β0 − 2
3

∑k
i=1 T (ri)p(ri)γi

(
g2
)

1− g2

8π2C2(G)
(

1 + 2β ′χ
β0

) , (4.228)

where pi is the number of vector like pairs of fermions in the representation
ri for which an anomalous dimension of the mass γi can be defined. β0 is
the standard one loop coefficient of the beta function while β ′χ expression is
readily obtained by imposing that when expanding βχ one recovers the two-
loop coefficient correctly and its explicit expression is not relevant here. Note
that the previous expression readily reproduces our original beta function
when setting to zero the number of true chiral fermions. At this point one
can investigate the conformal window for chiral gauge theories in a manner
analogous to the case of purely vector matter. We will use this method
to determine the conformal window of the most relevant chiral theories,
already used already in particle physics, and described in much detail below.
According to the new beta function gauge theories without vector-like matter
but featuring several copies of purely chiral matter will be conformal when
the number of copies is such that the first coefficient of the beta function
vanishes identically. Using topological excitations an analysis of this case
was performed in [211].

4.12. The Bars–Yankielowicz (BY) model

This model is based on the single gauge group SU(N ≥ 3) and includes
fermions transforming as a symmetric tensor representation, S = ψ

{ab}
L ,

a, b = 1, · · · , N ; N + 4 + p conjugate fundamental representations: F̄a,i =
ψca,iL, where i = 1, · · · , N+4+p; and p fundamental representations, F a,i =
ψa,iL , i = 1, · · · , p. The p = 0 theory is the basic chiral theory, free of gauge
anomalies by virtue of cancellation between the antisymmetric tensor and
the N + 4 conjugate fundamentals. The additional p pairs of fundamentals
and conjugate fundamentals, in a real representation of the gauge group,
lead to no gauge anomalies.

The global symmetry group is

Gf = SU(N + 4 + p)× SU(p)×U1(1)×U2(1) . (4.229)
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Two U(1)s are the linear combination of the original U(1)s generated by
S → eiθSS , F̄ → eiθF̄ F̄ and F → eiθFF that are left invariant by instantons,
namely that for which

∑
j NRjT (Rj)QRj = 0, where QRj is the U(1) charge

of Rj and NRj denotes the number of copies of Rj .
Thus the fermionic content of the theory is where the first SU(N) is the

gauge group, indicated by the square brackets.

TABLE VIII

The Bars–Yankielowicz (BY) model.

Fields [SU(N)] SU(N + 4 + p) SU(p) U1(1) U2(1)

S 1 1 N + 4 2p
F̄ ¯ ¯ 1 −(N + 2) −p
F 1 N + 2 −(N − p)

The perturbative beta function (trivially related to the one defined via
the derivative of g) is

β = µ
dα

dµ
= −β1

(
α2

2π

)
− β2

(
α3

4π2

)
+O

(
α4
)
, (4.230)

where the terms of order α4 and higher are scheme-dependent. For the
present model, we have β1 = 3N−2− (2/3)p and β2 = (1/4){13N2−30N+
1 + 12/N − 2p((13/3)N − 1/N)}. Thus the theory is asymptotically free for

p < 9
2N − 3 . (4.231)

We shall restrict p so that this condition is satisfied.
Because of asymptotic freedom, the thermodynamic free-energy may be

computed in the T → ∞ limit. An enumeration of the degrees of freedom
leads to

fUV = 2
(
N2 − 1

)
+

7
4

[
N(N + 1)

2
+ (N + 4)N + 2pN

]
. (4.232)

The infrared realization of this theory will vary depending on the number
p of conjugate fundamental–fundamental pairs. We begin by discussing the
p = 0 theory and then map out the phase structure as function of p.

The p = 0 case

For p = 0, the fermions are in complex representations of the SU(N)
gauge group and the global symmetry group is Gf = SU(N + 4) × U1(1).
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The theory is strongly coupled at low energies, so it is expected either to
confine or to break some of the symmetries, consistent with global anomaly
matching.

All the global anomalies of the underlying theory may be matched at low
energies providing that the massless spectrum is composed of gauge singlet
composite fermions transforming according to the antisymmetric second-
rank tensor representation of SU(N+4). They are described by the compos-
ite operators F̄[iSF̄j] and have charge −N under the U1(1) global symmetry.

With only these massless composites in the low energy spectrum, there
are no dimension-four interactions, so the composites are noninteracting in
the infrared. Therefore the thermodynamic free energy may be computed
in the limit T → 0. Enumerating the degrees of freedom gives

f sym
IR (p = 0) =

7
4

(N + 4)(N + 3)
2

, (4.233)

where the superscript indicates that the full global symmetry is intact.
Clearly f sym

IR (p = 0) < fUV(p = 0), satisfying the inequality of Eq. (4.120)
[180].

While the formation of confined massless composite fermions and the
preservation of Gf is consistent with anomaly matching and the thermal
inequality, the same can be seen to be true of broken symmetry channels.
We consider first the Higgs phase corresponding to the maximally attractive
channel.

× ¯ → , (4.234)

leading to the formation of the SF̄ condensate

εγδSaiγ F̄{a,i},δ , (4.235)

where γ, δ = 1, 2 are spin indices and a, i = 1, · · · , N are gauge and flavor
indices. This condensate breaks U1(1) and all the gauge symmetries, and
it breaks SU(N + 4) to SU(4). But the SU(N) subgroup of SU(N + 4)
combines with the gauge group, leading to a new global symmetry SU ′(N).
For this group, F̄a,i≤N is reducible, to the symmetric F̄S = F̄{a,i} and the
anti-symmetric F̄A = F̄[a,i] representations.

The broken SU(N + 4) generator

Q(N+4) =



4
. . .

4
−N

. . .
−N


,
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combines with Q1 giving a residual global symmetry U ′1(1) = 1
N+4(2Q1 −

Q(N+4)). The breakdown pattern thus is

[SU(N)]× SU(N + 4)×U1(1)→ SU ′(N)× SU(4)×U ′1(1) . (4.236)

The gauge bosons have become massive as have some fermions. The
fermionic spectrum, with respect to the residual global symmetry is

SU ′(N) SU(4) U ′1(1)

S 1 2
Massive

F̄S 1 −2

F̄A 1 −2
Massless

F̄i>N −1

This breaking pattern gives N2 + 8N Goldstone bosons, N2 − 1 of which
are eaten by the gauge bosons. So only 8N + 1 remain as part of the mass-
less spectrum along with the massless fermions. The global anomalies are
again matched by this spectrum. Those associated with the unbroken group
SU ′(N)× SU(4)×U ′1(1) are matched by the massless fermions, while those
associated with the broken global generators are matched by the Goldstone
bosons. Since the Goldstone bosons do not couple singly to the massless
fermions (no dimension-four operators), the effective zero-mass theory is
free at low energies.

It follows that the thermodynamic free energy may be computed at
T → 0 by counting the degrees of freedom. The result is

fHiggs
IR (p = 0) = (8N + 1) + 7

4

[
1
2N(N − 1) + 4N

]
, (4.237)

where the superscript indicates that the gauge symmetry is (partially) bro-
ken. Just as in the case of the symmetric phase, the inequality Eq. (4.120)
is satisfied: fHiggs

IR (p = 0) < fUV(p = 0).
As an aside, we note that according to the idea of complementarity

this low energy phase may be thought of as having arisen from confining
gauge forces rather than the Higgs mechanism. Confinement then would
partially break the global symmetry to the above group forming the neces-
sary Goldstone bosons. It would also produce gauge singlet massless com-
posite fermions to replace precisely the massless elementary fermions in the
above table.
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We have identified [181] two possible phases of this theory consistent
with global anomaly matching and the inequality Eq. (4.120). One confines
and breaks no symmetries. The other breaks the chiral symmetry according
to Eq. (4.236). For any finite value of N , f sym

IR (p = 0) < fHiggs
IR (p = 0).

The symmetric phase is thus favored if the number of degrees of freedom,
or the entropy of the system near freeze-out, is minimized. In the limit
N → ∞, the Goldstone bosons do not contribute to leading order, and
f sym

IR (p = 0) → fHiggs
IR (p = 0). We return to a discussion of the infinite N

limit after describing the general (p > 0) model.
What about other symmetry breaking phases of the p = 0 theory corre-

sponding to bilinear condensate formation? In addition to SF̄ condensates,
there are also SS and F̄ F̄ possibilities. Several of these correspond to at-
tractive channels, although not maximally attractive, due to gluon exchange.
We have considered all of them for the case N = 3, and have shown that
the effective low energy theory is infrared free and that the number of low
energy degrees of freedom is larger than the symmetric phase.

The general case

We next consider the full range of p allowed by asymptotic freedom: 0 <
p < (9/2)N −3. For p near (9/2)N −3, an infrared stable fixed point exists,
determined by the first two terms in the β function. This can be arranged
by taking both N and p to infinity with the difference (9/2)N − p fixed, or
at finite N by continuing to nonintegral p. The infrared coupling is then
weak and the theory neither confines nor breaks symmetries. The fixed point
leads to an approximate, long-range conformal symmetry. As p is reduced,
the screening of the long range force decreases, the coupling increases, and
confinement and/or symmetry breaking set in. We consider three strong-
coupling possibilities, each consistent with global anomaly matching.

Confinement with no symmetry breaking

It was observed by Bars and Yankielowicz [217] that confinement with-
out chiral symmetry breaking is consistent with global anomaly matching
provided that the spectrum of the theory consists of massless composite
fermions transforming under the global symmetry group as follows:

Fields [SU(N)] SU(N + 4 + p) SU(p) U1(1) U2(1)

F̄+S+F̄ 1 1 −N 0
F+S+F 1 N −N
F+SF+ 1 1 −N 2N
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The effective low-energy theory is free. In Ref. [180], the thermodynamic
free energy for this phase was computed, giving

f sym
IR = 7

4

[
1
2(N + 4 + p)(N + 3 + p) + p(N + 4 + p) + 1

2p(p+ 1)
]
. (4.238)

The inequality f sym
IR < fUV was then invoked to argue that this phase is pos-

sible only if p is less than a certain value (less than the asymptotic freedom
bound). For large N , the condition is p < (15/14)1/2N .

Chiral symmetry breaking

Since this theory is vector-like with respect to the p F–F̄ pairs, it may
be anticipated that these pairs condense according to

× → 1 , (4.239)

leading to a partial breaking of the chiral symmetries. The gauge-singlet
bilinear condensate (fermion mass) is of the form

εγδF a,iγ F̄a,N+4+i,δ , (4.240)

where i = 1, . . . , p.
This leads to the symmetry breaking pattern SU(N + 4 + p)× SU(p)×

U1(1)×U2(1)→ SU(N+4)×SUV (p)×U ′1(1)×U ′2(1), producing 2pN+p2+8p
gauge singlet Goldstone bosons. The U ′(1) ′s are combinations of the U(1) ′s
and the broken generator of SU(N + 4 + p)

Q(N+4+p) =



−p
. . .

−p
N + 4

. . .
N + 4


. (4.241)

At this stage, the remaining massless theory is the p = 0 theory described
above, together with the 2pN + p2 + 8p gauge-singlet Goldstone bosons.
Since the Goldstone bosons are associated with the broken symmetry, there
will be no dimension-four interactions between them and the p = 0 theory.
This theory may therefore be analyzed at low energies by itself, leading
to the possible phases described above. Two possible phases of the p =
0 theory were discussed in detail. One corresponds to confinement and
massless composite fermion formation with no chiral symmetry breaking.
For the general theory, this corresponds to
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• Partial chiral symmetry breaking but no gauge symmetry breaking.
The vector-like p pairs of F and F̄ condense, and others form composite
fermions.

The massless spectrum consists of the 2pN + p2 + 8p Goldstone bosons
together with the (N + 4)(N + 3)/2 composite fermions of the p = 0 sector.
All are confined. The final global symmetry is SU(N+4)×SUV (p)×U ′1(1)×
U ′2(1). Global anomalies are matched partially by the massless composites
and partially by the Goldstone bosons. Since both theories are infrared free,
the free energy may be computed in the T → 0 limit to give

fbrk+sym
IR =

(
2pN + p2 + 8p

)
+ 7

4

[
1
2(N + 4)(N + 3)

]
. (4.242)

The inequality Eq. (4.120) thus allows this phase for p less than a certain
value below the asymptotic freedom bound but above the value at which the
symmetric phase becomes possible. For large N , the limit is p/N less than
' 2.83.

The other phase of the p = 0 theory considered above, corresponds to
the MAC for symmetry breaking and the Higgsing of the gauge group with
a further breaking of the chiral symmetry. For the general theory (p > 0),
it leads to

• Further chiral symmetry breaking and gauge symmetry breaking.

The final global symmetry is SU ′(N)×SU(4)×SUV (p)×U ′1(1)×U ′2(1).
The massless spectrum consists of the 2pN + p2 + 8p Goldstone bosons
associated with the p F–F̄ pairs, together with the 8N+1 Goldstone bosons
and N(N + 1)/2 + 4N massless elementary fermions of the p = 0 sector.
Global anomalies are matched partially by Goldstone bosons and partially
by the remaining massless fermions. The effective low energy theories are
infrared free, and we have

fbrk+Higgs
IR =

(
2pN+p2 + 8p

)
+(8N + 1) + 7

4

[
1
2N(N−1)+4N

]
. (4.243)

Three possible phases of the general Bars–Yankielowicz model have now
been identified. In Fig. 37, we summarize the computation of fIR/N

2 for
each phase and compare with fUV for the choice N = 3. Other choices are
qualitatively the same. Each phase satisfies the inequality Eq. (4.120) for
p/N small enough. As p is reduced, the first phase allowed by the inequality
corresponds to confinement with condensation of the p fermions in the real
representation of the gauge group and the breaking of the associated chiral
symmetry, along with unbroken chiral symmetry and massless composite
fermion formation in the p = 0 sector. The degree of freedom count is
denoted by fbrk+sym

IR .
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Fig. 37. BY model: Degree of freedom count f (normalized to N2) for different
phases as function of the number p of F–F̄ pairs for the choice N = 3. f sym

IR

indicates confinement with intact chiral global symmetry while fbrk+sym
IR indicates

confinement with partial chiral symmetry breaking. fbrk+Higgs
IR indicates partial chi-

ral symmetry breaking with gauge symmetry breaking. fUV counts the underlying
degrees of freedom. As N increases, the fbrk+sym

IR and fbrk+Higgs
IR curves approach

each other.

The two other phases are also allowed by the inequality as p is reduced
further. But for any finite value of N and for any value of p > 0, the curve
for fbrk+sym

IR is the lowest of the fIR curves. Thus the lowest infrared degree-
of-freedom count corresponds to a complete breaking of the chiral symmetry
associated with the p F–F̄ pairs (the vector-like part of the theory with the
fermions in a real representation of the gauge group), and no breaking of
the chiral symmetry associated with the p = 0 sector (the part of the theory
with the fermions in complex representations).

It is instructive to examine this model in the infinite N limit. If the limit
is taken with p/N fixed, the curves for fbrk+sym

IR /N2 and fbrk+Higgs
IR /N2 be-

come degenerate for all values of p/N , and are below the curve for f sym
IR .

If the limit N →∞ is taken with p fixed, all the curves become degenerate,
and the phases are not distinguished by the number of degrees of freedom.
The authors of Ref. [218] analyzed the model in the N →∞ limit with con-
finement assumed and noted that the U1(1) symmetry cannot break because
no appropriate order parameter can form in this limit. This is consistent
with the above discussion since each of the phases preserves the U1(1) for
any N .
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As with the p = 0 theory, there are other possible symmetry breaking
phases corresponding to bilinear condensate formation. Some of these are
attractive channels, although not maximally attractive, due to gluon ex-
change. We have considered several possibilities. Each leads to an effective
low energy theory that is infrared free, and each gives a larger value of fIR

than the phase corresponding to the lowest curve in Fig. 37: complete break-
ing of the chiral symmetry associated with p additional F–F̄ pairs and no
breaking of the chiral symmetry associated with the sector of the theory
with the fermions in complex representations.

Generalized BY — conformal window from the chiral beta function

From the numerator of the chiral beta function and the knowledge of
the one-loop coefficient of the BY perturbative beta function the predicted
conformal window is:

3
(3N − 2)

2 + γ∗
≤ p ≤ 3

2(3N − 2) , (4.244)

with γ∗ the largest possible value of the anomalous dimension of the mass.
The maximum value of the number of p flavors is obtained by setting γ∗ = 2:

3
4(3N − 2) ≤ p ≤ 3

2(3N − 2) , γ∗ = 2 , (4.245)

while for γ∗ = 1 one gets:

(3N − 2) ≤ p ≤ 3
2(3N − 2) , γ∗ = 1 . (4.246)

The chiral beta function predictions for the conformal window are compared
with the thermal degree of freedom investigation provided above as shown
in the left panel of Fig. 38. In order to derive a prediction from the ACS
method we augmented it with the Appelquist–Duan–Sannino [181] extra
requirement that the phase with the lowest number of massless degrees of
freedom wins among all the possible phases in the infrared a chiral gauge
theory can have. We hence used the condition fbrk+sym

IR = fUV to determine
this curve. The thermal critical number is:

ptherm =
1
4

[
−16 + 3N +

√
208− 196N + 69N2

]
. (4.247)

4.13. The Generalized Georgi–Glashow (GGG) model

This model is similar to the BY model just considered. It is an SU(N≥5)
gauge theory, but with fermions in the anti-symmetric, rather than sym-
metric, tensor representation. The complete fermion content is A = ψ

[ab]
L ,
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Fig. 38. Left panel: Phase diagram of the BY generalized model. The upper solid
(blue) line corresponds to the loss of asymptotic freedom; the upper dashed (blue)
curve corresponds to the chiral beta function prediction for the breaking/restoring
of chiral symmetry. The lower dashed (black) line corresponds to the ACS bound
stating that the conformal region should start above this line. We have augmented
the ACS method with the Appelquist–Duan–Sannino [181] extra requirement that
the phase with the lowest number of massless degrees of freedom wins among all
the possible phases in the infrared a chiral gauge theory can have. We hence
used fbrk+sym

IR and fUV to determine this curve. According to the all orders beta
function (BF) the conformal window cannot extend below the lower solid (blue)
line, as indicated by the arrows. This line corresponds to the anomalous dimension
of the mass reaching the maximum value of 2. Right panel: The same plot for the
GGG model.

a, b = 1, · · · , N ; an additional N − 4 + p fermions in the conjugate funda-
mental representations: F̄a,i = ψca,iL, i = 1, · · · , N − 4 + p; and p fermions
in the fundamental representations, F a,i = ψa,iL , i = 1, · · · , p.

The global symmetry is

Gf = SU(N − 4 + p)× SU(p)×U1(1)×U2(1) , (4.248)

where the two U(1)s are anomaly free. With respect to this symmetry, the
fermion content is the one in the table below:

TABLE IX

The Generalized Georgi–Glashow (GGG) model.

Fields [SU(N)] SU(N − 4 + p) SU(p) U1(1) U2(1)

A 1 1 N − 4 2p
F̄ ¯ ¯ 1 −(N − 2) −p
F 1 N − 2 −(N − p)
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For the two-loop β-function, we have β1 = 3N + 2 − (2/3)p and β2 =
(1/4){13N2 + 30N + 1 + 12/N − 2p((13/3)N − 1/N)}. Thus the theory is
asymptotically free if

p < (9/2)N + 3 . (4.249)

We restrict p so that this condition is satisfied. Because of asymptotic
freedom, the thermodynamic free-energy may be computed in the T → ∞
limit. We have

fUV = 2
(
N2 − 1

)
+

7
4

[
N(N − 1)

2
+ (N − 4)N + 2pN

]
. (4.250)

As with the BY model, we first discuss the p = 0 theory and then consider
the general case.

The p = 0 case

The global symmetry group is Gf = SU(N − 4) × U1(1). The theory
is strongly coupled at low energies, so it is expected either to confine or to
break some of the symmetries, consistent with global anomaly matching [28].

In the case of complete confinement and unbroken symmetry, to sat-
isfy global anomaly matching the massless spectrum consists of gauge sin-
glet composite fermions F̄{iAF̄j} transforming according to the symmetric
second-rank tensor representation of SU(N − 4) with charge −N under the
U1(1) global symmetry [217]. The composites are noninteracting in the in-
frared. Therefore the thermodynamic free energy may be computed in the
limit T → 0. Enumerating the degrees of freedom gives

f sym
IR (p = 0) =

7
4

(N − 4)(N − 3)
2

. (4.251)

Clearly f sym
IR (p = 0) < fUV(p = 0), satisfying the inequality Eq. (4.120).

We next consider symmetry breaking due to bilinear condensate forma-
tion by first examining the maximally attractive channel:

× → , (4.252)

leading to the formation of the AF̄ condensate

εγδAaiγ F̄a,i,δ , (4.253)

where γ, δ = 1, 2 are spin indices, a = 1, · · · , N , is a gauge index and
i = 1, · · · , N − 4 is a flavor index. This condensate breaks the U1(1) sym-
metry and breaks the gauge symmetry SU(N) to SU(4). The broken gauge
subgroup SU(N−4) combines with the flavor group, leading to a new global
symmetry SU ′(N − 4), while the broken gauge SU(N) generator
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Q(N) =



4
. . .

4
4−N

. . .
4−N


,

combines with U1(1) to form a residual global symmetry U ′(1). The remain-
ing symmetry is thus [SU(4)]× SU ′(N − 4)× U ′1(1). All Goldstone bosons
are eaten by gauge bosons.

We have

F̄a,i =

(
F̄j,i → F̄[j,i] + F̄{j,i}

F̄c,i

)
(4.254)

and

Aab =
(
Aij Aic

Acd

)
, (4.255)

where a, b = 1, · · · , N , i, j = 1, · · · , N − 4, and c, d = N − 3, · · · , N . The
AF̄ condensate pairs F̄[j,i] with Aij and F̄c,i with Aic. This leaves only Acd,
which is neutral under U ′(1), as the fermion content of the SU(4) gauge
theory.

This SU(4) theory is also strongly coupled in the infrared and we expect
it to confine. The most attractive channel for condensate formation, for
example, is

× → 1 , (4.256)

leading to the bilinear condensate

εγδAabγ A
cd
δ ε1···(N−4)abcd , (4.257)

a singlet under the gauge group. Thus, in the infrared, the only massless
fermions are the F̄{j,i}s in the symmetric two-index tensor representation of
SU ′(N − 4). Interestingly, the massless fermion content and the low energy
global symmetry are precisely the same for the symmetric and Higgs phases.
Therefore,

fHiggs
IR (p = 0) = f sym

IR (p = 0) = 7
4

[
1
2(N − 4)(N − 3)

]
. (4.258)

The fermions are composite in the first case and elementary in the second.
This is another example of the complementarity idea. While the two phases
are not distinguished by the low energy considerations used here, they are
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different phases. However, other ideas involving energies on the order of the
confinement and/or breaking scales will have to be employed to distinguish
them.

A general study of the phases of chiral gauge theories should include
higher dimensional as well as bilinear condensate formation. We have done
this for one case, the p = 0 SU(N = 5) model, which possesses only a
U(1) global symmetry. Among the various phases that may be considered
is one that confines but breaks the global U(1). This corresponds to the
formation of gauge invariant higher dimensional condensates, for example
of the type

(
F̄AF̄

)2. There is no bilinear condensate for this breaking
pattern. Global anomaly matching is satisfied by the appearance of a single
massless Goldstone boson and no other massless degrees of freedom. This
phase clearly minimizes the degree of freedom count (the entropy near freeze-
out), among the phases described by infrared free effective theories. The
unbroken phase, by contrast, must include a massless composite fermion
for anomaly matching, and therefore gives a larger fIR. This suggests that
higher dimensional condensate formation may indeed be preferred in this
model. It will be interesting to study this possibility in more detail and
to see whether higher dimensional condensate formation plays an important
role in the larger class of chiral theories considered here and in other theories.

The general case

The full range of p allowed by asymptotic freedom may be considered just
as it was for the BY model. For p near (9/2)N + 3, an infrared stable fixed
point exists, determined by the first two terms in the β function. The in-
frared coupling is then weak and the theory neither confines nor breaks sym-
metries. As p decreases, the coupling strengthens, and confinement and/or
symmetry breaking set in. We consider two possibilities consistent with
global anomaly matching.

Confinement with no symmetry breaking

It is known [217] that confinement without chiral symmetry breaking is
consistent with global anomaly matching provided that the spectrum of the
theory consists of gauge singlet massless composite fermions transforming
under the global symmetry group as follows:

Fields [SU(N)] SU(N − 4 + p) SU(p) U1(1) U2(1)

F̄+AF̄ 1 1 −N 0
F+A+F 1 N −N
F+AF+ 1 1 −N 2N
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The effective low energy is free. Thus the thermodynamic free energy
may be computed in the limit T → 0 to give

f sym
IR = 7

4

[
1
2(N − 4 + p)(N − 3 + p) + p(N − 4 + p) + 1

2p(p− 1)
]
. (4.259)

The inequality Eq. (4.120) allows this phase when p/N is less than ' 2.83,
for large N .

Chiral symmetry breaking

As in the BY model it may be expected that the fermions in a real
representation of the gauge group (the p F–F̄ pairs) will condense in the
pattern

× → 1 . (4.260)

The gauge-singlet bilinear condensate (fermion mass) is of the form

εγδF a,iγ F̄a,N−4+i,δ , (4.261)

where i = 1, . . . , p, leading to the symmetry breaking pattern

SU(N − 4 + p)× SU(p)×U1(1)×U2(1)
→ SU(N − 4)× SUV (p)×U ′1(1)×U ′2(1) , (4.262)

and producing 2pN + p2 − 8p gauge singlet Goldstone bosons.
The U ′(1) ′s are combinations of the U(1) ′s and the broken generator of

SU(N − 4 + p)

Q(N−4+p) =



−p
. . .

−p
N − 4

. . .
N − 4


. (4.263)

The remaining massless theory is the p = 0 theory described above,
together with the 2pN + p2 − 8p gauge-singlet Goldstone bosons. Since the
Goldstone bosons are associated with the broken symmetry, there will be no
dimension-four (Yukawa) interactions between them and the p = 0 fields.
The p = 0 theory may therefore be analyzed by itself, leading to the possible
phases described above. Two phases were considered, one symmetric and the
other broken by the maximally attractive bilinear condensate, and they were
seen to lead to identical low energy theories.
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Thus, in either case, the degree-of-freedom count for the general theory,
corresponding to the breaking of the chiral symmetry associated with the p
F–F̄ pairs, gives

fbrk
IR =

(
2pN + p2 − 8p

)
+ 7

4

[
1
2(N − 4)(N − 3)

]
. (4.264)

To summarize, two possible phases of the general GGG model have been
considered. In Fig. 39, we plot the two computations of fIR/N

2 for the choice
N = 6 and compare them with fUV. Each phase satisfies the inequality
Eq. (4.120) for p below some value. As p is reduced, the first phase allowed
by the inequality corresponds to partial chiral symmetry breaking. For any p,
fbrk

IR is the lower of the fIR curves. Thus the lower infrared degree-of-freedom
count corresponds to a complete breaking of the chiral symmetry associated
with p additional F–F̄ pairs (the vector like part of the theory) and no
breaking of the chiral symmetry associated with the fermions in a complex
representation of the gauge group. Whether the latter behavior is due to
confinement or the Higgsing of the gauge group has not been determined.
These conclusions remain valid in the infinite N limit with p/N fixed. If the
limit N →∞, is taken with p fixed, the two curves become degenerate.

0

5

10

15

20

0 1 2 3 4 5

fsym
IR

fbrk
IR

fUV

p/N

f/N2

N = 6

Fig. 39. GGG model: Degree of freedom count f (normalized to N2) for different
phases as function of the number p of F–F̄ pairs for the choiceN = 6. Other choices
are qualitatively the same. f sym

IR indicates confinement with intact chiral global
group while fbrk

IR indicates either confinement or gauge symmetry breaking, with
partial chiral symmetry breaking. fUV counts the underlying degrees of freedom.

As we have already noted, for the p = 0 SU(5) theory there is a still lower
degree of freedom count when higher dimensional condensates are consid-
ered. This will therefore also be true of the general-p case for SU(5). This
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even lower count corresponds to complete confinement along with breaking
of the chiral symmetry associated with the p F–F̄ pairs and breaking of the
remaining global U(1) symmetry. It will be interesting to see whether a pref-
erence for this phase can be confirmed by a dynamical study of this model
and whether similar higher dimensional condensate formation is favored in
a more general class of models.

GGG-conformal window from the chiral beta function

From the numerator of the chiral beta function and the knowledge of the
one-loop coefficient of the GGG perturbative beta function the predicted
window is:

3
(3N + 2)

2 + γ∗
≤ p ≤ 3

2(3N + 2) . (4.265)

It maximum lower bound is obtained setting γ∗ = 2 and one obtains:

3
4(3N + 2) ≤ p ≤ 3

2(3N + 2) , γ∗ = 2 , (4.266)

while for γ∗ = 1 one gets:

(3N + 2) ≤ p ≤ 3
2(3N + 2) , γ∗ = 1 . (4.267)

The chiral beta function predictions for the conformal window are com-
pared with the thermal degree of freedom investigation provided above and
the result is shown in the right panel of Fig. 38.

As for the BY case, in order to derive a prediction from the ACS method
we augmented it with the Appelquist–Duan–Sannino [181] extra requirement
that the phase with the lowest number of massless degrees of freedom wins
among all the possible phases in the infrared a chiral gauge theory can have.
We hence used the condition fbrk

IR = fUV to determine this curve. We expect
that chiral symmetry should break below this black-dashed line according
to this method. The thermal critical number is:

ptherm = 1
4

[
16 + 3N +

√
56 + 68N + 69N2

]
. (4.268)

Interestingly in this case we have not yet reached γ = 1 while the opposite
is true for the generalized BY model. At large N we expect the two models
to lead to identical results.

4.14. Two chiral SUSY models

Although this review is devoted principally to non-SUSY chiral mod-
els, we briefly describe two chiral SUSY models [181]: the supersymmetric
generalization of the one generation SU(5) Georgi–Glashow model [219] and
the related (3− 2) model (see [216] for a review of this model and relevant
references).
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The SU(5) model contains a single antisymmetric tensor chiral superfield
A and an antifundamental chiral superfield F̄ . The vector superfield Wα

includes the standard vector boson and the associated gluino in the adjoint
representation of SU(5). The global symmetry is the anomaly-free UR(1)×
UA(1), and the charge assignments are:

[SU(5)] UR(1) UA(1)

A −1 −1
F̄ +9 +3
Wα Adj −1 0

A special feature of this model is that the classical vacuum is unique.
The absence of flat directions is due to the fact that there exists no holo-
morphic gauge invariant polynomial constructed out of the supersymmetric
fields. This feature guarantees that when comparing phases through their
degree-of-freedom count, we know that we are considering a single underlying
theory. By contrast, in SUSY gauge theories with flat directions, non-zero
condensates associated with the breaking of global symmetries correspond
to different points in moduli space and therefore to different theories.

This model was studied long ago [219] and various possible phases were
seen to be consistent with global anomaly matching. One preserves su-
persymmetry along with the global symmetries. This requires composite
massless fermions to saturate the global anomalies. It was shown that there
are several, rather complicated, solutions, with at least five Weyl fermions
(which for supersymmetry to hold must be cast in five chiral superfields).
The charge assignments for one of them is [219]:

(−5,−26), (5, 20), (5, 24), (0,−1), (0, 9) , (4.269)

where the first entry is the UA(1) charge and the second is the UR(1) charge
of each chiral superfield.

Other possibilities are that SUSY breaks with the global symmetries
unbroken or that one or both of the global symmetries together with su-
persymmetry break spontaneously. It is expected [219] that in a super-
symmetric theory without classical flat directions, the spontaneous breaking
of global symmetries also signals spontaneous supersymmetry breaking. In
these cases, the only massless fields will be the Goldstone boson(s) associated
with the broken global symmetries and/or some massless fermions trans-
forming under the unbroken chiral symmetries, together with the Goldstone
Weyl fermion associated with the spontaneous supersymmetry breaking.
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In Ref. [219] it was suggested on esthetic grounds that the supersym-
metric solution seems less plausible. Additional arguments that supersym-
metry is broken are based on investigating correlators in an instanton back-
ground [220]. However a firm solution to this question is not yet available.

Since all the above phases are non interacting in the infrared we may
reliably compute fIR and note that the phase that minimizes the degree-
of-freedom count is the one that breaks supersymmetry and both of the
global symmetries. This phase consists of two U(1) Goldstone bosons and
a single Weyl Goldstino associated with the breaking of SUSY. Thus fIR =
15/4. SUSY preserving phases and those that leave one or both of the
U(1)s unbroken lead to more degrees of freedom. It will be interesting to
see whether further dynamical studies confirm that the maximally broken
phase is indeed preferred

This phase is similar to the minimal-fIR phase in the nonsupersymmet-
ric SU(5) model in that both correspond to higher dimensional condensate
formation. In the SUSY case, one can construct two independent order pa-
rameters. The one for UR(1) is the gluino condensate (scalar component of
the chiral superfield WαWα) while the one for UA(1) can be taken to be the
scalar component of the chiral superfield F̄aF̄bAac(WαWα)bc.

Finally we comment on a well known and related chiral model for dy-
namical supersymmetry breaking: the (3 − 2) model. Unlike the models
considered so far, this model involves multiple couplings, i.e. two gauge cou-
plings and a Yukawa one. Without the Yukawa interaction the theory posses
a run-away vacuum. The model has an SU(3)×SU(2) gauge symmetry and
a UY (1) × UR(1) anomaly free global symmetry. As above, the low en-
ergy phase that minimizes the number of degrees of freedom is the one that
breaks supersymmetry along with both of the global symmetries. The mass-
less spectrum is the same as in the parent chiral SU(5) case. In the (3− 2)
model, however, the low energy spectrum has been computed [221] in a self-
consistent weak-Yukawa coupling approximation, where it was noted that
the UR(1) breaks along with supersymmetry, leaving intact the UY (1). The
spectrum consists of two massless fermions (a Goldstino and the fermion as-
sociated with the unbroken UY (1)) and the UR(1) Goldstone boson. If this
is indeed the ground state, then the number of infrared degrees of freedom
is not minimized in this weak coupling case.

GGG and BY in brief

We have considered the low energy structure of two chiral gauge theo-
ries, the Bars–Yankielowicz (BY) model and the generalized Georgi–Glashow
(GGG) model. Each contains a core of fermions in complex representa-
tion of the gauge group, along with a set of p additional fundamental–anti-
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fundamental pairs. In each case, for p near but not above the value for which
asymptotic freedom is lost, the model will have a weak infrared fixed point
and exist in the non-Abelian Coulomb phase.

As p drops, the infrared coupling strengthens and one or more phase
transitions to strongly coupled phases are expected. Several possible phases
have been identified that are consistent with global anomaly matching, and
that satisfy the inequality Eq. (4.120) for low enough p. One is confine-
ment with the gauge symmetry and additional global symmetries unbroken.
Another is confinement with the global symmetry broken to that of the
p = 0 theory. Still another is a Higgs phase, with both gauge and chiral
symmetries broken. Both symmetry breaking phases correspond to bilinear
condensate formation. The infrared degree of freedom count fIR for each
of these phases is shown in Figs. 37 and 39, along with the corresponding
ultraviolet count fUV.

In [181] we suggested that at each value of p, these theories will choose
the phase that minimizes the degree of freedom count as defined by fIR, or
equivalently the phase that minimizes the entropy near freeze-out (S(T ) ≈
(2π2/45)T 3fIR). As may be seen from Figs. 37 and 39, this idea leads to the
following picture. As p drops below some critical value, the p fundamental–
anti-fundamental pairs condense at some scale Λ, breaking the full global
symmetry to the symmetry of the p = 0 theory and producing the associated
Goldstone bosons. For the remaining theory with fermions in only complex
representations, the phase with the global symmetry unbroken and the global
anomalies matched by massless fermions is preferred to phases with further
global symmetry breaking via bilinear condensates. We have not yet shown
that this is true relative to all bilinear condensate formation. Also, this does
not exclude the possibility that some strongly coupled infrared phase (such
as a strong non-Abelian coulomb phase) leads to the smallest value for fIR

and is still consistent with global anomaly matching.
We extended our discussion to include general condensate formation for

one simple example, the SU(5) Georgi–Glashow model with fermions in only
complex representations and a single U(1) global symmetry. This symmetry
can be broken via only a higher dimensional condensate. For this model,
interestingly, we noted that the breaking of the U(1) with confinement and
unbroken gauge symmetry leads to the minimum value of fIR among phases
that are infrared free. This highlights the important question of the pattern
of symmetry breaking in general chiral theories (or any theories for that
matter) when arbitrary condensate formation is considered. Higher dimen-
sional condensates could play an important role in the dynamical breaking
of symmetries in extensions of the SM [222]. The enumeration of degrees
of freedom in the effective infrared theory is a potentially useful guide to
discriminate among the possibilities.
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Finally, we commented on two supersymmetric chiral models: the su-
persymmetric version of the SU(5) Georgi–Glashow model and the closely
related (3−2) model. Both have a UR(1)×UY (1) global symmetry. In each
case, the phase that minimizes the number of massless degrees of freedom
corresponds to the breaking of SUSY and both of its global symmetries. In
the case of the (3 − 2) model, however, an analysis in the case of a weak
Yukawa coupling (see [216] for a discussion and relevant references) leads
to the conclusion that the UY (1) is not broken. If this truly represents the
ground state in the case of weak coupling, then the degree of freedom count
is not the minimum among possible phases that respect global anomaly
matching.

For the nonsupersymmetric chiral gauge theories discussed here, we iden-
tified a variety of possible zero-temperature phases and conjectured [181]
that the theories will choose from among them the one that minimizes the
infrared degree of freedom count.

However the degree of freedom count is not sufficient to provide a com-
plete insight on the conformal window of chiral gauge theories. We have,
hence, introduced a novel all orders chiral beta function which naturally
extends the one for vector like theories we introduced earlier.

We note that the determination of the conformal window of the general-
ized BY and GGG models should be taken into account when constructing
ETC models featuring chiral gauge theories given that the these theories will
not be able to break any symmetry if the number of vector-like fermions is
within the window determined above.

4.15. Comparison chart

We investigated the conformal windows for SU, SO and Sp nonsupersym-
metric gauge theories with fermions in any representation of the underlying
gauge group using four independent analytic methods. One observes a uni-
versal value, i.e. independent of the representation, of the ratio of the area
of the maximum extension of the conformal window, predicted using the
all orders beta function, to the asymptotically free one, as defined in [158].
It is easy to check from the results presented that this ratio is not only
independent on the representation but also on the particular gauge group
chosen.

The four methods we used to unveil the conformal windows are the all
orders beta function (BF), the SD truncated equation, the thermal degrees
of freedom method and least but not the last gauge-duality. Have vastly
different starting points and there was no, a priori, reason to agree with
each other.

In the table below we compare directly the various analytical methods.
The three plus signs in the second column indicate that the three analytic
methods do constrain the conformal window of SU, Sp and SO gauge theories
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with fermions in the fundamental representation. Only BF and SD provide
useful constraints in the case of the higher dimensional representations as
summarized in the third column. When multiple representations participate
in the gauge dynamics the BF constraints can be used directly [21, 130] to
determine the extension of the conformal (hyper)volumes while extra dy-
namical information and approximations are required in the SD approach.
Since gauge theories with fermions in several representations of the underly-
ing gauge group must contain higher dimensional representations the ACS is
expected to be less efficient in this case19. These results are summarized in
the fourth column. The all orders beta function reproduces the supersym-
metric exact results when going over the super Yang–Mills case, the ACS
conjecture was proved successful when tested against the supersymmetric
conformal window results [162]. However the SD approximation does not
reproduce any supersymmetric result [223]. The results are summarized in
the fifth column. Finally, it is of theoretical and phenomenological interest
— for example to construct sensible UV completions of models of dynamical
electroweak symmetry breaking and unparticles — to compute the anoma-
lous dimension of the mass of the fermions at the (near) conformal fixed
point. Only the all orders beta function provides a simple closed form ex-
pression as it is summarized in the sixth column.

TABLE X
Direct comparison among the various analytic methods.

Method Fund. Higher Multiple SUSY γ AMC χ

BF + + + + + + +
SD + + — — — — —
ACS + — — + — — +

We have also suggested that it is interesting to study the SU(2) gauge
theory with Nf = 5 Dirac flavors via first principles lattice simulations since
it will discriminate between the two distinct predictions, the one from the
ACS conjecture and the one from the all orders beta function.

We have presented a comprehensive analysis of the phase diagram of
non-supersymmetric vector-like and strongly coupled SU(N) gauge theories
with matter in various representations of the gauge group.

Other approaches, such as the instanton-liquid model [224] or the one de-
veloped in [225–227] have also been used to investigate the QCD chiral phase
transition as function of the number of flavors. According to the instanton-
liquid model one expects for QCD the transition to occur for a very small
number of flavors. This result is at odds with the bound for the conformal
window found with our novel beta function [21] as well lattice data [105].

19 We do not consider super QCD a theory with higher dimensional representations.
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A more recent approach makes use of certain topological excitations [211,
228], whose link to the conformal window is yet to be proved, leads to
predictions very close to the ones of the all orders beta function. However
within this approach there is no prediction for the anomalous dimension at
the fixed point.

The all orders beta function method represents, however, a much more
direct way to estimate the conformal window and to capture some of its
salient properties. Besides, the form of the beta function is highly con-
sistent with the exact results stemming from the solutions of the ’t Hooft
Anomaly conditions leading to interesting possible gauge duals. In the table
above the ’t Hooft Anomaly matching conditions have been abbreviated via
(AMC). We have seen that is even possible to predict the conformal window
of phenomenologically relevant chiral gauge theories. In the table we have
used the symbol χ to refer to these kind of theories.

Several questions remain open such as what happens on the right-hand
side of the infrared fixed point as we increase further the coupling. Does a
generic strongly coupled theory develop a new UV fixed point as we increase
the coupling beyond the first IR value [229]? If this were the case our beta
function would still be a valid description of the running of the coupling
of the constant in the region between the trivial UV fixed point and the
neighborhood of the first IR fixed point. One might also consider extending
our beta function to take into account of this possibility as done in [230].
It is also possible that no non-trivial UV fixed point forms at higher values
of the coupling constant for any value of the number of flavors within the
conformal window. Gauge-duals seem to be in agreement with the simplest
form of the beta function. The extension of the all orders beta function to
take into account fermion masses has appeared in [231].

We briefly summarize the current status of the lattice results. The SU(2)
gauge theory with four adjoint Weyl fermions, known as Minimal Walking
Technicolor, seems to be (near) conformal [168,170,189,203,204,232,233] as
predicted using the all orders beta function. There are also interesting early
results for the anomalous dimension of the mass of these theories [112, 113,
232]. However the uncertainties on this quantity are still quite large with a
quoted result of 0.05 ≤ γ ≤ 0.56. It is worth mentioning that the predicted
value of γ from the all orders beta function is γ = 3/4 = 0.75 was already
known to be less then one. This of course does not diminish the value of
Minimal Walking Theories nor renders them less relevant for particle physics
phenomenology. In fact, the relevant point is that near conformal behavior
reduces the corrections to the precision data and it was already pointed out
in [184] that another mechanism for the generation of the fermion masses is
needed along the lines of the one presented in [40].

Next to Minimal Walking Technicolor, i.e. SU(3) gauge theory with 2
Dirac flavors in the two-index symmetric representation has also been in-
vestigated in [108, 207, 234] and there are very preliminary indications that
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this theory is (near) conformal. Searches for the conformal window in SU(3)
gauge theories with fundamental representation quarks have also received
recent attention [107,174,208,235,236].

Our analysis substantially increases the number of asymptotically free
gauge theories which can be used to construct SM extensions making use
of (near) conformal dynamics. Current Lattice simulations can test our
predictions and lend further support or even disprove the emergence of a
universal picture possibly relating the phase diagrams of gauge theories of
fundamental interactions.

5. Minimal conformal models

The simplest technicolor model has NTf Dirac fermions in the funda-
mental representation of SU(N). These models, when extended to accom-
modate the fermion masses through the extended technicolor interactions,
suffer from large flavor changing neutral currents. This problem is alleviated
if the number of flavors is sufficiently large such that the theory is almost con-
formal. This is estimated to happen for NTf ∼ 4N [58] as also summarized
in the section dedicated to the Phase Diagram of strongly interacting theo-
ries. This, in turn, implies a large contribution to the oblique parameter S
(within naive estimates) [155]. Although near the conformal window [63,67]
the S parameter is reduced due to non-perturbative corrections, it is still
too large if the model has a large particle content. In addition, such models
may have a large number of pseudo Nambu–Goldstone bosons. By choosing
a higher dimensional technicolor representation for the new technifermions
one can overcome these problems [16,155].

To have a very low S parameter one would ideally have a technicolor
theory which with only one doublet breaks dynamically the electroweak
theory but at the same time being walking to reduce the S parameter. The
walking nature then also enhances the scale responsible for the fermion mass
generation.

According to the phase diagram exhibited earlier the promising candidate
theories with the properties required are either theories with fermions in the
adjoint representation or two index symmetric one. In Table XI we present
the generic S-type theory.

The relevant feature, found first in [16] using the ladder approximation,
is that the S-type theories can be near conformal already at NTf = 2 when
N = 2 or 3. This should be contrasted with theories in which the fermions
are in the fundamental representation for which the minimum number of
flavors required to reach the conformal window is eight for N = 2. This last
statement is supported by the all order beta function results [21] as well as
lattice simulations [105,108,168]. The critical value of flavors increases with
the number of colors for the gauge theory with S-type matter: the limiting
value is 4.15 at large N .
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TABLE XI

Schematic representation of a generic nonsupersymmetric vector like SU(N) gauge
theory with matter content in the two-index representation. Here QL(R) are Weyl
fermions.

SU(N) SUL(NTf ) SUR(NTf ) UV (1) UA(1)

QL 1 1 1
Q̄R 1 −1 1
Gµ Adj 0 0 0 0

The situation is different for the theory with A-type matter. Here the
critical number of flavors increases when decreasing the number of colors.
The maximum value of about NTf = 12 is obtained — in the ladder approx-
imation — for N = 3, i.e. standard QCD. In Ref. [155] it has been argued
that the nearly conformal A-type theories have, already at the perturbative
level, a very large S parameter with respect to the experimental data. These
theories can be re-considered if one gauges under the electroweak symmetry
only a part of the flavor symmetries as we shall see in the section dedicated
to partially gauged technicolor.

5.1. Minimal Walking Technicolor (MWT)
The dynamical sector we consider, which underlies the Higgs mechanism,

is an SU(2) technicolor gauge theory with two adjoint technifermions [16].
The theory is asymptotically free if the number of flavors Nf is less than 2.75
according to the ladder approximation. Lattice results support the confor-
mal or near conformal behavior of this theory. In any event the symmetries
and properties of this model make it ideal for a comprehensive study for
LHC physics. The all order beta function prediction is that this gauge the-
ory is, in fact, conformal. In this case we can couple another non-conformal
sector to this gauge theory and push it away from the fixed point.

The two adjoint fermions are conveniently written as

QaL =
(

Ua

Da

)
L

, UaR , Da
R , a = 1, 2, 3 , (5.270)

with a being the adjoint color index of SU(2). The left-handed fields are
arranged in three doublets of the SU(2)L weak interactions in the standard
fashion. The condensate is 〈ŪU + D̄D〉 which correctly breaks the elec-
troweak symmetry as already argued for ordinary QCD in (2.18).

The model as described so far suffers from the Witten topological anoma-
ly [148]. However, this can easily be solved by adding a new weakly charged
fermionic doublet which is a technicolor singlet [17]. Schematically:
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LL =
(
N
E

)
L

, NR , ER . (5.271)

In general, the gauge anomalies cancel using the following generic hyper-
charge assignment

Y (QL) =
y

2
, Y (UR, DR) =

(
y + 1

2
,
y − 1

2

)
, (5.272)

Y (LL) =− 3
y

2
, Y (NR, ER) =

(−3y + 1
2

,
−3y − 1

2

)
, (5.273)

where the parameter y can take any real value [17]. In our notation the
electric charge is Q = T3 + Y , where T3 is the weak isospin generator.
One recovers the SM hypercharge assignment for y = 1/3. In Fig. 40 we
summarize the fields of the MWT extension of the SM. To discuss the sym-

Fig. 40. Cartoon of the Minimal Walking Technicolor Model extension of the SM.

metry properties of the theory it is convenient to use the Weyl basis for the
fermions and arrange them in the following vector transforming according
to the fundamental representation of SU(4)

Q =


UL
DL

−iσ2U∗R
−iσ2D∗R

 , (5.274)

where UL and DL are the left handed techniup and technidown, respectively,
and UR and DR are the corresponding right-handed particles. Assuming the
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standard breaking to the maximal diagonal subgroup, the SU(4) symmetry
spontaneously breaks to SO(4). Such a breaking is driven by the following
condensate 〈

Qαi Q
β
j εαβE

ij
〉

= −2〈URUL +DRDL〉 , (5.275)

where the indices i, j = 1, . . . , 4 denote the components of the tetraplet of
Q, and the Greek indices indicate the ordinary spin. The matrix E is a 4×4
matrix defined in terms of the 2-dimensional unit matrix as

E =
(

0 1

1 0

)
. (5.276)

Here εαβ = −iσ2
αβ and 〈UαLUR∗βεαβ〉 = −〈URUL〉. A similar expression

holds for the D techniquark. The above condensate is invariant under an
SO(4) symmetry. This leaves us with nine broken generators with associated
Goldstone bosons.

Replacing the Higgs sector of the SM with the MWT the Lagrangian
now reads:

LH → −1
4FaµνFaµν + iQ̄Lγ

µDµQL + iŪRγ
µDµUR + iD̄Rγ

µDµDR

+iL̄LγµDµLL + iN̄Rγ
µDµNR + iĒRγ

µDµER (5.277)

with the technicolor field strength

Faµν = ∂µAaν − ∂νAaµ + gTCε
abcAbµAcν , a, b, c = 1, . . . , 3 .

For the left-handed techniquarks the covariant derivative is:

DµQ
a
L =

(
δac∂µ + gTCAbµεabc − i

g

2
~Wµ · ~τδac − ig′ y2Bµδ

ac
)
QcL . (5.278)

Aµ are the techni gauge bosons, Wµ are the gauge bosons associated to
SU(2)L and Bµ is the gauge boson associated to the hypercharge. τa are
the Pauli matrices and εabc is the fully antisymmetric symbol. In the case of
right-handed techniquarks the third term containing the weak interactions
disappears and the hypercharge y/2 has to be replaced according to whether
it is an up or down techniquark. For the left-handed leptons the second
term containing the technicolor interactions disappears and y/2 changes to
−3y/2. Only the last term is present for the right-handed leptons with an
appropriate hypercharge assignment.

5.1.1. Low energy theory for MWT

We construct the effective theory for MWT including composite scalars
and vector bosons, their self interactions, and their interactions with the
electroweak gauge fields and the SM fermions.
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5.1.2. Scalar sector

The relevant effective theory for the Higgs sector at the electroweak scale
consists, in our model, of a composite Higgs and its pseudoscalar partner, as
well as nine pseudoscalar Goldstone bosons and their scalar partners. These
can be assembled in the matrix

M =
[
σ + iΘ

2
+
√

2
(
iΠ a + Π̃ a

)
Xa

]
E , (5.279)

which transforms under the full SU(4) group according to

M → uMuT , with u ∈ SU(4) . (5.280)

The Xas, a = 1, . . . , 9 are the generators of the SU(4) group which do not
leave the vacuum expectation value (vev) of M invariant

〈M〉 =
v

2
E . (5.281)

Note that the notation used is such that σ is a scalar while the Π as are
pseudoscalars. It is convenient to separate the fifteen generators of SU(4)
into the six that leave the vacuum invariant, Sa, and the remaining nine
that do not, Xa. Then the Sa generators of the SO(4) subgroup satisfy the
relation

SaE + E SaT = 0 , with a = 1, . . . , 6 , (5.282)

so that uEuT = E, for u ∈ SO(4). The explicit realization of the generators
is shown in Appendix B. With the tilde fields included, the matrix M is
invariant in form under U(4) ≡ SU(4) × U(1)A, rather than just SU(4).
However the U(1)A axial symmetry is anomalous, and is therefore broken at
the quantum level.

The connection between the composite scalars and the underlying tech-
niquarks can be derived from the transformation properties under SU(4),
by observing that the elements of the matrix M transform like techniquark
bilinears:

Mij ∼ Qαi Qβj εαβ , with i, j = 1 . . . 4 . (5.283)

Using this expression, and the basis matrices given in Appendix B, the scalar
fields can be related to the wavefunctions of the techniquark bound states.
This gives the following charge eigenstates:
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v +H ≡ σ ∼ UU +DD , Θ ∼ i (Uγ5U +Dγ5D
)
,

A0 ≡ Π̃ 3 ∼ UU −DD , Π 0 ≡ Π 3 ∼ i (Uγ5U −Dγ5D
)
,

A+ ≡ Π̃ 1 − iΠ̃ 2

√
2

∼ DU , Π + ≡ Π 1 − iΠ 2

√
2

∼ iDγ5U ,

A− ≡ Π̃ 1 + iΠ̃ 2

√
2

∼ UD , Π− ≡ Π 1 + iΠ 2

√
2

∼ iUγ5D , (5.284)

for the technimesons, and

ΠUU ≡ Π 4 + iΠ 5 + Π 6 + iΠ 7

2
∼ UTCU ,

ΠDD ≡ Π 4 + iΠ 5 −Π 6 − iΠ 7

2
∼ DTCD ,

ΠUD ≡ Π 8 + iΠ 9

√
2

∼ UTCD ,

Π̃UU ≡ Π̃ 4 + iΠ̃ 5 + Π̃ 6 + iΠ̃ 7

2
∼ iUTCγ5U ,

Π̃DD ≡ Π̃ 4 + iΠ̃ 5 − Π̃ 6 − iΠ̃ 7

2
∼ iDTCγ5D ,

Π̃UD ≡ Π̃ 8 + iΠ̃ 9

√
2

∼ iUTCγ5D , (5.285)

for the technibaryons, where U ≡ (UL, UR)T and D ≡ (DL, DR)T are Dirac
technifermions, and C is the charge conjugation matrix, needed to form
Lorentz-invariant objects. To these technibaryon charge eigenstates we must
add the corresponding charge conjugate states (e.g. ) ΠUU → ΠUU ).

It is instructive to split the scalar matrix into four two by two blocks as
follows:

M =
( X O
OT Z

)
, (5.286)

with X and Z two complex symmetric matrices accounting for six inde-
pendent degrees of freedom each and O is a generic complex two by two
matrix featuring eight real bosonic fields. O accounts for the SM like Higgs
doublet and a second copy as well as for the three Goldstones which upon
electroweak gauging will become the longitudinal components of the inter-
mediate massive vector bosons.

The electroweak subgroup can be embedded in SU(4), as explained in
detail in [237]. Here SO(4) is the subgroup to which SU(4) is maximally
broken. The generators Sa, with a = 1, 2, 3, form an SU(2) subgroup of
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SU(4), which we denote by SU(2)V , while S4 forms a U(1)V subgroup. The
Sa generators, with a = 1, . . . , 4, together with the Xa generators, with
a = 1, 2, 3, generate an SU(2)L × SU(2)R × U(1)V algebra. This is easily
seen by changing generator basis from (Sa, Xa) to (La, Ra), where

La ≡ Sa +Xa

√
2

=
(
τa

2 0
0 0

)
, −RaT ≡ Sa −Xa

√
2

=
(

0 0
0 − τaT

2

)
,

(5.287)
with a = 1, 2, 3. The electroweak gauge group is then obtained by gauging
SU(2)L, and the U(1)Y subgroup of SU(2)R ×U(1)V , where

Y = −R3T +
√

2YV S4 , (5.288)

and YV is the U(1)V charge. For example, from Eq. (5.272) and Eq. (5.273)
we see that YV = y for the techniquarks, and YV = −3y for the new lep-
tons. As SU(4) spontaneously breaks to SO(4), SU(2)L × SU(2)R breaks
to SU(2)V . As a consequence, the electroweak symmetry breaks to U(1)Q,
where

Q =
√

2S3 +
√

2YV S4 . (5.289)

Moreover the SU(2)V group, being entirely contained in the unbroken SO(4),
acts as a custodial isospin, which insures that the ρ parameter is equal to
one at tree-level.

The electroweak covariant derivative for the M matrix is

DµM = ∂µM − i g
[
Gµ(y)M +MGT

µ (y)
]
, (5.290)

where

g Gµ(YV ) = gW a
µ L

a + g ′Bµ Y

= gW a
µ L

a + g ′Bµ

(
−R3T +

√
2YV S4

)
. (5.291)

Notice that in the last equation Gµ(YV ) is written for a general U(1)V charge
YV , while in Eq. (5.290) we have to take the U(1)V charge of the techni-
quarks, YV = y, since these are the constituents of the matrix M , as explic-
itly shown in Eq. (5.283).

Three of the nine Goldstone bosons associated with the broken genera-
tors become the longitudinal degrees of freedom of the massive weak gauge
bosons, while the extra six Goldstone bosons will acquire a mass due to
extended technicolor interactions (ETC) as well as the electroweak interac-
tions per se. Using a bottom up approach we will not commit to a specific
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ETC theory but limit ourself to introduce the minimal low energy operators
needed to construct a phenomenologically viable theory. The new Higgs
Lagrangian is

LHiggs = 1
2Tr

[
DµMDµM †

]
− V(M) + LETC , (5.292)

where the potential reads

V(M) = −m
2

2
Tr [MM †] +

λ

4
Tr
[
MM †

]2
+ λ′Tr

[
MM †MM †

]
−2λ ′′

[
Det(M) + Det(M †)

]
, (5.293)

and LETC contains all terms which are generated by the ETC interactions,
and not by the chiral symmetry breaking sector. Notice that the determinant
terms (which are renormalizable) explicitly break the U(1)A symmetry, and
give mass to Θ , which would otherwise be a massless Goldstone boson.
While the potential has a (spontaneously broken) SU(4) global symmetry,
the largest global symmetry of the kinetic term is SU(2)L ×U(1)R ×U(1)V
(where U(1)R is the τ3 part of SU(2)R), and becomes SU(4) in the g, g′ → 0
limit. Under electroweak gauge transformations, M transforms like

M(x)→ u(x; y)M(x)uT(x; y) , (5.294)

where

u(x;YV ) = exp
[
iαa(x)La + iβ(x)

(
−R3T +

√
2YV S4

)]
, (5.295)

and YV = y. We explicitly break the SU(4) symmetry in order to pro-
vide mass to the Goldstone bosons which are not eaten by the weak gauge
bosons. We, however, preserve the full SU(2)L × SU(2)R ×U(1)V subgroup
of SU(4), since breaking SU(2)R × U(1)V to U(1)Y would result in a po-
tentially dangerous violation of the custodial isospin symmetry. Assuming
parity invariance we write:

LETC =
m2

ETC

4
Tr
[
MBM †B +MM †

]
+ · · · , (5.296)

where the ellipses represent possible higher dimensional operators, and B ≡
2
√

2S4 commutes with the SU(2)L × SU(2)R ×U(1)V generators.
The potential V(M) is SU(4) invariant. It produces a vev which pa-

rameterizes the techniquark condensate, and spontaneously breaks SU(4) to
SO(4). In terms of the model parameters the vev is

v2 = 〈σ〉2 =
m2

λ+ λ′ − λ ′′ , (5.297)
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while the Higgs mass is

M2
H = 2m2 . (5.298)

The linear combination λ + λ ′ − λ ′′ corresponds to the Higgs self coupling
in the SM. The three pseudoscalar mesons Π±, Π 0 correspond to the three
massless Goldstone bosons which are absorbed by the longitudinal degrees
of freedom of the W± and Z boson. The remaining six uneaten Goldstone
bosons are technibaryons, and all acquire tree-level degenerate mass through,
not yet specified, ETC interactions:

M2
ΠUU

= M2
ΠUD

= M2
ΠDD

= m2
ETC . (5.299)

The remaining scalar and pseudoscalar masses are

M2
Θ = 4v2λ ′′ ,

M2
A± = M2

A0 = 2v2
(
λ ′ + λ ′′

)
, (5.300)

for the technimesons, and

M2eΠUU = M2eΠUD = M2eΠDD = m2
ETC + 2v2

(
λ ′ + λ ′′

)
, (5.301)

for the technibaryons. To gain insight on some of the mass relations one can
use [155].

5.1.3. Vector bosons

The composite vector bosons of a theory with a global SU(4) symme-
try are conveniently described by the four-dimensional traceless Hermitian
matrix

Aµ = Aaµ T a , (5.302)

where T a are the SU(4) generators: T a = Sa, for a = 1, . . . , 6, and T a+6 =
Xa, for a = 1, . . . , 9. Under an arbitrary SU(4) transformation, Aµ trans-
forms like

Aµ → uAµ u† , where u ∈ SU(4) . (5.303)

Eq. (5.303), together with the tracelessness of the matrix Aµ, gives the
connection with the techniquark bilinears:

Aµ,ji ∼ Qαi σ
µ

αβ̇
Q̄β̇,j − 1

4δ
j
iQ

α
kσ

µ

αβ̇
Q̄β̇,k . (5.304)
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Then we find the following relations between the charge eigenstates and the
wavefunctions of the composite objects:

v0µ ≡ A3µ ∼ ŪγµU − D̄γµD , a0µ ≡ A9µ ∼ Ūγµγ5U − D̄γµγ5D ,

v+µ ≡ A1µ − iA2µ

√
2

∼ D̄γµU , a+µ ≡ A7µ − iA8µ

√
2

∼ D̄γµγ5U ,

v−µ ≡ A1µ + iA2µ

√
2

∼ ŪγµD , a−µ ≡ A7µ + iA8µ

√
2

∼ Ūγµγ5D ,

v4µ ≡ A4µ ∼ ŪγµU + D̄γµD (5.305)

for the vector mesons, and

xµUU ≡
A10µ + iA11µ +A12µ + iA13µ

2
∼ UTCγµγ5U ,

xµDD ≡
A10µ + iA11µ −A12µ − iA13µ

2
∼ DTCγµγ5D ,

xµUD ≡
A14µ + iA15µ

√
2

∼ DTCγµγ5U ,

sµUD ≡
A6µ − iA5µ

√
2

∼ UTCγµD (5.306)

for the vector baryons.
There are different approaches on how to introduce vector mesons at the

effective Lagrangian level. At the tree level they are all equivalent. The
main differences emerge when exploring quantum corrections.

In Appendix C we will show how to introduce the vector mesons in a
way that renders the following Lagrangian amenable to loop computations.
Based on these premises, the minimal kinetic Lagrangian is:

Lkinetic = −1
2Tr

[
W̃µνW̃

µν
]
− 1

4BµνB
µν − 1

2Tr
[
FµνF

µν
]

+m2
A Tr

[
CµC

µ
]
,

(5.307)
where W̃µν and Bµν are the ordinary field strength tensors for the elec-
troweak gauge fields. Strictly speaking the terms above are not only kinetic
ones since the Lagrangian contains a mass term as well as self interactions.
The tilde on W a indicates that the associated states are not yet the SM
weak triplets: in fact these states mix with the composite vectors to form
mass eigenstates corresponding to the ordinary W and Z bosons. Fµν is the
field strength tensor for the new SU(4) vector bosons,

Fµν = ∂µAν − ∂νAµ − ig̃ [Aµ, Aν ] , (5.308)

and the vector field Cµ is defined by

Cµ ≡ Aµ − g

g̃
Gµ(y) . (5.309)
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As shown in Appendix C this is the appropriate linear combination to take
which transforms homogeneously under the electroweak symmetries:

Cµ(x) → u(x; y)Cµ(x)u(x; y)† , (5.310)

where u(x;YV ) is given by Eq. (5.295). (Once again, the specific assign-
ment YV = y, due to the fact that the composite vectors are built out of
techniquark bilinears.) The mass term in Eq. (5.307) is gauge invariant (see
Appendix C), and gives a degenerate mass to all composite vector bosons,
while leaving the actual gauge bosons massless. (The latter acquire mass
as usual from the covariant derivative term of the scalar matrix M , after
spontaneous symmetry breaking.)

The Cµ fields couple withM via gauge invariant operators. Up to dimen-
sion four operators the Lagrangian is (see Appendix C for a more general
treatment):

LM−C = g̃2 r1 Tr
[
CµC

µMM †
]

+ g̃2 r2 Tr
[
CµMCµTM †

]
+i g̃ r3 Tr

[
Cµ

(
M(DµM)† − (DµM)M †

)]
+g̃2 sTr [CµCµ] Tr

[
MM †

]
. (5.311)

The dimensionless parameters r1, r2, r3, s parameterize the strength of the
interactions between the composite scalars and vectors in units of g̃, and
are therefore naturally expected to be of order one. However, notice that
for r1 = r2 = r3 = 0 the overall Lagrangian possesses two independent
SU(2)L × U(1)R × U(1)V global symmetries. One for the terms involving
M and one for the terms involving Cµ 20. The Higgs potential only breaks
the symmetry associated with M , while leaving the symmetry in the vector
sector unbroken. This enhanced symmetry guarantees that all r terms are
still zero after loop corrections. Moreover, if one chooses r1, r2, r3 to be
small the near enhanced symmetry will protect these values against large
corrections [237,238].

We can also construct dimension four operators including only Cµ fields.

5.1.4. Fermions and Yukawa interactions

The fermionic content of the effective theory consists of the SM quarks
and leptons, the new lepton doublet L = (N,E) introduced to cure the
Witten anomaly, and a composite techniquark–technigluon doublet.

We now consider the limit according to which the SU(4) symmetry is,
at first, extended to ordinary quarks and leptons. Of course, we will need
to break this symmetry to accommodate the SM phenomenology. We start

20 The gauge fields explicitly break the original SU(4) global symmetry to SU(2)L ×
U(1)R×U(1)V , where U(1)R is the T 3 part of SU(2)R, in the SU(2)L×SU(2)R×U(1)V
subgroup of SU(4).
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by arranging the SU(2) doublets in SU(4) multiplets as we did for the tech-
niquarks in Eq. (5.274). We therefore introduce the four component vectors
qi and li,

qi =


uiL
diL

−iσ2uiR
∗

−iσ2diR
∗

 , li =


νiL
eiL

−iσ2νiR
∗

−iσ2eiR
∗

 , (5.312)

where i is the generation index. Note that such an extended SU(4) symme-
try automatically predicts the presence of a right-handed neutrino for each
generation. In addition to the SM fields, there is an SU(4) multiplet for the
new leptons,

L =


NL

EL
−iσ2NR

∗

−iσ2ER
∗

 , (5.313)

and a multiplet for the techniquark–technigluon bound state,

Q̃ =


ŨL
D̃L

−iσ2Ũ∗R
−iσ2D̃∗R

 . (5.314)

With this arrangement, the electroweak covariant derivative for the fermion
fields can be written

Dµ = ∂µ − i g Gµ(YV ) , (5.315)

where YV = 1/3 for the quarks, YV = −1 for the leptons, YV = −3y for
the new lepton doublet, and YV = y for the techniquark–technigluon bound
state. One can check that these charge assignments give the correct elec-
troweak quantum numbers for the SM fermions. In addition to the covariant
derivative terms, we should add a term coupling Q̃ to the vector field Cµ,
which transforms globally under electroweak gauge transformations. Such
a term naturally couples the composite fermions to the composite vector
bosons which otherwise would only feel the week interactions. Based on
this, we write the following gauge part of the fermion Lagrangian:

Lfermion = i qiα̇σ
µ,α̇βDµq

i
β + i l

i
α̇σ

µ,α̇βDµl
i
β + i Lα̇σ

µ,α̇βDµLβ

+i Q̃α̇σ
µ,α̇βDµQ̃β + x Q̃α̇σ

µ,α̇βCµQ̃β . (5.316)
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The terms coupling the SM fermions or the new leptons to Cµ are in general
not allowed. In fact, under electroweak gauge transformations any four-
component fermion doublet ψ transforms like

ψ → u(x;YV )ψ , (5.317)

and from Eq. (5.310) we see that a term like ψασµ
αβ̇
Cµψ

β̇ is only invariant if
YV = y. Then we can distinguish two cases. First, we can have y 6= 1/3 and

y 6= −1, in which case ψασµ
αβ̇
Cµψ

β̇ is only invariant for ψ = Q̃. Interaction
terms of the SM fermions with components of Cµ are still possible, but
these would break the SU(4) chiral symmetry even in the limit in which
the electroweak gauge interactions are switched off. Second, we can have
y = 1/3 or y = −1. Then ψασµ

αβ̇
Cµψ

β̇ is not only invariant for ψ = Q̃, but

also for either ψ = qi or ψ = li, respectively. In the last two cases, however,
the corresponding interactions are highly suppressed, since these give rise to
anomalous couplings of the light fermions with the SM gauge bosons, which
are tightly constrained by experiments.

We now turn to the issue of providing masses to ordinary fermions. In
the first chapter the simplest ETC model has been briefly reviewed. Many
extensions of technicolor have been suggested in the literature to address
this problem. Some of the extensions use another strongly coupled gauge dy-
namics, others introduce fundamental scalars. Many variants of the schemes
presented above exist and a review of the major models is the one by Hill
and Simmons [13]. At the moment there is not yet a consensus on which
is the correct ETC. To keep the number of fields minimal we make the
most economical ansatz, i.e. we parameterize our ignorance about a com-
plete ETC theory by simply coupling the fermions to our low energy effec-
tive Higgs. This simple construction minimizes the flavor changing neutral
currents problem. It is worth mentioning that it is possible to engineer a
schematic ETC model proposed first by Randall in [239] and adapted for
the MWT in [184] for which the effective theory presented in the main text
can be considered a minimal description. Another non minimal way to give
masses to the ordinary fermions is to (re)introduce a new Higgs doublet as
already done many times in the literature [41,42,44,47,120,240,241].

Depending on the value of y for the techniquarks, we can write different
Yukawa interactions which couple the SM fermions to the matrix M . Let ψ
denote either qi or li. If ψ and the techniquark multiplets Qa have the same
U(1)V charge, then the Yukawa term

−ψTM∗ψ + h.c. , (5.318)

is gauge invariant, as one can check explicitly from Eq. (5.294) and
Eq. (5.317). Otherwise, if ψ and Qa have different U(1)V charges, we can
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only write a gauge invariant Lagrangian with the off-diagonal terms of M ,
which contain the Higgs and the Goldstone bosons:

−ψTM∗off ψ + h.c. (5.319)

In fact, Moff has no U(1)V charge, since

S4Moff +MoffS
4T = 0 . (5.320)

The last equation implies that the U(1)V charges of ψT and ψ cancel in
Eq. (5.319). The latter is actually the only viable Yukawa Lagrangian for
the new leptons, since the corresponding U(1)V charge is YV = −3y 6= y,
and for the ordinary quarks, since Eq. (5.318) contains qq terms which are
not color singlets.

We notice however that neither Eq. (5.318) nor Eq. (5.319) are phe-
nomenologically viable yet, since they leave the SU(2)R subgroup of SU(4)
unbroken, and the corresponding Yukawa interactions do not distinguish
between the up-type and the down-type fermions. In order to prevent this
feature, and recover agreement with the experimental input, we break the
SU(2)R symmetry to U(1)R by using the projection operators PU and PD,
where

PU =
(

1 0
, 0 1+τ3

2

)
, PD =

(
1 0
, 0 1−τ3

2

)
. (5.321)

Then, for example, Eq. (5.318) should be replaced by

−ψT (PUM∗PU )ψ − ψT (PDM∗PD)ψ + h.c. (5.322)

For illustration we distinguish two different cases for our analysis, y 6= −1
and y = −1, and write the corresponding Yukawa interactions:

(i) y 6= −1. In this case we can only form gauge invariant terms with the
SM fermions by using the off-diagonal M matrix. Allowing for both N −E
and Ũ − D̃ mass splitting, we write

LYukawa = − yiju qiT (PUM∗offPU ) qj − yijd qiT (PDM∗offPD) qj

− yijν liT (PUM∗offPU ) lj − yije liT (PDM∗offPD) lj

− yN LT (PUM∗offPU )L− yE L
T (PDM∗offPD)L

− yeU Q̃T (PUM∗PU ) Q̃− y eDQ̃T (PDM∗PD) Q̃ + h.c. , (5.323)

where yiju , yijd , y
ij
ν , yije are arbitrary complex matrices, and yN , yE , yeU , y eD

are complex numbers.
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Note that the underlying strong dynamics already provides a dynamically
generated mass term for Q̃ of the type:

k Q̃TM∗Q̃+ h.c. , (5.324)

with k a dimensionless coefficient of order one and entirely fixed within the
underlying theory. The splitting between the up and down type techniquarks
is due to physics beyond the technicolor interactions21. Hence the Yukawa
interactions for Q̃ must be interpreted as already containing the dynamical
generated mass term.

(ii) y = −1. In this case we can form gauge invariant terms with the SM
leptons and the full M matrix:

LYukawa = − yiju qiT (PUM∗offPU ) qj − yijd qiT (PDM∗offPD) qj

− yijν liT (PUM∗PU ) lj − yije liT (PDM∗PD) lj

− yN LT (PUM∗offPU )L− yE L
T (PDM∗offPD)L

− yeU Q̃T (PUM∗PU ) Q̃− y eDQ̃T (PDM∗PD) Q̃ + h.c. (5.325)

Here we are assuming Dirac masses for the neutrinos, but we can easily add
also Majorana mass terms. At this point one can exploit the symmetries of
the kinetic terms to induce a GIM mechanism, which works out exactly like
in the SM. Therefore, in both Eq. (5.323) and Eq. (5.325) we can assume
yiju , yijd , y

ij
ν , yije to be diagonal matrices, and replace the diL and νiL fields, in

the kinetic terms, with V ij
q d

j
L and V ij

l ν
j
L, respectively, where Vq and Vl are

the mixing matrices.
When y = −1 Q̃ has the same quantum numbers of the ordinary lep-

tons, except for the technibaryon number. If the technibaryon number is
violated they can mix with the ordinary leptons behaving effectively as a
fourth generation leptons (see Eq. (5.325)). However this will reintroduce,
in general, anomalous couplings with intermediate gauge bosons for the or-
dinary fermions and hence we assume the mixing to be small.

5.2. Constraining the MWT effective Lagrangian via WSRs
and S parameter

In our effective theory the S parameter is directly proportional to the
parameter r3 via:

S =
8π
g̃2
χ (2− χ) , with χ =

v2g̃2

2M2
A

r3 , (5.326)

21 Small splittings with respect to the electroweak scale will be induced by the SM
corrections per se.
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where we have expanded in g/g̃ and kept only the leading order. The full
expression can be found in Appendix D of [19] and it is also reported in
Appendix C here. We can now use the sum rules to relate r3 to other
parameters in the theory for the running and the walking case. Within the
effective theory we deduce:

F 2
V =

(
1− χr2

r3

)
2M2

A

g̃2
=

2M2
V

g̃2
, F 2

A = 2
M2
A

g̃2
(1−χ)2 , F 2

π = v2(1−χ r3) .

(5.327)
Hence the first WSR reads:

1 + r2 − 2r3 = 0 , (5.328)

while the second:

(r2 − r3)
(
v2g̃2(r2 + r3)− 4M2

A

)
= a

16π2

d(R)
v2 (1− χ r3)2 . (5.329)

To gain analytical insight we consider the limit in which g̃ is small while
g/g̃ is still much smaller than one. To leading order in g̃ the second sum
rule simplifies to:

r3 − r2 = a
4π2

d(R)
v2

M2
A

. (5.330)

Together with the first sum rule we find:

r2 = 1− 2t , r3 = 1− t , (5.331)

with

t = a
4π2

d(R)
v2

M2
A

. (5.332)

The approximate S parameter reads.

S = 8π
v2

M2
A

(1− t) . (5.333)

A positive a renders S smaller than expected in a running theory for a
given value of the axial mass. In the next subsection we will make a similar
analysis without taking the limit of small g̃.
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5.2.1. Axial-vector spectrum via WSRs

It is is interesting to determine the relative vector to axial spectrum as
function of one of the two masses, say the axial one, for a fixed value of the
S parameter meant to be associated to a given underlying gauge theory.

For a running type dynamics (i.e. a = 0) the two WSRs force the vector
mesons to be quite heavy (above 3 TeV) in order to have a relatively low
S parameter (S ' 0.1). This can be seen directly from Eq. (5.326) in the
running regime, where r2 = r3 = 1. This leads to

M2
A &

8πv2

S
, (5.334)

which corresponds to MA & 3.6 TeV, for S ' 0.11. Perhaps a more physical
way to express this is to say that it is hard to have an intrinsically small
S parameter for running type theories. By small we mean smaller than the
scaled up technicolor version of QCD with two techniflavors, in which S '
0.3. In Fig. 41 we plot the difference between the axial and vector mass as
function of the axial mass, for S ' 0.11. Since Eq. (5.334) provides a lower
bound for MA, this plot shows that in the running regime the axial mass
is always heavier than the vector mass. In fact, the M2

A −M2
V difference is

proportional to r2, with a positive proportionality factor (see Appendix C),
and r2 = 1 in the running regime.
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Figure 10: In the picture above we have set103Ŝ = 1, corresponding toS ≃ 0.11. In the
appendix we have provided the relation betweenŜ and the traditional S. Here we have imposed
the first and the second WSR fora = 0. This corresponds to an underlying gauge theory with a
standard running behavior of the coupling constant.

curves are obtained by varying̃g from one (the thinnest curve) to eight (the thickest curve).We
plot the allowed values ofMA −MV as function ofMA in the left panel, having imposed only
the first sum rule. In the right panel we compute the corresponding value thata should assume
as function ofMA in order for the second WSR to be satisfied in the walking regime as well.
Our computation shows that it is possible to have walking theories with light vector mesons and
a smallS parameter. Such a scenario, however, needs a positive valueof a, together with an
exotic vector spectrum according to which the axial is lighter than its associated vector meson11.
However for spin one fields heavier than roughly 2.5 TeV and with still a positivea one has an
axial meson heavier than the vector one. A degenerate spectrum allows for a smallS but with
relatively large values ofa and spin one masses around 2.5 TeV. We observe thata becomes
zero (and eventually negative) when the vector spectrum becomes sufficiently heavy. In other
words we recover the running behavior for large masses of spin-one fields. Although in the plot
we show negative values ofa one should stop the analysis after having reached a zero value of
a. In fact, for masses heavier than roughly 3.5 TeV the second WSR for the running behavior,
i.e. a = 0, is enforced.

Our results are general and help elucidating how different underlying dynamics will mani-
fest itself at LHC. Any four dimensional strongly interacting theory replacing the Higgs mech-
anism, with two Dirac techniflavors gauged under the electroweak theory, is expected to have
a spectrum of the low lying vector resonances like the one presented above. We note that the
resonance inversion does not imply a negative or zero S parameter.

states are degenerate and heavier than theZ gauge boson.
11The sum rules do not contain sufficient information to predict the relative spectral ordering of the vector and

axial vector mesons. We have hence studied both orderings.

56

Fig. 41. In the picture above we have set 103Ŝ = 1, corresponding to S ' 0.11.
Here we have imposed the first and the second WSR for a = 0. This corresponds
to an underlying gauge theory with a standard running behavior of the coupling
constant.

When considering the second WSR modified by the walking dynamics,
we observe that it is possible to have quite light spin one vector mesons
compatible with a small S parameter. We numerically solve the first and
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second WSR in presence of the contribution due to walking in the second
sum rule. The results are summarized in figure 42. As for the running
case we set again S ' 0.11. This value is close to the estimate in the
underlying MWT22. The different curves are obtained by varying g̃ from
one (the thinnest curve) to eight (the thickest curve). We plot the allowed
values ofMA−MV as function ofMA in the left panel, having imposed only
the first sum rule. In the right panel we compute the corresponding value
that a should assume as function of MA in order for the second WSR to
be satisfied in the walking regime as well. Our computation shows that it
is possible to have walking theories with light vector mesons and a small S
parameter. Such a scenario, however, needs a positive value of a, together
with an exotic vector spectrum according to which the axial is lighter than its
associated vector meson23. However for spin one fields heavier than roughly
2.5 TeV and with still a positive a one has an axial meson heavier than the
vector one. A degenerate spectrum allows for a small S but with relatively
large values of a and spin one masses around 2.5 TeV. We observe that a
becomes zero (and eventually negative) when the vector spectrum becomes
sufficiently heavy. In other words we recover the running behavior for large
masses of spin-one fields. Although in the plot we show negative values of a
one should stop the analysis after having reached a zero value of a. In fact,
for masses heavier than roughly 3.5 TeV the second WSR for the running
behavior, i.e. a = 0, is enforced.

Our results are general and help elucidating how different underlying
dynamics will manifest itself at LHC. Any four dimensional strongly inter-
acting theory replacing the Higgs mechanism, with two Dirac techniflavors
gauged under the electroweak theory, is expected to have a spectrum of the
low lying vector resonances like the one presented above. We note that the
resonance inversion does not imply a negative or zero S parameter.

5.2.2. Reducing S via new leptons

We have studied the effects of the lepton family on the electroweak pa-
rameters in [17], we summarize here the main results in Fig. 43. The ellipses
represent the one standard deviation confidence region for the S and T pa-
rameters. The upper ellipse is for a reference Higgs mass of the order of

22 For the MWT we separate the contribution due to the new leptonic sector (which
will be dealt with later in the main text) and the one due to the underlying strongly
coupled gauge theory which is expected to be well represented by the perturbative
contribution and is of the order of 1/2π. When comparing with the S parameter from
the vector meson sector of the effective theory we should subtract from the underlying
S the one due to the new fermionic composite states Ũ and D̃. This contribution is
very small since it is 1/6π in the limit when these states are degenerate and heavier
than the Z gauge boson.

23 The sum rules do not contain sufficient information to predict the relative spectral
ordering of the vector and axial-vector mesons. We have hence studied both orderings.
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Fig. 42. In the two pictures above we have set 103Ŝ = 1, corresponding to S ' 0.11,
and the different curves are obtained by varying g̃ from one (the thinnest curve)
to eight (the thickest curve). We have imposed the first WSR. Left panel: We plot
the allowed values of MA −MV as function of MA. Right panel: We compute the
value that a should assume as function of MA in order for the second WSR to be
satisfied in the walking regime. Note that a is expected to be positive or zero.

1 TeV while the lower curve is for a light Higgs with mass around 114 GeV.
The contribution from the MWT theory per se and of the leptons as func-
tion of the new lepton masses is expressed by the dark gray region. The
left panel has been obtained using a SM type hypercharge assignment while
the right-hand graph is for y = 1. In both pictures the regions of overlap
between the theory and the precision contours are achieved when the upper
component of the weak isospin doublet is lighter than the lower component.
The opposite case leads to a total S which is larger than the one predicted
within the new strongly coupled dynamics per se. This is due to the sign
of the hypercharge for the new leptons. The mass range used in the plots,
in the case of the SM hypercharge assignment is 100–1000 GeV for the new
electron and 50–800 GeV for the new Dirac neutrino, while it is 100–800
and 100–1000 GeV, respectively, for the y = 1 case. The plots have been
obtained assuming a Dirac mass for the new neutral lepton (in the case of a
SM hypercharge assignment). The range of the masses for which the theory
is in the ellipses, for a reference Higgs mass of a TeV, is 100–400 GeV for the
new neutrino and about twice the mass of the neutrino for the new electron.

The analysis for the Majorana mass case has been performed in [138]
where one can again show that it is possible to be within the 68% contours.

The contour plots we have drawn take into account the values of the
top mass which has dropped dramatically since our first comparison of our
model theory in [17] to the experimental data.
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Fig. 43. The ellipses represent the 68% confidence region for the S and T param-
eters. The upper ellipse is for a reference Higgs mass of the order of a TeV, the
lower curve is for a light Higgs with mass around 114 GeV. The contribution from
the MWT theory per se and of the leptons as function of the new lepton masses is
expressed by the dark gray region. The left panel has been obtained using a SM
type hypercharge assignment while the right-hand graph is for y = 1.

We have provided a comprehensive extension of the SM which embod-
ies (minimal) walking technicolor theories and their interplay with the SM
particles. Our extension of the SM features all of the relevant low energy
effective degrees of freedom linked to our underlying minimal walking the-
ory. These include scalars, pseudoscalars as well as spin one fields. The
bulk of the Lagrangian has been spelled out in [19]. The link with underly-
ing strongly coupled gauge theories has been achieved via the time-honored
Weinberg sum rules. The modification of the latter according to walking
has been taken into account. We have also analyzed the case in which the
underlying theory behaves like QCD rather than being near an infrared fixed
point. This has allowed us to gain insight on the spectrum of the spin one
fields which is an issue of phenomenological interest. In Appendix B and C
we have: (i) provided the explicit construction of all of the SU(4) genera-
tors, (ii) shown how to construct the effective Lagrangian in a way which
is amenable to quantum corrections, (iii) shown the explicit form of the
mass matrices for all of the particles, (iv) provided a summary of all of the
relevant electroweak parameters and their explicit dependence on the coeffi-
cients of our effective theory. The vacuum alignment problem associated to
the weak corrections has been investigated in [242] and the results support
the breaking pattern envisioned here.
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We have introduced the model in a format which is useful for collider
phenomenology, as well as for computing corrections due to (walking) tech-
nicolor for different observable of the SM, even in the flavor sector.

5.2.3. Beyond S and T : New constraints for walking technicolor

In [243] we investigated the effects of the electroweak precision measure-
ments beyond the time honored S and T ones. Once the hypercharge of the
underlying technifermions is fixed all of the derived precision parameters de-
fined in [36] are function solely of the gauge couplings, masses of the gauge
bosons and the first excited spin-one states and one more parameter χ:

Ŝ =
(2− χ)χg2

2g̃2
, (5.335)

W =
g2

2g̃2

M2
W

M2
AM

2
V

(
M2
A + (χ− 1)2M2

V

)
, (5.336)

Y =
g′2

2g̃2

M2
W

M2
AM

2
V

((
1 + 4y2

)
M2
A + (χ− 1)2M2

V

)
, (5.337)

X =
g g′

2g̃2

M2
W

M2
AM

2
V

(
M2
A − (χ− 1)2M2

V

)
. (5.338)

T̂ = Û = V = 0. g and g ′ are the weak and hypercharge couplings,
MW the gauge boson mass, y the coefficient parameterizing different hy-
percharge choices of the underlying technifermions [19], g̃ the technistrong
vector mesons coupling to the Goldstones in the technicolor limit, i.e. a = 0.
It was realized in [237,244] and further explored in [19] that for walking the-
ories, i.e. a 6= 0, the WSRs allow for a new parameter χ which in the tech-
nicolor limit reduces to χ0 = g̃2v2/2M2

A with F 2
π = v2(1− χ2/χ0) the elec-

troweak vacuum expectation value and MA(V ) the mass of the axial(vector)
lightest spin-one field. To make direct contact with the WSRs and for the
reader’s convenience we recall the relations:

F 2
V =

2M2
V

g̃2
, F 2

A = 2
M2
A

g̃2
(1− χ)2 . (5.339)

We have kept the leading order in the electroweak couplings over the tech-
nistrong coupling g̃ in the expressions above while we used the full expres-
sions [19] in making the plots.

How do we study the constraints? From the expressions above we have
four independent parameters, g̃, χ, MV and MA at the effective Lagrangian
level. Imposing the first WSR and assuming a fixed value of Ŝ leaves two
independent parameters which we choose to be g̃ andMA. From the modified
second WSR we read off the value of a/d(R).
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In [243] we first constrained the spectrum and couplings of theories of
WT with a positive value of the Ŝ parameter compatible with the associated
precision measurements at the one sigma level. More specifically we will take
Ŝ ' 0.0004 which is the highest possible value compatible with precision data
for a very heavy Higgs [36]. Of course the possible presence of another sector
can allow for a larger intrinsic Ŝ. We are interested in the constraints coming
from W and Y after having fixed Ŝ. The analysis can easily be extended to
take into account sectors not included in the new strongly coupled dynamics.

A light spin-one spectrum can be achieved only if the axial is much
lighter than the associated vector meson. The second is that WT models,
even with small Ŝ, are sensitive to the W–Y constraints as can be seen from
the plots in Fig. 44. Since X is a higher derivative of Ŝ it is not constraining.
We find that WT dynamics with a small g̃ coupling and a light axial-vector
boson is not preferred by electroweak data. Only for values of g̃ larger than
or about 8 the axial-vector meson can be light, i.e. of the order of 200 GeV.
However WT dynamics with a small intrinsic S parameter does not allow
the spin-one vector partner to be degenerate with the light axial but predicts
it to be much heavier Fig. 45. If the spin-one masses are very heavy then the
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Fig. 44. The ellipses in the WY plane corresponds to the 95% confidence level
obtained scaling the standard error ellipse axis by a 2.447 factor. The three seg-
ments, meant to be all on the top of each other, in each plot correspond to different
values of g̃. The solid line corresponds to g̃ = 8, the dashed line to g̃ = 4 and the
dotted one to g̃ = 2. The lines are drawn as function of MA with the point closest
to the origin obtained for MA = 600 GeV while the further away corresponds to
MA=150 eV. We assumed Ŝ=0.0004 for WT while Ŝ is 0 in CT by construction.
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spectrum has a standard ordering pattern, i.e. the vector meson lighter than
the axial meson. We also show in Fig. 45 the associated value of a. We were
the first to make the prediction of a very light axial-vector mesons in [19]
on the base of the modified WSRs, even lighter than the associated vector
mesons. Eichten and Lane put forward a similar suggestion in [245]. We find
that a WT dynamics alone compatible with precision electroweak data can
accommodate a light spin-one axial resonance only if the associated vector
partner is much heavier and in the regime of a strong g̃ coupling a. We
find tension with the data at a level superior to the 95% confidence level for:
(i) WT models featuringMA 'MV spectrum with a common and very light
mass; (ii) WT models with an axial-vector meson lighter than 300 GeV and
g̃ smaller than 4, an axial-vector meson with a mass lighter than or around
600 GeV and g̃ smaller than 2.

Fig. 45. In the left panel we plot the ratio of the vector over axial mass as function
of the axial mass for a WT theory with an intrinsic small S parameter. The vector
and axial spectrum is close only when their masses are of the order of the TeV
scale and around 2 TeV and onwards the vector is lighter than the axial. The right
panel shows the value a/d(R) as function of the axial mass. In both plots the solid,
dashed and dotted lines corresponds respectively to g̃ = 8, 4, 2.

5.2.4. Introducing and constraining custodial technicolor

We now constrain also models proposed in [237, 244] which, at the ef-
fective Lagrangian level, possess an explicit custodial symmetry for the S
parameter. We will refer to this class of models as custodial technicolor
(CT) [243]. The new custodial symmetry is present in the BESS mod-
els [238,246,247] which will therefore be constrained as well. In this case we
expect our constraints to be similar to the ones also discussed in [248].

Custodial technicolor corresponds to the case for which MA = MV = M
and χ = 0. The effective Lagrangian acquires a new symmetry, relating a
vector and an axial field, which can be interpreted as a custodial symmetry
for the S parameter [237,244]. The only non-zero parameters are now:
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W =
g2

g̃2

M2
W

M2
, (5.340)

Y =
g′2

2g̃2

M2
W

M2

(
2 + 4y2

)
. (5.341)

A CT model cannot be achieved in walking dynamics and must be inter-
preted as a new framework. In other words CT does not respect the WSRs
and hence it can only be considered as a phenomenological type model
in search of a fundamental strongly coupled theory. To make our point
clearer note that a degenerate spectrum of light spin-one resonances (i.e.
M < 4πFπ) leads to a very large Ŝ = g2F 2

π/4M
2. We needed only the

first sum rule together with the statement of degeneracy of the spectrum to
derive this Ŝ parameter. This statement is universal and it is true for WT
and ordinary technicolor. The Eichten and Lane [245] scenario of almost
degenerate and very light spin-one states can only be achieved within a near
CT models. A very light vector meson with a small number of technifla-
vors fully gauged under the electroweak can be accommodated in CT. This
scenario was considered in [103,249] and our constraints apply here.

We find that in CT it is possible to have a very light and degenerate
spin-one spectrum if g̃ is sufficiently large, of the order say of 8 or larger as
in the WT case.

We constrained the electroweak parameters intrinsic to WT or CT, how-
ever, in general other sectors may contribute to the electroweak observables,
an explicit example is the new heavy lepton family introduced above [17].

To summarize we have suggested in [243] a way to constrain WT theories
with any given S parameter. We have further constrained relevant models
featuring a custodial symmetry protecting the S parameter. When increas-
ing the value of the S parameter while reducing the amount of walking we
recover the technicolor constraints [31]. We found bounds on the lightest
spectrum of WT and CT theories with an intrinsically small S parameter.
Our results are applicable to any dynamical model of electroweak symmetry
breaking featuring near conformal dynamics à la walking technicolor.

5.2.5. An ETC example for MWT and the top mass

It is instructive to present a simple model [184] which shows how one
can embed MWT in an extended technicolor model capable of generating
the top quark mass.

When the techniquarks are not in the fundamental representation of the
technicolor group it can be hard to feed down the electroweak symmetry
breaking condensate to generate the SM fermion masses [157, 250]. Here,
following [184], we wish to highlight that the minimal model can be recast as
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an SO(3) theory with fundamental representation techniquarks. The model
can therefore rather easily be enlarged to an extended technicolor theory
[157] in the spirit of many examples in the literature. We will concentrate
on the top quark sector — the ETC gauge bosons in this sector violate
weak isospin and one must be careful to compute their contribution to the
T parameter [251].

We start by recognizing that adjoint multiplets of SU(2) can be written as
fundamental representations of SO(3). This trick will now allow us to enact
a standard ETC pattern from the literature — it is particularly interesting
that for this model of higher dimensional representation techniquarks there
is a simple ETC model. We will follow the path proposed in [239] where we
gauge the full flavor symmetry of the fermions.

If we were simply interested in the fourth family then the enlarged ETC
symmetry is a Pati–Salam type unification. We stack the doublets[(

Ua

Da

)
L

,

(
N
E

)
L

]
, [UaR , NR] , [Da

R , ER] (5.342)

into 4 dimensional multiplets of SU(4). One then invokes some symmetry
breaking mechanism at an ETC scale (we will not speculate on the mecha-
nism here though see Fig. 1)

SU(4)ETC → SO(3)TC ×U(1)Y . (5.343)

The technicolor dynamics then proceeds to generate a techniquark con-
densate 〈ŪU〉 = 〈D̄D〉 6= 0. The massive gauge bosons associated with the
broken ETC generators can then feed the symmetry breaking condensate
down to generate fourth family lepton masses

mN = mE ' 〈ŪU〉Λ2
ETC

. (5.344)

One could now naturally proceed to include the third (second, first)
family by raising the ETC symmetry group to SU(8) (SU(12), SU(16)) and
a series of appropriate symmetry breakings. This would generate masses
for all the SM fermions but no isospin breaking mass contributions within
fermion doublets. The simplest route to generate such splitting is to make
the ETC group chiral so that different ETC couplings determine the isospin
+1/2 and −1/2 masses. Let us only enforce such a pattern for the top
quark and fourth family here since the higher ETC scales are far beyond
experimental probing.

We can, for example, have the SU(7) multiplets[(
Ua

Da

)
L

,

(
N
E

)
L

,

(
tc

bc

)
L

]
, [UaR , NR , t

c
R] , (5.345)
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here a will become the technicolor index and c the QCD index. We also
have a right-handed SU(4) ETC group that only acts on

[Da
R , ER] . (5.346)

The right-handed bottom quark is left out of the ETC dynamics and
only has proto-QCD SU(3) dynamics. The bottom quark will thus be left
massless. The symmetry breaking scheme at, for example, a single ETC
scale would then be

SU(7)× SU(4)× SU(3)→ SO(3)TC × SU(3)QCD . (5.347)

The top quark now also acquires a mass from the broken gauge generators
naively equal to the fourth family lepton multiplet. Walking dynamics has
many features though that one would expect to overcome the traditional
small size of the top mass in ETC models. Firstly the enhancement of the
techniquark self energy at high momentum enhances the ETC generated
masses by a factor potentially as large as ΛETC/Σ (0). In [118] it is argued
that this effect alone may be sufficient to push the ETC scale to 4 TeV and
still maintain the physical top mass.

The technicolor coupling is near conformal and strong so the ETC dy-
namics will itself be quite strong at its breaking scale which will tend to
enhance light fermion masses [252]. In this ETC model the top quark will
also feel the effects of the extra massive octet of axial gluon-like gauge fields
that may induce a degree of top condensation à la top color models [253].
We conclude that a 4–8 TeV ETC scale for generating the top mass is pos-
sible. In this model the fourth family lepton would then have a mass of the
same order and well in excess of the current search limit MZ/2.

5.2.6. The Next to Minimal Walking Technicolor Theory (NMWT)

The theory with three technicolors contains an even number of elec-
troweak doublets, and hence it is not subject to a Witten anomaly. The
doublet of technifermions, is then represented again as:

Q
{C1,C2}
L =

(
U{C1,C2}

D{C1,C2}

)
L

, Q
{C1,C2}
R =

(
U
{C1,C2}
R , D

{C1,C2}
R

)
.

Here Ci = 1, 2, 3 is the technicolor index andQL(R) is a doublet (singlet) with
respect to the weak interactions. Since the two-index symmetric represen-
tation of SU(3) is complex the flavor symmetry is SU(2)L× SU(2)R×U(1).
Only three Goldstones emerge and are absorbed in the longitudinal compo-
nents of the weak vector bosons.
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Gauge anomalies are absent with the choice Y = 0 for the hypercharge
of the left-handed technifermions:

Q
(Q)
L =

(
U (+1/2)

D(−1/2)

)
L

. (5.348)

Consistency requires for the right-handed technifermions (isospin singlets):

Q
(Q)
R =

(
U

(+1/2)
R , D

−1/2
R

)
,

Y = + 1
2 , − 1

2 .

All of these states will be bound into hadrons. There is no need for an asso-
ciated fourth family of leptons, and hence it is not expected to be observed
in the experiments.

Here the low-lying technibaryons are fermions constructed with three
techniquarks in the following way:

Bf1,f2,f3;α = Q
{C1,C2}
L;α,f1

Q
{C3,C4}
L;β,f2

Q
{C5,C6}
L;γ,f3

εβγεC1C3C5εC2C4C6 , (5.349)

where fi = 1, 2 corresponds to U andD flavors, and we are not specifying the
flavor symmetrization which in any event will have to be such that the full
technibaryon wave function is fully antisymmetrized in technicolor, flavor
and spin. α, β, and γ assume the values of one or two and represent the
ordinary spin. Similarly we can construct different technibaryons using only
right fields or a mixture of left and right.

5.3. Beyond Minimal Walking Technicolor (BMWT)
When going beyond MWT one finds new and interesting theories able to

break the electroweak symmetry while featuring a walking dynamics and yet
not at odds with precision measurements, at least when comparing with the
naive S parameter. A compendium of these theories can be found in [20].
Here we will review only the principal type of models one can construct.
5.3.1. Partially gauged technicolor

A small modification of the traditional technicolor approach, which nei-
ther involves additional particle species nor more complicated gauge groups,
allows constructing several other viable candidates. It consists in letting
only one doublet of techniquarks transform non-trivially under the elec-
troweak symmetries with the rest being electroweak singlets, as first sug-
gested in [17] and later also used in [250]. Still, all techniquarks transform
under the technicolor gauge group. Thereby only one techniquark doublet
contributes directly24 to the oblique parameter which is thus kept to a min-
imum for theories which need more than one family of techniquarks to be

24 Via Technicolor interactions all of the matter content of the theory will affect physical
observables associated to the sector coupled to the electroweak symmetry.
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quasi-conformal. It is the condensation of that first electroweakly charged
family that breaks the electroweak symmetry. The techniquarks which are
uncharged under the electroweak gauge group are natural building blocks
for components of dark matter.

Among the partially gauged cases one of the interesting candidates [20]
is the theory with eight techniflavors in the two-index antisymmetric repre-
sentation of SU(4). The techniquarks of one of the four families carry elec-
troweak charges while the others are electroweak singlets. Gauge anomalies
are avoided if the two electrically charged techniquarks possess half-integer
charges. The technihadron spectrum contains technibaryons made of only
two techniquarks because in the two-index antisymmetric representation of
SU(4) a singlet can already be formed in that case. Otherwise technisinglets
can also be formed from four techniquarks. All technihadrons formed from
techniquarks without electrical charges can contribute to dark matter. Due
to the special charge assignment of the electrically charged particles (oppo-
site half-integer charges) certain combinations of those can also be contained
in electrically uncharged technibaryons. For instance we can construct the
following completely neutral technibaryon:

εt1t2t3t4Q
t1t2,f
L Qt3t4,f

′

L εff ′ , (5.350)

where εff ′ saturates the SU(2)L indices of the two gauged techniquarks and
the first antisymmetric tensor ε is summed over the technicolor indices. We
have suppressed the spin indices. This particle is an interesting candidate for
dark matter and it is hardly detectable in any earth based experiment [131].

Since the two index antisymmetric representation of SU(4) is real the
model’s flavor symmetry is enhanced to SU(2Nf = 16)25, which, when it
breaks to SO(16), induces 135 Goldstone bosons26.

It is worth recalling that the centre group symmetry left invariant by
the fermionic matter is a Z2 symmetry. Hence there is a well defined order
parameter for confinement [163] which can play a role in the early Universe.

5.3.2. Split technicolor

We summarize here also another possibility [17] according to which we
keep the technifermions gauged under the electroweak theory in the fun-
damental representation of the SU(N) technicolor group while still reduc-
ing the number of techniflavors needed to be near the conformal window.
Like for the partially gauged case described above this can be achieved by

25 It is slightly explicitly broken by the electroweak interactions. Here, additionally,
there is a difference, on the electroweak level, between gauged and ungauged techni-
quark families.

26 Obviously the Goldstone bosons must receive a sufficiently large mass. This is usually
achieved in extended technicolor. Still, they could be copious at LHC.
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adding matter uncharged under the weak interactions. The difference to
Section 5.3.1 is that this part of matter transforms under a different repre-
sentation of the technicolor gauge group than the part coupled directly to
the electroweak sector. For example, for definiteness let us choose it to be a
massless Weyl fermion in the adjoint representation of the technicolor gauge
group. The resulting theory has the same matter content as Nf -flavor super
QCD but without the scalars; hence the name “split technicolor.” We expect
the critical number of flavors above which one enters the conformal window
N II
f to lie within the range

3
2
<
N II
f

N
<

11
2
. (5.351)

The lower bound is the exact supersymmetric value for a non-perturbative
conformal fixed point [165], while the upper bound is the one expected in
the theory without a technigluino. The matter content of “split technicolor”
lies between that of super QCD and QCD-like theories with matter in the
fundamental representation.

For two colors the number of (techni)flavors needed to be near the con-
formal window in the split case is at least three, while for three colors more
than five flavors are required. These values are still larger than the ones
for theories with fermions in the two-index symmetric representation. It
is useful to remind the reader that in supersymmetric theories the critical
number of flavors needed to enter the conformal window does not coincide
with the critical number of flavors required to restore chiral symmetry. The
scalars in supersymmetric theories play an important role from this point of
view. We note that a split technicolor-like theory has been used in [254], to
investigate the strong CP problem.

Split technicolor shares some features with theories of split supersym-
metry advocated and studied in [255,256] as possible extensions of the SM.
Clearly, we have introduced split technicolor — differently from split su-
persymmetry — to address the hierarchy problem. This is why we do not
expect new scalars to appear at energy scales higher than the one of the
electroweak theory.

5.4. Ultra minimal walking technicolor
Here we provide an explicit example [130] of (near) conformal (NC) tech-

nicolor with two types of technifermions, i.e. transforming according to two
different representations of the underlying technicolor gauge group [20,157].
The model possesses a number of interesting properties to recommend it
over the earlier models of dynamical electroweak symmetry breaking:

• Features the lowest possible value of the naive S parameter [31, 32]
while possessing a dynamics which is NC.
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• Contains, overall, the lowest possible number of fermions.
• Yields natural DM candidates.

Due to the above properties we term this model Ultra Minimal near con-
formal Technicolor (UMT). It is constituted by an SU(2) technicolor gauge
group with two Dirac flavors in the fundamental representation also carrying
electroweak charges, as well as, two additional Weyl fermions in the adjoint
representation but singlets under the SM gauge groups.

By arranging the additional fermions in higher dimensional represen-
tations, it is possible to construct models which have a particle content
smaller than the one of partially gauged technicolor theories. In fact, in-
stead of considering additional fundamental flavors we shall consider adjoint
flavors. Note that for two colors there exists only one distinct two-indexed
representation.

How many adjoint fermions are needed to build the above NC model?
Information on the conformal window for gauge theories containing fermions
transforming according to distinct representations is vital. We used the
all orders beta-function [21] extended to the multiple representation case
presented in the Conformal House section and found that for a two color
theory with two fundamental flavors the critical number of adjoint Weyl
fermions above which one looses asymptotic freedom is 4.50. Second, we
noted that at the zero of the beta function we have

k∑
i=1

2
11
T (ri)Nf (ri) (2 + γi) = C2(G) . (5.352)

Therefore, specifying the value of the anomalous dimensions at the infrared
fixed point yields the last constraint needed to construct the conformal win-
dow. Having reached the zero of the beta function the theory is conformal in
the infrared. For a theory to be conformal the dimension of the non-trivial
spinless operators must be larger than one in order to not contain negative
norm states [95, 176, 177]. Since the dimension of the chiral condensate is
3 − γi we see that γi = 2, for all representations ri, yields the maximum
possible bound

k∑
i=1

8
11
T (ri)Nf (ri) = C2(G) . (5.353)

This implies, for example, that for a two technicolor theory with two funda-
mental Dirac flavors the critical number of adjoint Weyl fermions needed to
reach the bound above on the conformal window is 1.75. Naively then a two
technicolor theory with two fundamental Dirac flavors and one adjoint Weyl
fermion would be a good candidate for a NC technicolor theory. However this
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is hardly the case since the theory equals two flavor supersymmetric QCD
but without the scalars. For two colors and two flavors supersymmetric QCD
is known to exhibit confinement with chiral symmetry breaking [165]. Since
the critical number of flavors above which one enters the conformal window
is three it will most likely not exhibit NC dynamics. Throwing away the
scalars only drives it further away from the NC scenario. The actual size of
the conformal window can be smaller than the one determined by the bound
above. It may happen, in fact, that chiral symmetry breaking is triggered
for a value of the anomalous dimension less than two. If this occurs the
conformal window shrinks. Within the ladder approximation [159, 160] one
finds that chiral symmetry breaking occurs when the anomalous dimension
is close to one. Picking γi = 1 we find:

k∑
i=1

6
11
T (ri)Nf (ri) = C2(G) . (5.354)

In this case when considering a two color theory with two fundamental Dirac
flavors the critical number of adjoint Weyl flavors is 2.67. Hence, our can-
didate for a NC theory with a minimal S parameter has two colors, two
fundamental Dirac flavors charged under the electroweak symmetries and
two adjoint Weyl fermions. This is the Ultra Minimal NC Technicolor model
(UMT).

If it turns out that the anomalous dimension above which chiral sym-
metry breaking occurs is larger than one we can still use the model just
introduced. We will simply break its conformal dynamics by adding masses
(anyway needed for phenomenological reasons) for the adjoint fermions.

The fermions transforming according to the fundamental representation
are arranged into electroweak doublets in the standard way and may be
written as:

TL =
(

U
D

)
L

, UR , DR . (5.355)

The additional adjoint Weyl fermions needed to render the theory quasi
conformal are denoted as λf with f = 1, 2. They are not charged under the
electroweak symmetries. Also we have suppressed technicolor indices. The
theory is anomaly free using the following hypercharge assignment

Y (TL) = 0 , Y (UR) = 1
2 , Y (DR) = −1

2 , Y (λf ) = 0 . (5.356)

Our notation is such that the electric charge is Q = T3 + Y . Replacing the
Higgs sector of the SM with the above technicolor theory the Lagrangian
reads:

LH → −1
4F

a
µνF

aµν + iTLγ
µDµTL + iURγ

µDµUR

+ iDRγ
µDµDR + iλσµDµλ , (5.357)
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with the technicolor field strength

F aµν = ∂µA
a
ν − ∂νAaµ + gTCε

abcAbµA
c
ν , a, b, c = 1, . . . , 3 .

The covariant derivatives for the various fermions are

DµTL =
(
∂µ − igTCA

a
µ

τa

2
− igW a

µ

La

2

)
TL , (5.358)

DµUR =
(
∂µ − igTCA

a
µ

τa

2
− ig

′

2
Bµ

)
UR , (5.359)

DµDR =
(
∂µ − igTCA

a
µ

τa

2
+ i

g′

2
Bµ

)
DR , (5.360)

Dµλ
a,f =

(
δac∂µ + gTCA

b
µε
abc
)
λc,f . (5.361)

Here gTC is the technicolor gauge coupling, g is the electroweak gauge
coupling and g′ is the hypercharge gauge coupling. Also W a

µ are the elec-
troweak gauge bosons while Bµ is the gauge boson associated to the hyper-
charge. Both τa and La are Pauli matrices and they are the generators of
the technicolor and weak gauge groups respectively.

The global symmetries of the theory are most appropriately handled by
first arranging the fundamental fermions into a quadruplet of SU(4)

Q =


UL
DL

−iσ2U∗R
−iσ2D∗R

 . (5.362)

Since the fermions belong to pseudo-real and real representations of the
gauge group the global symmetry of the theory is enhanced and can be
summarized as

SU(4) SU(2) U(1)

Q 1 −1
λ 1 1

2

The Abelian symmetry is anomaly free. Following Ref. [215] the character-
istic chiral symmetry breaking scale of the adjoint fermions is larger than
that of the fundamental ones since the dimension of the adjoint represen-
tation is larger than the dimension of the fundamental representation. We
expect, however, the two scales to be very close to each other since the
number of fundamental flavors is rather low. In the two-scale technicolor
models [157] the dynamical assumption is instead, that the different scales
of the condensates are very much apart from each other.
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Fig. 46. Cartoon of the Ultra Minimal Walking Technicolor extension of the SM.

The global symmetry group G = SU(4) × SU(2) × U(1) breaks to H =
Sp(4)×SO(2)×Z2. The stability group H is dictated by the (pseudo)reality
of the fermion representations and the breaking is triggered by the formation
of the following two condensates〈

Qα,cF Qβ,c
′

F ′ εαβεcc′E
FF ′
4

〉
= −2〈URUL +DRDL〉 , (5.363)〈

λα,kf λβ,k
′

f ′ εαβδkk′E
ff ′

2

〉
= −2

〈
λ1λ2

〉
, (5.364)

where

E4 =
(

02×2 12×2

−12×2 02×2

)
, E2 =

(
0 1
1 0

)
. (5.365)

The flavor indices are denoted with F, F ′ = 1, . . . , 4 and f, f ′ = 1, 2, the
spinor indices as α, β = 1, 2 and the color indices as c, c′ = 1, 2 and
k, k′ = 1, . . . , 3. Also the notation is such that UαLU

∗β
R εαβ = −URUL and

λ1,αλ2,βεαβ = λ1λ2. Under the U(1) symmetry Q and λ transform as

Q→ e−iαQ , and λ→ e−i
α
2 λ , (5.366)

and the two condensates are simultaneously invariant if

α = 2kπ , with k an integer . (5.367)
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Only the λ fields will transform nontrivially under the remaining Z2, i.e.
λ→ −λ.

The relevant degrees of freedom are efficiently collected in two distinct
matrices,M4 andM2, which transform asM4 → g4M4g

T
4 andM2 → g2M2g

T
2

with g4 ∈ SU(4) and g2 ∈ SU(2). Both M4 and M2 consist of a composite
iso-scalar and its pseudoscalar partner together with the Goldstone bosons
and their scalar partners:

M4 =
[
σ4 + iΘ4

2
+
√

2
(
iΠ i

4 + Π̃ i
4

)
Xi

4

]
E4 , i = 1, . . . , 5 , (5.368)

M2 =
[
σ2 + iΘ2√

2
+
√

2
(
iΠ i

2 + Π̃ i
2

)
Xi

2

]
E2 , i = 1, 2 . (5.369)

The notation is such that X4 and X2 are the broken generators of SU(4)
and SU(2) respectively. An explicit realization can be found in Appendix
of [130]. Also σ4 and Θ4 are the composite Higgs and its pseudoscalar
partner while Π i

4 and Π̃ i
4 are the Goldstone bosons and their associated

scalar partners. For SU(2) one simply substitutes the index 4 with the
index 2. With the above normalization of the M matrices the kinetic term
of each component field is canonically normalized. Under an infinitesimal
global symmetry transformation we have:

δM = iαa
(
T aM +MT aT

)
. (5.370)

Here T is the full set of generators of the unbroken group (either SU(4)
or SU(2)). With the Θ and Π̃ i states included the matrices are actually
form invariant under U(4) and U(2) with the Abelian parts being broken
by anomalies. We construct our Lagrangian by considering only the terms
preserving the anomaly free U(1) symmetry. As we will see this implies that
Θ4 and Θ2 are not mass eigensates. In the diagonal basis we will find one
massless and one massive state. The massless state corresponds to the U(1)
Goldstone boson.

The relation between the composite scalars and the underlying degrees
of freedom can be found by first noting that M4 and M2 transform as:

MFF ′
4 ∼ QFQF ′ , Mff ′

2 ∼ λfλf ′ , (5.371)
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where both color and spin indices have been contracted. It then follows that
the composite states transform as:

ν4 +H4 ≡ σ4 ∼ UU +DD , Θ4 ∼ i
(
Uγ5U +Dγ5D

)
,

Π 0 ≡ Π 3 ∼ i (Uγ5U −Dγ5D
)
, Π̃ 0 ≡ Π̃ 3 ∼ UU −DD ,

Π + ≡ Π 1−iΠ 2
√

2
∼ iDγ5U , Π̃ + ≡ Π̃ 1−iΠ̃ 2

√
2
∼ DU ,

Π− ≡ Π 1+iΠ 2
√

2
∼ iUγ5D , Π̃− ≡ Π̃ 1+iΠ̃ 2

√
2
∼ UD ,

ΠUD ≡ Π 4+iΠ 5
√

2
∼ UTCD , Π̃UD ≡ Π̃ 4+iΠ̃ 5

√
2
∼ iUTCγ5D ,

ΠUD ≡ Π 4−iΠ 5
√

2
∼ UCDT

, Π̃UD ≡ Π̃ 4−iΠ̃ 5
√

2
∼ iUCγ5D

T
,

(5.372)
and

ν2 +H2 ≡ σ2 ∼ λDλD , Θ2 ∼ iλDγ
5λD ,

Πλλ ≡ Π 6−iΠ 7
√

2
∼ λT

DCλD , Π̃λλ ≡ Π̃ 6−iΠ̃ 7
√

2
∼ iλT

DCγ5λD ,

Πλλ ≡ Π 6+iΠ 7
√

2
∼ λDCλT

D , Π̃λλ ≡ Π̃ 6+iΠ̃ 7
√

2
∼ iλDCγ5λ

T
D .

(5.373)

Here U = (UL, UR)T, D = (DL, DR)T and λD = (λ1,−iσ2λ2∗)T. An-
other set of states are the composite fermions

Λf = λa,fσµνF aµν , f = 1, 2 , a = 1, 2, 3 , (5.374)

where F aµν is the technicolor field strength.
To describe the interaction with the weak gauge bosons we embed the

electroweak gauge group in SU(4) as done in [237]. First we note that the
following generators

La =
Sa4 +Xa

4√
2

=
(
τa

2
0

)
, Ra =

XaT
4 − SaT4√

2
=
(

0
τa

2

)
(5.375)

with a = 1, 2, 3 span an SU(2)L × SU(2)R subalgebra. By gauging SU(2)L
and the third generator of SU(2)R we obtain the electroweak gauge group
where the hypercharge is Y = −R3. Then as SU(4) breaks to Sp(4) the
electroweak gauge group breaks to the electromagnetic one with the electric
charge given by Q =

√
2S3.

Due to the choice of the electroweak embedding the weak interactions
explicitly reduce the SU(4) symmetry to SU(2)L×U(1)Y ×U(1)TB which is
further broken to U(1)em×U(1)TB via the technicolor interactions. U(1)TB

is the technibaryon number and its generator corresponds to the S4
4 diagonal

generator. The remaining SU(2) × U(1) spontaneously break, only via the
(techni)fermion condensates, to SO(2) × Z2. We prefer to indicate SO(2)
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with U(1)Tλ. We summarize some of the relevant low-energy technihadronic
states according to the final unbroken symmetries in Table XII. We have
arranged the composite fermions into a Dirac fermion

ΛD =
(

Λ1

−iσ2Λ2∗

)
. (5.376)

TABLE XII

Summary table of the relevant low-energy technihadronic states for UMT. We
display their SU(2)L weak interaction charges together with their electromagnetic
ones. We also show the remaining global symmetries.

SU(2)L U(1)em U(1)TB U(1)Tλ Z2

H4, Θ4 1 0 0 0 0
→
Π ,

→
Π̃ 3 +1, 0,−1 0 0 0

ΠUD, Π̃UD 1 0 1√
2

0 0
ΠUD, Π̃UD 1 0 − 1√

2
0 0

H2, Θ2 1 0 0 0 0
Πλλ, Π̃λλ 1 0 0 1 0
Πλλ, Π̃λλ 1 0 0 −1 0
ΛD 1 0 0 1

2 −1

Except for the triplet of Goldstone bosons charged under the electroweak
symmetry the rest of the states are electroweak neutral. In the unitary gauge
the ~Π states become the longitudinal components of the massive electroweak
gauge bosons. ΠUD (Π̃UD) is a pseudoscalar(scalar) diquark charged un-
der the technibaryon number U(1)TB while Πλλ (Π̃λλ) is charged under the
U(1)Tλ. ΛD is the composite fermionic state charged under both U(1)Tλ
and Z2.

The technibaryon number U(1)TB is anomalous due to the presence of
the weak interactions:

∂µJ
µ
TB =

1
2
√

2
g2

32π2
εµνρσW

µνW ρσ , and JµTB =
1

2
√

2

(
ŪγµU + D̄γµD

)
.

(5.377)
With the above discussion of the electroweak embedding the covariant

derivative for M4 is:

DµM4 = ∂µM4 − i
[
GµM4 +M4G

T
µ

]
, Gµ =

(
gW a

µ
τa

2 0
0 −g′Bµ τ3

2

)
.

(5.378)
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We are now in a position to write down the effective Lagrangian. It
contains the kinetic terms and a potential term:

L = 1
2Tr

[
DµM4D

µM †4

]
+ 1

2Tr
[
∂µM2∂

µM †2

]
− V (M4,M2) , (5.379)

where the potential is:

V (M4,M2) = −m
2
4

2
Tr
[
M4M

†
4

]
+
λ4

4
Tr
[
M4M

†
4

]2
+ λ′4Tr

[
M4M

†
4M4M

†
4

]
−m

2
2

2
Tr
[
M2M

†
2

]
+
λ2

4
Tr
[
M2M

†
2

]2
+ λ′2Tr

[
M2M

†
2M2M

†
2

]
+
δ

2
Tr
[
M4M

†
4

]
Tr
[
M2M

†
2

]
+ 4δ′

[
(detM2)2 PfM4 + h.c.

]
.

(5.380)

OnceM4 develops a vacuum expectation value the electroweak symmetry
breaks and three of the eight Goldstone bosons — Π 0, Π + and Π− — will
be eaten by the massive gauge bosons. One can find the actual minimization
of the potential and mass spectrum in [130].

It is also useful to show hot to construct the non-linear effective theory
of the associated Goldstone bosons. We shall consider the elements of the
global symmetry G as 6 × 6 matrices. The generators of SU(4) sit in the
upper left corner while the generators of SU(2) sit in the lower right corner.
The generator of U(1) is diagonal. We divide the nineteen generators of
G into the eleven that leave the vacuum invariant S and the eight that do
not X. An explicit realization of S and X can be found in Appendix of
Ref. [130].

An element of the coset space G/H is parameterized by

V(ξ) = exp
(
iξiXi

)
E , (5.381)

where

E =
(
E4

E2

)
, ξiXi =

5∑
i=1

Π iXi

Fπ
+

7∑
i=6

Π iXi

F̃π
+

Π 8X8

F̂π
. (5.382)

The Goldstone bosons are denoted as Π i, i = 1, . . . , 8 and Fπ, F̃π and F̂π
are the related Goldstone boson decay constants. Since the entire global
symmetry G is expected to break approximately at the same scale we also
expect the three decay constants to have close values. The element V of the
coset space transforms non-linearly

V(ξ)→ gV(ξ)h†(ξ, g) , (5.383)
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where g is an element of G and h is an element of H. To describe the
Goldstone bosons interaction with the weak gauge bosons we embed the
electroweak gauge group in SU(4) as done above and also in [237]. With
the embedding of the electroweak gauge group in hand it is appropriate to
introduce the hermitian, algebra valued, Maurer–Cartan one-form

ωµ = iV†DµV , (5.384)

where the electroweak covariant derivative is

DµV = ∂µV − iGµV , Gµ =

 gW a
µ
τa

2

−g′Bµ τ3

2
0

 . (5.385)

From the above transformation properties of V it is clear that ωµ transforms
as

ωµ → h(ξ, g)ωµh†(ξ, g) + h(ξ, g)∂µh†(ξ, g) . (5.386)

With ωµ taking values in the algebra of G we can decompose it into a part
ω
‖
µ parallel to H and a part ω⊥µ orthogonal to H

ω‖µ = 2SaTr [Saωµ] , ω⊥µ = 2XiTr
[
Xiωµ

]
. (5.387)

It is clear that ω‖µ (ω⊥µ ) is an element of the algebra of H (G/H) since it
is a linear combination of Sa (Xi). They have the following transformation
properties

ω‖µ → h(ξ, g)ω‖µh
†(ξ, g) + h(ξ, g)∂µh†(ξ, g) , ω⊥µ → h(ξ, g)ω⊥µ h

†(ξ, g) .
(5.388)

We are now in a position to construct the non-linear Lagrangian. We
shall only consider terms containing at most two derivatives. By noting that
the generator X8 corresponding to the broken U(1) is not traceless we can
also write a double-trace term besides the standard one-trace term:

L = Tr
[
aω⊥µ ω

µ⊥
]

+ bTr
[
ω⊥µ

]
Tr
[
ωµ⊥

]
, (5.389)

The coefficients a = diag
(
F 2
π , F

2
π , F

2
π , F

2
π , F̃

2
π , F̃

2
π

)
and b = F̂ 2

π
2 − 4F 2

π
9 − F̃ 2

π
18

are chosen such that the kinetic term is canonically normalized:

L =
1
2

8∑
i=1

∂µΠ i∂µΠ i + . . . . (5.390)
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We conclude this section by connecting the linear and non-linear theories

F 2
π =

v2
4

2
, F̃ 2

π = v2
2 , F̂ 2

π =
1
9
(
4v2

4 + v2
2

)
. (5.391)

For this model much is still left to be done. For example one should in-
clude the massive vector states and provide a detailed computation of the
higher-loop corrections on the effective Lagrangians introduced above simi-
lar to what has been done for the case of a single representation [257]. The
interest here resides in the fact that the interplay between the two sectors
will inevitably lead to interesting effects never explored before.

The UMT provided a novel type of TIMP, i.e. a di-techniquark, with the
following unique features:

• It is a quasi-Goldstone of the underlying gauge theory receiving a mass
term only from interactions not present in the technicolor theory per se.
• The lightest technibaryon is a singlet with respect to weak interactions.
• Its relic density can be related to the SM lepton number over the

baryon number if the asymmetry is produced above the electroweak
phase transition.

In Appendix of [130] we provided a much detailed model computation of
the ratio TB/B making use of the chemical equilibrium conditions and the
sphaleron processes active around the electroweak phase transition.

In the approximation where also the top quark is considered massless
around the electroweak phase transition (we have also checked that the ef-
fects of the top mass do not change our results) the TB/B is independent
of the order of the electroweak phase transition and reads

−
√

2 · TB
B

=
σ

2
(3 + ξ) , (5.392)

where σ ≡ σU = σD is the statistical function for the techniquarks. The
U and D constituent-type masses are assumed to be dynamically generated
and equal. ξ = L/B is the SM lepton over the baryon number.

If DM is identified with the lightest technibaryon in our model the ratio
of the dark to baryon mass of the Universe is

ΩTB

ΩB
=
mTB

mp

T̃B
B

, (5.393)

with mTB the technibaryon mass and T̃B = −√2TB the technibaryon num-
ber normalized in such a way that it is minus one for the lightest state.

The bulk of the mass of the lightest technibaryon is not due to the
technicolor interactions as it was in the original proposal [128, 134]. This
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is similar to the case studied in [131]. The interactions providing mass to
the techibaryon are the SM interactions per se and ETC. The main effect of
these interactions will be in the strength and the order of the electroweak
phase transition as shown in [139].

What it was found is that, differently from the case in which the techni-
baryon acquires mass only due to technicolor interactions, one achieves the
desired phenomenological ratio of DM to baryon matter with a light tech-
nibaryon mass with respect to the weak interaction scale. In fact, the mass
can be even lower than 100 GeV. This DM candidate can be produced at
the Large Hadron Collider experiment. A general investigation of the TIMP
detection properties and LHC phenomenology can be found in [135].

This TIMP is a template for a more general class of models according
to which the lightest one is neutral under the SM interactions. Models
belonging to this class are, for example, partially gauged technicolor.

A comment

We have shown above several of the still many available models for dy-
namical electroweak symmetry breaking. If any of the theories above are
actually conformal rather than near conformal then one can couple it to
yet another sector which is not conformal and this interaction will lift the
conformality in a manner similar to the one we outlined in the Naturalized
Unparticle section. As for the anomalous dimension of the mass of some
of these theories, if it turns out not to be very large, we will then require
another mechanism to give mass to the SM fermions. Some of these mech-
anisms exists and have been already hinted to in the S parameter section.

The models provide concrete examples of models of dynamical elec-
troweak symmetry breaking with small corrections to the precision observ-
ables and having a chance to be observed at the LHC. It would certainly be
interesting, in the near future, to extend the number of possible models and
investigate their experimental signatures [102,103,149,258,259].

6. Electroweak phase transition for technicolor

The experimentally observed baryon asymmetry of the Universe may be
generated at the electroweak phase transition (EWPT) [142, 260–265]. For
the mechanism to be applicable it requires the presence of new physics be-
yond the SM [266–271]. An essential condition for electroweak baryogenesis
is that the baryon-violating interactions induced by electroweak sphalerons
are sufficiently slow immediately after the phase transition to avoid the de-
struction of the baryons that have just been created. This is achieved when
the thermal average of the Higgs field evaluated on the ground state, in the
broken phase of the electroweak symmetry, is large enough compared to the
critical temperature at the time of the transition (see for example Ref. [272]
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and references therein),
φc/Tc > 1 . (6.394)

In the SM, the bound (6.394) was believed to be satisfied only for very
light Higgs bosons [273–277]. However, this was before the mass of the
top quark was known. With mt = 175 GeV, nonperturbative studies of
the phase transition [143, 278, 279] show that the bound (6.394) cannot be
satisfied for any value of the Higgs mass (see also [280, 281]). In addition
to the difficulties with producing a large enough initial baryon asymmetry,
the impossibility of satisfying the sphaleron constraint (6.394) in the SM
provides an incentive for seeing whether the situation improves in various
extensions of the SM [282–285].

In [139–141] we explored the electroweak phase transition in models in
which the electroweak symmetry is broken dynamically [11,12].

As mentioned earlier, on the astrophysical side, technicolor models are
capable of providing interesting dark matter candidates, since the new strong
interactions confine techniquarks in technimeson and technibaryon bound
states. Technibaryons are therefore natural dark matter candidates [128,
131, 134]. In fact, it is possible to naturally understand the observed ratio
of the dark to luminous matter mass fraction of the Universe if the techni-
baryon possesses an asymmetry [128, 131, 134]. If the latter is due to a net
B–L generated at some high energy scale, then this would be subsequently
distributed among all electroweak doublets by fermion-number violating pro-
cesses in the SM at temperatures above the electroweak scale [286–288], thus
naturally generating a technibaryon asymmetry as well.

The order of the EWPT depends on the underlying type of strong dynam-
ics and plays an important role for baryogenesis [272, 289]. The technicolor
chiral phase transition at finite temperature is mapped onto the electroweak
one. Attention must be paid to the way in which the electroweak symme-
try is embedded into the global symmetries of the underlying technicolor
theory. An interesting preliminary analysis dedicated to earlier models of
technicolor has been performed in [290].

Here we wish to briefly review recent investigations on the EWPT in a
class of realistic and viable technicolor models. An explicit phenomenological
realization of walking models consistent with the electroweak precision data
is the MWT model or alike [19].

The effective theory contains composite scalars and spin-one vectors.
Compatibility between the electroweak precision constraints and tree-level
unitarity of WW -scattering was demonstrated in [291].

The study of longitudinalWW scattering unitarity versus precision mea-
surements within the effective Lagrangian approach demonstrated that it is
possible to pass the precision tests while simultaneously delaying the onset
of unitarity [291,292].

The tree-level effective potential is obtained by evaluating the potential
in (5.293) and (5.296) in the background where the (composite) Higgs fields
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assumes the vacuum expectation value σ, i.e., M = σE/2. It has the SM
form

V (0) = 1
4

(
λ+ λ′ − λ′′) (σ2 − v2

)2 =
M2
H

8v2

(
σ2 − v2

)2
. (6.395)

The effective potential at one loop can be naturally divided into zero- and
nonzero-temperature contributions.

We begin by constructing the one-loop effective potential at zero tem-
perature. We fix the counterterms so as to preserve the tree-level definitions
of the vev and the Higgs mass, i.e., M2

H = 2λ̄v2 with λ̄ = λ+ λ ′ − λ ′′. The
one loop contribution to the potential then reads:

V
(1)
T=0 =

1
64π2

∑
i

ni fi(Mi(σ)) + VGB , (6.396)

where the index i runs over all of the mass eigenstates, except for the Gold-
stone bosons (GB), and ni is the multiplicity factor for a given scalar particle
while for Dirac fermions is −4 times the multiplicity factor of the specific
fermion. The function fi is:

fi = M4
i (σ)

[
log

M2
i (σ)

M2
i (v)

− 3
2

]
+ 2M2

i (σ)M2
i (v) , (6.397)

where M2
i (σ) is the background dependent mass term of the i-th particle.

This prescription would lead to infrared divergences in the ’t Hooft–Landau
gauge for VGB, the GB contribution, when evaluated at the tree-level vev,
due to the vanishing of the GB masses. Different ways of dealing with this
problem have been discussed in the literature. One possibility is to regularize
the infrared divergence by replacing M2

i (v) with some characteristic mass
scale. However with this prescription the tree-level vev and Higgs mass get
shifted by the presence of the one-loop correction. A simpler approach is to
neglect the GB contribution, since in practice it never has a strong effect
on the phase transition. We tried both methods and found that they give
essentially indistinguishable results.

To explicitly evaluate the potential above it is useful to split the scalar
matrix into four 2× 2 blocks as follows:

M =
( X O
OT Z

)
, (6.398)

with X and Z two complex symmetric matrices accounting for six indepen-
dent degrees of freedom each and O a generic complex 2 × 2 matrix repre-
senting eight real bosonic fields. O accounts for the SM-like Higgs doublet,
a second doublet, and the three GBs absorbed by the longitudinal gauge
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bosons. We find nX = nZ = 6 while the two weak doublets split into two
SU(2)V isoscalars, i.e., the Higgs (nH = 1) and Θ (nΘ = 1) with different
masses and two independent triplets, i.e., nGB = 3 and nA = 3.

For the contribution of the gauge bosons we have nW = 6 and nZ = 3.
In the fermionic sector we will consider only the heaviest particles, i.e., the
top for which nT = −12 and the two new leptons nN = nE = −4.

The one-loop, ring-improved, finite-temperature effective potential can
be divided into fermionic, scalar and vector contributions,

V
(1)
T = V

(1)
T f + V

(1)
T b + V

(1)
T gauge . (6.399)

The fermionic contribution at high temperature reads:

V
(1)
T f = 2

T 2

24

∑
f

nfM
2
f (σ)+

1
16π2

∑
f

nfM
4
f (σ)

[
log

M2
f (σ)
T 2

− cf
]
, (6.400)

where cf ' 2.63505, nTop = 3, nN = nE = 1, and we have neglected
O (1/T 2

)
terms. The field-dependent masses are

MTop(σ) = mTop
σ

v
, MN (σ) = mN

σ

v
, ME = mE

σ

v
, (6.401)

with mTop, mN and mE the physical masses. Notice that the logarithmic
term in (6.400) combines with a similar term in the zero-temperature po-
tential (6.396) so that their sum is analytic in the masses M2

f (σ).
For the scalar part of the thermal potential one must resum the con-

tribution of the ring diagrams. Following Arnold and Espinosa [275] we
write

V
(1)
T b =

T 2

24

∑
b

nbM
2
b (σ)− T

12π

∑
b

nbM
3
b (σ, T )

− 1
64π2

∑
b

nbM
4
b (σ)

[
log

M2
b (σ)
T 2

− cb
]
, (6.402)

where cb ' 5.40762 and Mb(σ, T ) the thermal mass which follows from the
tree-level plus one-loop thermal contribution to the potential. For the gauge
bosons,

V
(1)
T gauge =

T 2

24

∑
gb

3M2
gb(σ)− T

12π

∑
gb

[
2M3

T,gb(σ) +M3
L,gb(σ, T )

]
− 1

64π2

∑
gb

ngbM
4
gb(σ)

[
log

M2
gb(σ)
T 2

− cb
]
. (6.403)
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Here MT,gb (ML,gb ) is the transverse (longitudinal) mass of a given gauge
boson and we have MT,gb(σ) = ML,gb(σ, T = 0) = Mgb(σ). Only the longi-
tudinal gauge bosons acquire a thermal mass squared at the leading order,
O(g2T 2). The transverse bosons acquire instead a magnetic mass squared
of order g4T 2 which we have neglected.

The explicit form of the transverse and longitudinal gauge boson mass
matrix is given in Appendix of [139].

We used the one-loop high temperature approximation together with the
summation of the ring-diagrams to evaluate the effective potential in our nu-
merical calculations. The full expression of the finite temperature potential
is given as a sum of the tree level potential (6.395), the zero-temperature
one-loop contribution (6.396), and the one-loop thermal corrections at high
temperature, (6.400), (6.402), and (6.403). We assumed that the phase tran-
sition takes place when the two minima are degenerate. This then defines the
critical value of the thermal average of the composite Higgs field φc, in the
broken phase, at the critical temperature Tc. Above the critical temperature
the ground state is the one at the origin of the Higgs field. For convenience
we subtracted from the potential a temperature-dependent constant which
is defined in such a way that V (σ, T ) = 0 for σ = 0.

The relevant input parameters are the zero-temperature masses of the
Higgs (MH) and its pseudoscalar partner Θ (MΘ). The phase transition also
depends on the masses of the scalar partners of the Goldstone bosons A0,±

(MA), on the mass scale of the scalar baryons mETC, and on the masses of
the heavy fermions. For simplicity, we chose the masses of the new fermions
to be equal,

M2
E = M2

N ≡M2
f . (6.404)

This choice does not seem to have a strong effect on the phase transition;
for example we checked that using instead ME ' 2MN , very similar results
were obtained. We have neglected the heavy composite vectors of MWT
since they are expected to decouple at the scale of the EWPT. At this scale,
the couplings to the SM gauge bosons are simply g, g′. We set the parameter
y to y = 1/3 so that the MWT hypercharge assignment equals the SM one.
Notice that y appears only in the longitudinal Debye mass of the Z boson.
Since the effective potential terms are proportional to M2

i (σ) or M4
i (σ), the

contributions of the fermions and the composite scalars typically dominate
over that of the relatively light Z boson, whence the dependence of the phase
transition on y is negligible.

The details of the investigation and results can be found in [139] here we
briefly summarize the general results. We find that in the parameter region
where a strong first order transition is observed the composite Higgs and its
pseudoscalar partner Θ are light enough to be produced at the LHC. More-
over one expects, for this range of parameters of the effective Lagrangian,
sizable deviations from the SM predictions at the LHC [102]. We emphasize
that the spectrum is completely fixed by the underlying gauge theory and
that first principle lattice simulations can test our results.
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6.1. Electroweak deconfinig and chiral phase transitions

As suggested in [14], an intriguing possibility can emerge in that one
can have two independent phase transitions at nonzero temperature in tech-
nicolor theories, whenever the theory possesses a nontrivial center symme-
try. The two phase transitions are the chiral one, directly related to the
electroweak phase transition, and a confining one at lower temperatures.
During the history of the Universe one predicts a phase transition around
the electroweak scale and another one at lower temperatures with a jump
in the entropy proportional to the number of degrees of freedom liberated
(or gapped) when increasing (decreasing) the temperature (see [293] for a
simple explanation of this phenomenon and a list of relevant references).
This may have very interesting cosmological consequences. Here we have
concentrated on the chiral one alone. The interplay with the confining one,
expected to occur at lower temperatures, can be studied by coupling the
effective Lagrangian presented here to the Polyakov-loop effective degree of
freedom as done in [293].

6.2. Extra electroweak chiral phase transitions

In [140] were presented generic models of DEWB possessing a surpris-
ingly rich finite temperature phase diagram structure. The basic ingredients
are: (i) At least two different composite Higgs sectors; (ii) One charged
under the EW symmetry; (iii) An underlying strong dynamics mixing the
two sectors. An explicit realization is UMT [130].

Consider an asymptotically free gauge theory having sufficient matter
to posses, at least, two independent non-Abelian global symmetries spon-
taneously breaking, in the infrared, to two subgroups. One of the initial
symmetries (or both) must contain the EW one in order to drive EW sym-
metry breaking. The Goldstones which are not eaten by the longitudinal
components of the weak gauge bosons receive masses from other, unspeci-
fied, sectors. The analysis done in [140] is sufficiently general that one needs
not to specify such sectors.

Let us denote with I and I I the two non-Abelian global symmetries. They
are broken at low temperatures and restored at very high temperatures. The
restoration of each symmetry will typically happen at two different critical
temperatures. We indicate with 〈HI〉 and 〈HI I〉 the thermal average of the
two condensates. The zero temperature physical masses MI and MI I of the
two composite Higgses together with β (measuring the mixing between the
two), as well as the collection of all the other couplings mixing the two
sectors constitute the parameters allowing us to make a qualitative picture
of the complex phase structure.

In Fig. 47 we present three possible versions of the two-dimensional phase
diagram as function of the temperature as well as one of the zero-temperature
masses of one of the Higgses (holding fixed the other). The three plots are
meant for three different strengths β of the mixing while keeping the other
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relevant parameters fixed. Four distinct regions are classified via the broken
versus unbroken number of global symmetries. To simplify the discussion
we are taking β to be the parameter controlling the mixing between the two
sectors. In fact, one should use the entire ensemble of parameters whose
associated operators mix the different sectors.

Let us describe the situation before embedding the EW symmetry within
any of the two non-Abelian global symmetries. We envision the following
possibilities: (i) The two sectors do not talk to each other (β = 0). In this
case the two PTs happen at different temperatures and do not interfere (left
panel). (ii) The two sectors do feel each other when β 6= 0. Possible phase
diagrams are depicted in the central and right panel of Fig. 47. In a generic

� ��

��

��

���

�

�

�

��

� ��

��

��

���

�

�

�

��

� ��

��

��

���

�

�

�

��

Fig. 47. Possible Phase Diagrams: Left panel: The two transitions do not feel each
other (β = 0). Central and right panels: The two transitions do interfere with each
other (β 6= 0).

strongly coupled theory the two global symmetries are bound to talk to each
other and hence the second possibility is the one expected. A new line can
develop (the dashed one depicted in the central and right panel) entirely
due to the interactions between the two sectors. This line allows several
new possible PTs. For example, according to the central phase diagram the
transition between two broken to two unbroken phases can occur at the same
critical temperature along the dashed line in theMI−T plane. What strikes
us as a very intriguing possibility is the pattern of PTs one can encounter
following the right panel phase diagram. Along the horizontal dashed arrow
line we have three subsequent PTs constituted by the first condensate being
melted twice and re-generated once while the second one melts only once.
We could also plot a diagram similar to the one in the right panel but with
the first vertex lower than the second one (with respect to MI). In fact,
more sophisticated PTs can occur.

Let us turn on the EW fields by gauging the relevant symmetries within,
for definitiveness, the first sector. There is no elementary SM Higgs but we
require the new strong dynamics to drive EW symmetry breaking. The units
of the dynamically generated scale of the new strong dynamics are now fixed
by the mass of the weak gauge bosons. Would the extra transition associated
to the right-panel diagram survive? What are the main effects of the SM on
the phase diagram? It would be very interesting if a complex PT structure
appears in technicolor-like extensions of the SM when the Universe reaches
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temperatures near the EW scale. Similar possibilities have been investigated
earlier in the case of the two Higgs doublet model [294]. The EW fields
will impinge on the PTs and the relevant degrees of freedom are the weak
gauge bosons and the SM fermions. The gauge fields couple via covariant
derivatives while the fermions communicate by means of effective Yukawa-
type interactions as proposed in Minimal Walking Technicolor (MWT) [16,
19]. In fact, the top quark has the major impact on the phase diagram due
to its very large Yukawa coupling.

Interestingly these generic feature are seen to appear when tested again
specific TC models of the type envisioned above [141].

Future analysis include the possible experimental observation of the new
type of electroweak phase transitions proposed above via, for example, grav-
itational waves experiments as well as first principle lattice simulations.

7. Conclusion

We introduced different topics related to the dynamical breaking of the
electroweak symmetry. We have also reported on the status of the phase
diagram for generic nonsupersymmetric gauge theories with fermionic mat-
ter obtained via analytic methods. We have also provided a novel analysis
of chiral gauge theories relevant for particle physics phenomenology mak-
ing use of a newly introduced chiral beta function. As a relevant example
for breaking the electroweak symmetry dynamically we introduced differ-
ent types of minimal conformal models of dynamical electroweak symmetry
breaking. We have also summarized a simple model of unparticle physics.
We discussed possible astroparticle physical applications and discussed the
electroweak phase transition in technicolor theories. A number of appen-
dices have been added to support the reader with group theoretical results,
notation and some needed technical information.

I thank the organizers of the LIX Cracow School of Theoretical Physics,
the Yukawa Institute for Theoretical Physics in Kyoto and the XXX
Elementary Particles and Fields Meeting in Brasil for providing a very nice
scientific environment. I am deeply indebted to M. Antola, S. Catterall,
L. Del Debbio, S. Di Chiara, D.D. Dietrich, R. Foadi, J. Giedt, M. Heikin-
heimo, M.T. Frandsen, C. Kouvaris, M. Järvinen, I. Masina, T.A. Ryttov,
J. Schechter, K. Tuominen and R. Zwicky, for pleasant fruitful collabora-
tions on the various topics presented in this review, comments and/or careful
reading of the manuscript.
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Appendix A

Exploring unification within technicolor

Although it is not a fundamental prerequisite of any specific extension
of the SM, it is a fact that unification of the SM couplings is an attractive
feature. It is, hence, instructive to investigate what happens to the SM
couplings when the Higgs sector is replaced with a new strongly coupled
theory à la technicolor [120].

We start by investigating the one-loop evolution of the SM couplings
once the SM Higgs is replaced by the MWT model. The evolution of the
coupling constant αn, at the one-loop level, of a gauge theory is controlled
by

α−1
n (µ) = α−1

n (MZ)− bn
2π

ln
(

µ

MZ

)
, (A.1)

where n refers to the gauge group being SU(n), for n ≥ 2 or U(1), for n = 1 .
The first coefficient of the beta function bn is

bn = 2
3T (r)Nwf + 1

3T (r′)Ncb − 11
3 C2(G) , (A.2)

where T (r) is the Casimir of the representation r to which the fermions
belong, T (r′) is the Casimir of the representation r′ to which the bosons
belong. Nwf and Ncb are respectively the number of Weyl fermions and the
number of complex scalar bosons. C2(G) is the quadratic Casimir of the
adjoint representation of the gauge group.

The SM gauge group is SU(3)×SU(2)×U(1). We have three associated
coupling constants which one can imagine to unify at some very high energy
scale MGUT. This means that the three couplings are all equal at the scale
MGUT, i.e. α3(MGUT) = α2(MGUT) = α1(MGUT) with α1 = α/(c2 cos2 θw)
and α2 = α/ sin2 θw, where c is a normalization constant to be determined
shortly.

Assuming one-loop unification using Eq. (A.1) for n = 1, 2, 3, one finds
the following relation

b3 − b2
b2 − b1 =

α−1
3 − α−1 sin2 θw

(1 + c2)α−1 sin2 θw − c2α−1
. (A.3)

In the above expressions the Weinberg angle θw, the electromagnetic cou-
pling constant α and the strong coupling constant α3 are all evaluated at the
Z mass. For a given particle content we shall denote the LHS of Eq. (A.3)
by Btheory and the RHS by Bexp. Whether Btheory and Bexp agree is a simple
way to check if the coupling constants unify. We shall use the experimen-
tal values sin2 θw(MZ) = 0.23150 ± 0.00016, α−1(MZ) = 128.936 ± 0.0049,
α3(MZ) = 0.119± 0.003 and MZ = 91.1876(21) GeV [295]. The unification
scale is given by the expression

MGUT = MZ exp
[
2π
α−1

2 (MZ)− α−1
1 (MZ)

b2 − b1

]
. (A.4)
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While the normalizations of the coupling constants of the two non-
Abelian gauge groups are fixed by the appropriately normalized generators
of the gauge groups, the normalization of the Abelian coupling constant is
a priori arbitrary. The normalization of the Abelian coupling constant can
be fixed by a rescaling of the hypercharge Y → cY along with g → g/c .
The normalization constant c is chosen by imposing that all three coupling
constants have a common normalization

Tr
(
c2Y 2

)
= Tr

(
T 2

3

)
, (A.5)

where T3 is the generator of the weak isospin and the trace is over all the
relevant fermionic particles on which the generators act. It is sufficient to fix
it for a given fermion generation (in a complete multiplet of the unification
group).

The previous normalization is consistent with an SU(5)-type normaliza-
tion for the generators of U(1) of hypercharge, SU(2)L and SU(3)c .

As well explained in the paper by Li and Wu [296]: At one-loop a contri-
bution to b3− b2 or b2− b1 emerges only from particles not forming complete
representations27 of the unified gauge group. For example the gluons, the
weak gauge bosons and the Higgs particle of the SM do not form complete
representations of SU(5) but ordinary quarks and leptons do. Here we mean
that these particles form complete representations of SU(5), all the way from
the unification scale down to the electroweak scale. The particles not form-
ing complete representations will presumably join at the unification scale
with new particles and together then form complete representations of the
unified gauge group. Note, that although there is no contribution to the
unification point of the particles forming complete representations, the run-
ning of each coupling constant is affected by all of the particles present at
low energy.

Dis-unification in SM
As a warm up, we consider the SM with Ng generations. In this case we

find c =
√

3/5, which is the same value one finds when the hypercharge is
upgraded to one of the generators of SU(5), and therefore the beta function
coefficients are

b3 = 4
3Ng − 11 , (A.6)

b2 = 4
3Ng − 22

3 + 1
6︸︷︷︸

Higgs

, (A.7)

b1 = 3
5

(
20
9 Ng + 1

6

)
= 4

3Ng + 1
10︸︷︷︸

Higgs

. (A.8)

27 Such as the five and the ten dimensional representation of the unifying gauge group
SU(5).
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Here Ng is the number of generations. It is clear that the SM does not
unify since Btheory ∼ 0.53 while Bexp ∼ 0.72 .

Note that the spectrum relevant for computing Btheory is constituted by
the gauge bosons and the standard model Higgs. The contribution of quarks
and leptons drops out in agreement with the fact that they form complete
representations of the unifying gauge group which, given the present nor-
malization for c, is at least SU(5). Hence the predicted value of Btheory is
independent of the number of generations. However the overall running for
the three couplings is dependent on the number of generations and in Fig. 48
we show the behavior of the three couplings with Ng = 3.

Fig. 48. The running of the three SM gauge couplings.

Studying SU(3)× SU(2)× U(1) unification in MWT
Here we compare a few examples in which the SM Higgs is replaced

by a technicolor-like theory. A similar analysis was performed in [116]. In
this section we press on phenomenological successful technicolor models with
technimatter in higher dimensional representations and demonstrate that the
simplest model helps unifying the SM couplings while other more traditional
approaches are less successful. We also show that by a small modification
of the technicolor dynamics, all of the four couplings can unify28.

We examine what happens to the running of the SM couplings when
the Higgs sector is replaced by the MWT theory introduced earlier. This
model has technicolor group SU(2) with two techniflavors in the two-index
symmetric representation of the technicolor group. As already mentioned to
avoid Witten’s SU(2) anomaly, the minimal solution is to add a new lepton

28 Since the technicolor dynamics is strongly coupled at the electroweak scale the last
point on the unification of all of the couplings is meant to be only illustrative.
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family. We still assume an SU(5)-type unification leading to c2 = 3/5. The
beta function coefficients will be those of the SM minus the Higgs plus the
extra contributions from the techniparticles, ergo

b3 = 4
3Ng − 11 , (A.9)

b2 = 4
3Ng − 22

3 + 2
3

1
2

(
2(2+1)

2 + 1
)

= 4
3 (Ng + 1)− 22

3 , (A.10)

b1 = 3
5

(
20
9 Ng + 20

9

)
= 4

3 (Ng + 1) , (A.11)

where Ng is the number of ordinary SM generations. From this we see that
Btheory = 0.68 and Bexp = 0.72 and hence argue that we have a better
unification than in the SM with an elementary Higgs. The running of the
SM couplings is shown in Fig. 49 for three ordinary SM generations. Note

Fig. 49. The running of the SM gauge couplings in the presence of adjoint tech-
nifermions (the technicolor coupling is not included here).

that the increase in Btheory with respect to the SM is due to the fact that,
typically, bosonic contributions are numerically suppressed with respect to
fermionic ones and that, while b1 − b2 = 22/3 receives only a contribution
from the gauge sector, b2 − b3 = 11/3 + 4/3 has two contributions, a gauge
one and a fermionic one. These results are a direct consequence of the fact
that we have no ordinary quarks related to the new leptonic family.

The technicolor coupling constant

Until now we have not discussed the technicolor coupling constant αTC.
It is possible that the technicolor interaction does not unify with the other
three forces or unifies later. A single step unification is though esthetically
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more appealing to us. Remembering that the Casimir of the two-index
symmetric representation of SU(NTC) is (NTC + 2)/2 the first coefficient of
the beta function bTC is easily found to be

bTC = 2
3(NTC + 2)Nf − 11

3 NTC , (A.12)

where NTC is the number of technicolors and Nf is the number of techni-
flavors. For two colors and two flavors we find bTC = −2. Observing that,
somewhat accidentally, also b2 = −2 for three ordinary SM generations, we
conclude that the technicolor coupling constant cannot unify with the other
three couplings at the same point. We are assuming, quite naturally, that
the low energy starting points of α2 and αTC are different.

Insisting that the technicolor coupling constant must unify with the other
coupling constants atMGUT, we need to modify at a given scale X < MGUT

either the overall running of the SM couplings or the one of technicolor. To
make less steep the running of the SM couplings one could add new gener-
ations. To avoid the loss of asymptotic freedom for the week coupling we
find that at most only one entire new SM like generation can be added at
an intermediate scale. If we, however, choose not to modify the running of
the SM coupling constants, the running of the technicolor coupling constant
must at some point X < MGUT become steeper. This can be achieved by
enhancing the number of technigluons and lowering the contribution due to
the techniquarks at the scale X. An elegant way to implement this idea
is to imagine that the techniquarks — belonging to the three dimensional
two-index symmetric representation of SU(2) — are embedded in the fun-
damental representation of SU(3) at the scale X. At energies below X we
have b<XTC = −2 and for energies larger than X we have b>XTC = −29/3. If
we take the technicolor coupling to start running at the electroweak scale
MEW ∼ 246 GeV and unifying with the three SM couplings at the unification
scale we find an expression for the intermediate scale X

lnX =
1

b<XTC − b>XTC

{
2π
(
α−1

TC(MEW)− α−1
TC(MGUT)

)
+b<XTC lnMEW − b>XTC lnMGUT

}
. (A.13)

If we take the starting point of the running of the technicolor coupling to be
the critical coupling close to the conformal window we have αTC(MEW) =
π/(3C2(��)) = π/6. Also using the numbers αTC(MGUT) = αi(MGUT) ∼
0.026 , i = 1, 2, 3, MGUT ∼ 9.45× 1012 GeV we find the intermediate scale to
be X ∼ 830 GeV.

Proton decay

Grand Unified Theories lead, generally, to proton decay. Gauge bosons
of massMV < MGUT are responsible for the decay of the proton into π0 and
e+. The lifetime of the proton is estimated to be [256]
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τ =
4f2
πM

4
V

πmpα2
GUT (1 +D + F )2 α2

N

[
A2
R + (1 + |Vud|2)2A2

L

]
=
(

MGUT

1016 GeV

)4
(
α−1

GUT

35

)2(
0.015 GeV3

αN

)2( 2
A
)2

2.7× 1035 yr ,

(A.14)

where we have used fπ = 0.131GeV, the chiral Lagrangian factor 1+D+F =
2.25, the operator renormalization factors A ≡ AL = AR and the hadronic
matrix element is taken from lattice results [297] to be αN = −0.015GeV3.
Following Ross [298], we have estimated A ∼ 2 but a larger value ∼ 5 is
quoted in [256] . The lower bound on the unification scale comes from the
Super Kamiokande limit τ > 5.3× 1033 yr [299]

MGUT > MV >

(
35

α−1
GUT

)1/2(
αN

−0.015 GeV3

)1/2(A
2

)1/2

3.7× 1015 GeV .

(A.15)
In the MWT model extension of the SM we find α−1

GUT ∼ 37.5 and
MGUT ∼ 1013 GeV yielding too fast proton decay.

Constructing an unifying group
We provide a simple embedding of our matter content into a unifying

gauge group. To construct this group we first summarize the charge assign-
ments in Table XIII. For simplicity we have considered right transforming
leptons only for the charged ones. Also, the techniquarks are classified as
being fundamentals of SO(3) rather than adjoint of SU(2). Except for topo-
logical differences, linked to the center group of the two groups, there is no
other difference. This choice allows us to show the resemblance of the techni-
color fermions with ordinary quarks. We can now immediately arrange each
SM family within an ordinary SU(5) gauge theory. The relevant question is
how to incorporate the technicolor sector (here we mean also the new Lep-
ton family). An easy way out is to double the weak and hypercharge gauge
groups as described in Table XIV. This assignment allows us to arrange the
low energy matter fields into complete representations of SU(5)× SU(5). To
recover the low energy assignment one invokes a spontaneous breaking of the
group down to SO(3)TC × SUc(3) × SUL(2) × UY (1) 29. We summarize in
Table XV the technicolor and SM fermions transformation properties with
respect to the grand unified group. Here the fields A and F are standard

29 To achieve such as a spontaneous breaking of the gauge group one needs new matter
fields around or slightly above the grand unified scale transforming with respect to
both the gauge groups.
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TABLE XIII

Quantum numbers of the MWT + one SM family.

SOTC(3) SUc(3) SUL(2) UY (1)

qL 1 3 2 1/6
uR 1 3 1 2/3
dR 1 3 1 −1/3
L 1 1 2 −1/2
eR 1 1 1 −1

QL 3 1 2 1/6
UR 3 1 1 2/3
DR 3 1 1 −1/3
LL 1 1 2 −1/2
ζR 1 1 1 −1

Weyl fermions and the gauge couplings of the two SU(5) groups need to be
the same. We have shown here that it is easy to accommodate all of the
matter fields in a single semi-simple gauge group. This is a minimal em-
bedding and others can be envisioned. New fields must be present at the
grand unified scale (and hence will not affect the running at low energy)
guaranteeing the desired symmetry breaking pattern.

We have not yet considered the problem of how the ordinary fermions
acquire mass. We parametrize our ETC, or better our ignorance about
a complete ETC theory, with the (re)introduction of a single Higgs type

TABLE XIV

MWT + one SM family enlarged gauge group.

SOTC(3) SU1(2) U1(1) SUc(3) SU2(2) U2(1)

qL 1 1 0 3 2 1/6
uR 1 1 0 3 1 2/3
dR 1 1 0 3 1 −1/3
L 1 1 0 1 2 −1/2
eR 1 1 0 1 1 −1

QL 3 2 1/6 1 1 0
UR 3 1 2/3 1 1 0
DR 3 1 −1/3 1 1 0
LL 1 2 −1/2 1 1 0
ζR 1 1 −1 1 1 0
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TABLE XV

GUT

SU(5) SU(5)

ĀSM 1 10
FSM 1 5

ĀMWT 10 1
FMWT 5 1

doublet on the top of the minimal walking theory whose main purpose is
to give mass to the ordinary fermions. This simple construction leads to
no flavor changing neutral currents and does not upset the agreement with
the precision tests which our MWT theory already passes brilliantly. We
are able to give mass to all of the fermions and the contribution to the beta
functions reads:

b3 = 4
3Ng − 11 , (A.16)

b2 = 4
3 (Ng + 1)− 22

3 + 1
6 , (A.17)

b1 = 4
3 (Ng + 1) + 1

10 , (A.18)

leading to
Btheory = 0.71 , (A.19)

a value which, at the one loop level, is even closer to the experimental value
of 0.72 than the original MWT theory alone. The unification scale is also
slightly higher than in MWT alone and it is of the order of 1.2× 1013 GeV.
The ETC construction presented above has already been used many times in
the literature [41, 42, 44, 47, 240, 241]. We find the results very encouraging.
We wish to add that the need for walking dynamics in the gauge sector
is important since it helps reducing the value of the S parameter which
is typically large even before taking into account the problems due to the
introduction of an ETC sector.

We wish to improve on the unification point (before taking into account
of possible ETC type corrections) and delay it, energy-wise, to avoid the
experimental bounds on the proton decay.

We hence need a minimal modification of our extension of the SM with
the following properties: (i) it is natural, i.e. it does not reintroduce the
hierarchy problem, (ii) it does not affect the working technicolor sector, (iii)
it allows for a straightforward unification with a resulting theory which is
asymptotically free, (iv) it yields a phenomenologically viable proton decay
rate and possibly leads also to dark matter candidates.

Point (i) forces us to add new fermionic-type matter while (ii) can be
satisfied by modifying the matter content of the SM per se. A simple thing to
do is to explore the case in which we consider adjoint fermionic matter for the
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strong and weak interactions. We will show that this is sufficient to greatly
improve the proton decay problem while also improving unification with
respect to the MWT theory. To be more specific, we add one colored Weyl
fermion transforming solely according to the adjoint representation of SU(3)
and a Weyl fermion transforming according to the adjoint representation
of SUL(2). These fermions can be identified with the gluino and wino in
supersymmetric extensions of the SM. The big hierarchy is still under control
in the present model.

Since our theory is not supersymmetric the introduced fermions need
not be degenerate with the associated gauge bosons. Their masses can be of
the order of, or larger than, the electroweak scale. Finally, naturality does
not forbid the presence of a fermion associated to the hypercharge gauge
boson and hence this degree of freedom may occur in the theory. Imagining
a unification of the value of the masses at the unification scale also requires
the presence of such a U(1) bino-type fermion.

In this case the one-loop beta function coefficients are

b3 = 4
3Ng − 11 + 2 , (A.20)

b2 = 4
3

(
Ng + 1

)− 22
3 + 4

3 , (A.21)

b1 = 4
3

(
Ng + 1

)
. (A.22)

This gives Btheory = 13/18 ∼ 0.72(2) which is in excellent agreement with
the experimental value. Note also that the unification scale is MGUT ∼
2.65 × 1015 GeV which brings the proton decay within the correct order of
magnitude set by experiments. In Fig. 50 we show the one loop running of

Fig. 50. The running of the three SM gauge couplings in the new model with also
adjoint fermionic matter for the SM gauge groups.
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Fig. 51. Left panel: A zoom around the unification point of the running of the
three SM gauge couplings in the new model with extra fermionic adjoint matter
for the SM gauge groups. Right panel: A zoom around the unification point for
the couplings in the MSSM.

the SM couplings in this case. In Fig. 51 we compare the one loop unification
of the SM coupling with the one in the Minimal Supersymmetric Standard
Model (MSSM).

We can make the technicolor coupling unify with the SM couplings, as
done in the MWT section. Using Eq. (A.13), we find now X ∼ 108 GeV. We
recall here that X is the scale above which our technicolor theory becomes
an SU(3) gauge theory with the fermions transforming according to the
fundamental representation.

It is phenomenologically appealing that the scale X is much higher than
the electroweak scale. This allows our technicolor coupling to walk for a
sufficiently large range of energy to allow for the introduction of extended
technicolor interactions needed to give masses to the SM particles.

Fig. 52. The running of the three SM gauge couplings as well as the technicolor
one. MWT is made to unify with the other three couplings by enhancing the gauge
group from SU(2) of technicolor to SU(3) while keeping the same fermionic matter
content. We see that the scale where this enhancement of the gauge group should
dynamically occur to obtain complete unification is around 108 GeV.



3710 F. Sannino

Unification of the SM gauge couplings is considered one of the strongest
points in favor of a supersymmetric extension of the SM and hence it is
reasonable to compare our results with the SUSY ones. In SUSY, one finds
Btheory = 0.714 which is remarkably close to the experimental value Bexp ∼
0.72 but it is not better than the value predicted in the present model which
is 0.72(2). Obviously this comparison must be taken with a grain of salt
since we still need to provide mass to the SM fermions and take care of the
threshold corrections.

There are three possible candidates for dark matter here, depending on
which one is the lightest one and on the extended technicolor interactions
which we have not yet specified: The chargeless fermion in the adjoint rep-
resentation of SU(2)L, i.e. the wino-like object as well as the bino-type one.
The third possibility is the heavy neutrino-like fermion whose dark matter
potential features are being currently investigated [138].

We have introduced a technicolor model which leads to the unification of
the SM gauge couplings. At the one-loop level the model provides a higher
degree of unification when compared to other technicolor models and to the
minimal supersymmetric extension of the SM.

The phenomenology, both for collider experiments and cosmology, of the
present extension of the SM is very rich and needs to be explored in much
detail.

The model has many features in common with split and non-split super-
symmetry [255,256] and also with models proposed in [300,301] while others
in common with technicolor.

Appendix B

Basic group theory relations

The Dynkin indices label the highest weight of an irreducible represen-
tation and uniquely characterize the representations. The Dynkin indices
for some of the most common representations are given in Table XVI. For
details on the concept of Dynkin indices see, for example [302,303].

TABLE XVI

Examples for Dynkin indices for some common representations.

Representation Dynkin indices

singlet (000. . . 00)
fundamental (F ) (100. . . 00)

antifundamental (F̄ ) (000. . . 01)
adjoint (G) (100. . . 01)

n-index symmetric (Sn) (n00. . . 00)
2-index antisymmetric (A2) (010. . . 00)
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For a representation, R, with the Dynkin indices (a1, a2, . . . , aN−2, aN−1)
the quadratic Casimir operator reads [304]

2N C2(R) =
N−1∑
m=1

[N(N −m)mam +m(N −m)am2

+
m−1∑
n=0

2n(N −m)anam] , (B.1)

and the dimension of R is given by

d(R) =
N−1∏
p=1

 1
p!

N−1∏
q=p

 p∑
r=q−p+1

(1 + ar)

 , (B.2)

which gives rise to the following structure

d(R) = (1 + a1)(1 + a2) . . . (1 + aN−1)

×(1 + a1+a2
2 ) . . . (1 + aN−2+aN−1

2 )

×
(

1 +
a1 + a2 + a3

3

)
. . .

(
1 +

aN−3 + aN−2 + aN−1

3

)
× · · · ×
×
(

1 +
a1 + · · ·+ aN−1

N − 1

)
. (B.3)

The Young tableau associated to a given Dynkin index (a1, a2, . . . ,
aN−2, aN−1) is easily constructed. The length of row i (that is the number
of boxes per row) is given in terms of the Dynkin indices by the expression
ri =

∑N−1
i ai. The length of each column is indicated by ck; k can assume

any positive integer value. Indicating the total number of boxes associated
to a given Young tableau with b one has another compact expression for
C2(R),

2N C2(R) = N

[
bN +

∑
i

r2
i −

∑
i

c2
i −

b2

N

]
, (B.4)

and the sums run over each column and row.

Realization of the generators for MWT
It is convenient to use the following representation of SU(4)

Sa =
(

A B

B† −AT

)
, Xi =

(
C D

D† CT

)
, (B.5)
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where A is hermitian, C is hermitian and traceless, B = −BT and D = DT.
The S are also a representation of the SO(4) generators, and thus leave the
vacuum invariant SaE + ESaT = 0 . Explicitly, the generators read

Sa =
1

2
√

2

(
τa 0
0 −τaT

)
, a = 1, . . . , 4 , (B.6)

where a = 1, 2, 3 are the Pauli matrices and τ4 = 1. These are the generators
of SUV (2)×UV (1).

Sa =
1

2
√

2

(
0 Ba

Ba† 0

)
, a = 5, 6 , (B.7)

with
B5 = τ2 , B6 = iτ2 . (B.8)

The rest of the generators which do not leave the vacuum invariant are

Xi =
1

2
√

2

(
τ i 0
0 τ iT

)
, i = 1, 2, 3 , (B.9)

and

Xi =
1

2
√

2

(
0 Di

Di† 0

)
, i = 4, . . . , 9 , (B.10)

with
D4 = 1 , D6 = τ3 , D8 = τ1 ,
D5 = i1 , D7 = iτ3 , D9 = iτ1 .

(B.11)

The generators are normalized as follows

Tr
[
SaSb

]
= 1

2δ
ab , Tr

[
XiXj

]
= 1

2δ
ij , Tr

[
XiSa

]
= 0 . (B.12)

TABLE XVII

Field content.

G G ′

M R 1
N
Aµ 1 Adj
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Appendix C

Vector mesons as gauge fields

We show how to rewrite the vector meson Lagrangian in a gauge invariant
way. We assume the scalar sector to transform according to a given but
otherwise arbitrary representation of the flavor symmetry group G. This
is a straightforward generalization of the Hidden Local Gauge symmetry
idea [305, 306], used in a similar context for the BESS models [238]. At
the tree approximation this approach is identical to the one introduced first
in [307,308].

Introducing vector mesons
Let us start with a generic flavor symmetry group G under which a scalar

field M transforms globally in a given, but generic, irreducible representa-
tion R. We also introduce an algebra valued one-form A = Aµdxµ taking
values in a copy of the algebra of the group G, call it G ′, i.e.

Aµ = AaµT
a , with T a ∈ A(G ′) . (C.1)

At this point the full group structure is the semisimple group G × G ′. M
does not transform under G ′. Given that M and A belong to two different
groups we need another field to connect the two. We henceforth introduce
a new scalar field N transforming according to the fundamental of G and
to the antifundamental of G ′. We then upgrade A to a gauge field over G ′.
The covariant derivative for N is:

DµN = ∂µN + i g̃ N Aµ . (C.2)

We now force N to acquire the following vev〈
N i
j

〉
= δij v

′ , (C.3)

which leaves the diagonal subgroup — denoted with GV — of G×G ′ invari-
ant. Clearly GV is a copy of G. Note that it is always possible to arrange a
suitable potential term for N leading to the previous pattern of symmetry
breaking. v/v ′ is expected to be much less than one and the unphysical
massive degrees of freedom associated to the fluctuations of N will have
to be integrated out. The would-be Goldstone bosons associated to N will
become the longitudinal components of the massive vector mesons.

To connect A to M we define the one-form transforming only under G
via N which — in the deeply spontaneously broken phase of N — reads:

Tr
[
NN †

]
dim(F )

Pµ =
DµNN

† −NDµN
†

2 ig̃
, Pµ → uPµu

† , (C.4)
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with u being an element of G and dim(F ) the dimension of the fundamental
representation of G. When evaluating Pµ on the vev for N we recover Aµ:

〈Pµ〉 = Aµ . (C.5)

At this point it is straightforward to write the Lagrangian containing N ,
M and A and their self-interactions. Being in the deeply broken phase of
G×G ′ down to GV we count N as a dimension zero field. This is consistent
with the normalization for Pµ.

The simplest30 kinetic term of the Lagrangian is:

Lkinetic = −1
2Tr [FµνFµν ] + 1

2Tr
[
DNDN †

]
+ 1

2Tr
[
∂M∂M †

]
. (C.6)

The second kinetic term will provide a mass to the vector mesons. Besides
the potential terms for M and N there is another part of the Lagrangian
which is of interest to us. This is the one mixing P andM . Up to dimension
four and containing at most two powers of P and M this is:

LP−M = g̃2 r1 Tr
[
PµP

µMM †
]

+ g̃2 r2 Tr
[
PµMPµTM †

]
+i g̃ r3 Tr

[
Pµ

(
M(DµM)† − (DµM)M †

)]
+g̃2 sTr [PµPµ] Tr

[
MM †

]
. (C.7)

The dimensionless parameters r1, r2, r3, s parameterize the strength of the
interactions between the composite scalars and vectors in units of g̃, and
are therefore expected to be of order one. We have assumed M to belong
to the two index symmetric representation of a generic G = SU(N). It is
straightforward to generalize the previous terms to the case of an arbitrary
representation R with respect to any group G. Further higher derivative
interactions including N can be included systematically.

Further gauging of G
In this case we add another gauge field Gµ taking values in the algebra

of G. We then define the correct covariant derivatives for M and N . For N ,
for example, we have:

DµN = ∂µN − i g GµN + i g̃ N Aµ . (C.8)

Evaluating the previous expression on the vev of N we recover the field Cµ
introduced in the text. To be more precise we need to use Pµ again but with
the covariant derivative for N replaced by the one in the equation above.

30 Another nonminimal term is Tr
ˆ
NFN†M(NFN†)TM†

˜
.
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TABLE XVIII

Field content.

G G ′

M R 1
N
Aµ 1 Adj
Gµ Adj 1

Appendix D

The topological terms and massive spin one states

In the previous section we introduced the vector mesons as gauge bosons
of a fake new gauge symmetry and provided a mass term resorting to an
Higgsing procedure. In fact, this symmetry does not exist and there is no
notion of a minimal way to break it. If all the terms are included correctly
one recovers, de facto, a non-renormalizable Lagrangian for vector mesons
preserving only the correct global flavor symmetries of the problem. This, of
course, is true also for the terms involving vectors, pions and the space-time
εµνρσ structure. This correct way to proceed was already suggested some
time ago in [244]. We will review here the salient points on the analysis done
in [244].

The ε terms for SU(Nf )× SU(Nf )
We construct an effective Lagrangian which manifestly possesses the

global symmetry SUL(Nf ) × SUR(Nf ) of the underlying theory. We as-
sume that chiral symmetry is broken according to the standard pattern
SUL(Nf ) × SUR(Nf ) → SUV (Nf ). The N2

f − 1 Goldstone bosons are en-
coded in the Nf ×Nf matrix U transforming linearly under a chiral rotation

U → uLUu
†
R , (D.1)

with uL/R ∈ SUL/R(Nf ). U satisfies the non linear realization constraint
UU † = 1. We also require detU = 1. In this way we avoid discussing the
axial UA(1) anomaly at the effective Lagrangian level (see Ref. [307–309] for
a general discussion of anomalies). We have

U = eiΦ/v , (D.2)

with Φ =
√

2ΦaT a representing the N2
f − 1 Goldstone bosons. T a are the

generators of SU(Nf ), with a = 1, . . . , N2
f − 1 and Tr

[
T aT b

]
= 1

2δ
ab. v is

the vacuum expectation value.
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As done above we enlarge the spectrum of massive particles including
vector and axial-vector fields AµL/R = Aµ,aL/RT

a31.
The Wess–Zumino [310] action is the first example of ε term. It can be

compactly written using the language of differential forms. It is useful to
introduce the Maurer–Cartan one forms:

α = (∂µU)U−1 dxµ ≡ (dU)U−1 , β = U−1dU = U−1αU . (D.3)

α and β are algebra valued one forms and transform, respectively, under the
left and right SU(Nf ) flavor group. The Wess–Zumino effective action is

ΓWZ [U ] = C

∫
M5

Tr
[
α5
]
. (D.4)

The price to pay in order to make the action local is to augment by one
the space dimensions. Hence the integral must be performed over a five-
dimensional manifold whose boundary (M4) is the ordinary Minkowski space.
The constant C is fixed to be

C = −i N

240π2
, (D.5)

by comparing the current algebra prediction for the time honored process
π0 → 2γ with the amplitude predicted using Eq. (D.4) once we gauge the
electromagnetic sector of the Wess–Zumino term, and N is the number of
colors.

We now consider ε type terms involving the vector and axial-vector par-
ticles. As for the non ε part of the Lagrangian we first gauge the WZ term
under the SUL(Nf )× SUR(Nf ) chiral symmetry group. This procedure au-
tomatically induces new ε terms [307–309,311,312], leading to the following
Lagrangian,

ΓWZ [U, AL, AR] = ΓWZ [U ] + 5Ci
∫
M4

Tr
[
ALα

3 +ARβ
3
]

−5C
∫
M4

Tr [(dALAL+ALdAL)α+(dARAR+ARdAR)β]

+5C
∫
M4

Tr
[
dALdUARU

−1 − dARdU−1ALU
]

31 We rescale A by the coupling constant g̃.
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+5C
∫
M4

Tr
[
ARU

−1ALUβ
2 −ALUARU−1α2

]
+

5C
2

∫
M4

Tr
[
(ALα)2 − (ARβ)2

]
+ 5Ci

∫
M4

Tr
[
A3
Lα+A3

Rβ
]

+5Ci
∫
M4

Tr
[
(dARAR +ARdAR)U−1ALU

−(dALAL +ALdAL)UARU−1
]

+5Ci
∫
M4

Tr
[
ALUARU

−1ALα+ARU
−1ALUARβ

]
+5C

∫
M4

Tr
[
A3
RU
−1ALU −A3

LUARU
−1

+1
2(UARU−1AL)2

]− 5Cr
∫
M4

Tr
[
FLUFRU

−1
]
. (D.6)

Here the two-forms FL and FR are defined as FL = dAL − iA2
L and FR =

dAR − iA2
R with the one form AL/R = AµL/Rdxµ. The previous Lagrangian,

when identifying the vector fields with true gauge vectors, correctly saturates
the underlying global anomalies.

The last term in Eq. (D.6) is a gauge covariant term which can always be
added if parity is not imposed. The last term in Eq. (D.6) is not invariant
under parity, so the parameter r must vanish. All the other terms are related
by gauge invariance.

Imposing just global chiral invariance, together with P and C, the pre-
vious Lagrangian has ten unrelated terms [244]:

ΓWZ [U, AL, AR] = ΓWZ [U ] + 5c1i

∫
M4

Tr
[
ALα

3 +ARβ
3
]

+5c2

∫
M4

Tr [(dALAL+ALdAL)α+(dARAR+ARdAR)β]

−5c3

∫
M4

Tr
[
dALdUARU

−1 − dARdU−1ALU
]
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−5c4

∫
M4

Tr
[
ARU

−1ALUβ
2 −ALUARU−1α2

]
−5c5

2

∫
M4

Tr
[
(ALα)2−(ARβ)2

]
+5c6i

∫
M4

Tr
[
A3
Lα+A3

Rβ
]

+5c7i

∫
M4

Tr
[
(dARAR +ARdAR)U−1ALU

−(dALAL +ALdAL)UARU−1
]

+5c8i

∫
M4

Tr
[
ALUARU

−1ALα+ARU
−1ALUARβ

]
−5c9

∫
M4

Tr
[
A3
RU
−1ALU −A3

LUARU
−1
]

−5c10

2

∫
M4

Tr
[
(UARU−1AL)2

]
, (D.7)

where the c-coefficients are imaginary. We see that while the gauging pro-
cedure of the Wess–Zumino term automatically generates a large number of
ε terms, it does not guarantee that we have uncovered all terms consistent
with chiral, P and C invariance. Indeed there is still one new single trace
term [244] to add to the action:

c11i

∫
M4

Tr
[
A2
L

(
UARU

−1α− αUARU−1
)
+A2

R

(
U−1ALUβ − βU−1ALU

)]
,

(D.8)
and c11 is an imaginary coefficient. Imposing invariance under CP has been
very useful to reduce the number of possible ε terms. For example it is easy
to verify that a term of the type Tr

[
dAL

(
UARU

−1
)2] is CP odd.

In Appendix A of [244] we provided a general proof that all the dimension
four (i.e. 4-derivative) terms involving the Lorentz tensor εµνρσ, which are
consistent with global chiral symmetries as well as C and P invariance, are
the ones presented in Eq. (D.7) and Eq. (D.8).

The ε terms for SU(2Nf )
We consider now fermions in a pseudoreal representation, for example

SU(2) technicolor with Nf fermions in the fundamental representation. The
global symmetry group is SU(2Nf ) and if chiral symmetry breaking occurs
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we expect it to break to Sp(2Nf ). We divide the generators T of SU(2Nf ),
normalized according to Tr

[
T aT b

]
= 1

2δ
ab, into two classes. We call the

generators of Sp(2Nf ) {Sa} with a = 1, . . . , 2N2
f + Nf , and the remaining

SU(2Nf ) generators (parameterizing the quotient space SU(2Nf )/Sp(2Nf ))
{Xi} with i = 1, . . . , 2N2

f −Nf − 1.
This breaking pattern gives 2N2

f −Nf − 1 Goldstone bosons, encoded in
the antisymmetric matrix U ij and i, j = 1, . . . , 2Nf as follows:

U = ei
Π iXi

v E , (D.9)

where the Nf ×Nf matrix E is

E =
(

0 1
−1 0

)
. (D.10)

U transforms linearly under a chiral rotation

U → uU uT , (D.11)

with u ∈ SU(2Nf ). The non linear realization constraint, UU † = 1, is auto-
matically satisfied.

The generators of the Sp(2Nf ) satisfy the following relation,

ST E + E S = 0 , (D.12)

while the Xi generators obey,

XT = EX ET , (D.13)

Using this last relation we can easily demonstrate that UT = −U . We also
require

Pf U = 1 , (D.14)

avoiding in this way to consider the explicit realization of the underlying
axial anomaly at the effective Lagrangian level.

We define the following vector field

Aµ = AaµT
a , (D.15)

which formally transforms under a SU(2Nf ) rotation as

Aµ → uAµu
† − i∂µuu† . (D.16)

We generate the ε terms following the same procedure used for the
SUL(Nf ) × SUR(Nf ) global symmetry case. First we introduce the one
form
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α = (dU)U−1 . (D.17)

It is sufficient to define only α since the analog of β = U−1dU = αT is now
not an independent form. The Wess–Zumino action term is:

Γ̃WZ [U ] = C

∫
M5

Tr
[
α5
]
, (D.18)

where again we are integrating on a five dimensional manifold and C =
−i 2

240π2 for N = 2. We are considering here an SU(2) underlying gauge
theory with fermions in the fundamental representation.

We now gauge the Wess–Zumino action under the SU(2Nf ) chiral sym-
metry group. This procedure provides single trace ε terms involving vector,
axial and Goldstones with an universal coupling C. The gauged CP invariant
Wess–Zumino term is

Γ̃WZ [U, A] = Γ̃WZ [U ] + 10Ci
∫
M4

Tr
[
Aα3

]
−10C

∫
M4

Tr [(dAA+AdA)α]

−5C
∫
M4

Tr
[
dAdUATU−1 − dATdU−1AU

]
−5C

∫
M4

Tr [UATU−1(Aα2 + α2A)]

+5C
∫
M4

Tr
[
(Aα)2

]
+ 10C i

∫
M4

Tr
[
A3α

]
+10Ci

∫
M4

Tr
[
(dAA+AdA)UATU−1

]
−10Ci

∫
M4

Tr
[
AαAUATU−1

]
+10C

∫
M4

Tr
[
A3UATU−1 + 1

4(AUATU−1)2
]
, (D.19)

where A = Aµdxµ. The previous Lagrangian must be generalized to be only
globally invariant under a chiral rotation and invariant under CP and one
obtains [244].
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Γ̃WZ [U, A] = Γ̃WZ [U ] + C1i

∫
M4

Tr
[
Aα3

]
−C2

∫
M4

Tr [(dAA+AdA)α]

−C3

∫
M4

Tr
[
dAdUATU−1 − dATdU−1AU

]
−C4

∫
M4

Tr [UATU−1(Aα2 + α2A)]

+C5

∫
M4

Tr
[
(Aα)2

]
+ C6i

∫
M4

Tr
[
A3α

]
+C7i

∫
M4

Tr
[
(dAA+AdA)UATU−1

]
−C8i

∫
M4

Tr
[
AαAUATU−1

]
+ C9

∫
M4

Tr
[
A3UATU−1

]
+C10

∫
M4

Tr
[
(AUATU−1)2

]
+C11i

∫
M4

Tr
[
A2(αUATU−1 − UATU−1α)

]
, (D.20)

where Ci are imaginary. The last term is a new term not generated by
gauging the Wess–Zumino effective action.

At this point the application to extensions of the SM featuring chiral
dynamics is straightforward. Summarizing, the SM gauge bosons, being
true gauge fields, must be introduced via the correct gauging of the Wess–
Zumino term. Any other spin one field which is not a gauge degree of freedom
must be introduced in the manner presented above, i.e. allowing for a very
general form of the interactions with the Goldstone bosons featuring an
ε tensor. Often, in literature, spin-one non-gauge degrees of freedom are
introduced again as gauge degrees of freedom (see for example [313]). This
latter procedure can be considered as a simple phenomenological approach.
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Appendix E

Spectrum of strongly coupled theories: higgsless versus higgsful theories

Often, in the literature, a number of incorrect statements are made when
discussing the spectrum of technicolor theories. Here we will try to clarify
first the situation in QCD and then show how to use new analytic means to
gain control over the spectrum of strongly coupled theories with fermions in
higher dimensional representations.

One approach is based on studying the theory in the large number of
colors (N) limit [29,30]. At the same time one may obtain more information
by requiring the theory to model the (almost) spontaneous breakdown of
chiral symmetry [314,315]. A standard test case, for ordinary QCD, is pion
pion scattering in the energy range up to about 1 GeV. Some time ago,
an attempt was made [316, 317] to implement this combined scenario. We
used pion pion scattering to provide some insight on the low lying hadronic
spectrum of QCD.

Before turning to the spectrum of the lightest composite states in QCD
we offer a simple definition of Higgsless theory: If the composite state with
the same quantum numbers of the Higgs is not the lightest particle in the
spectrum after the Goldstones then the theory is Higgsless. In practice we
will use the massive spin one states to compare the mass of the composite
Higgs with.

The lightest composite scalars in QCD
The scalar sector of QCD and any technicolor theory constitutes a com-

plicated sector. For QCD, in [318], using the ’t Hooft large N limit, chiral
dynamics and unitarity constraints the f0(600) resonance mass was found
to be around 550 MeV. Other authors [319–321] have found similar results.
Such a low value would make it different from a p-wave quark–antiquark
state, which is expected to be in the 1000–1400 MeV range. We assume
then that it is a four quark state (glueball states are expected to be in the
1.5 GeV range from lattice investigations). Four quark states of diquark–
quark type [322,323] and meson–meson type [324] have been discussed in the
literature for many years. Accepting this picture, however, poses a problem
for the accuracy of the large N inspired description of the scattering since
four quark states are predicted not to exist in the large N limit of QCD. We
shall take the point of view that a four quark type state is present since it
allows a natural fit to the low energy data. In practice, since the parameters
of the pion contact and rho exchange contributions are fixed, the sigma is
the most important one for fitting and fits may even be achieved [325] if the
vector meson piece is neglected. However the well established, presumably
four quark type, f0(980) resonance must be included to achieve a fit in the
region just around 1 GeV.

There is by now a fairly large literature on the effect of light “exotic”
scalars in low energy meson meson scattering. There seems to be a consen-
sus, arrived at using rather different approaches (keeping however, unitar-
ity), that the sigma exists.
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Here we use two large N limits of QCD as well as our information on
the low lying spectrum of QCD to extract information on the spectrum of
the lightest states for strongly coupled theories with fermions in various
representations of the underlying strongly coupled gauge group. Lifting the
strongly coupled scale to the electroweak one for theories with underlying
fermions in two index representations we will show that the light scalar with
the same quantum numbers of the Higgs is lighter than the lightest techni-
vector meson.

Scalars in the ’t Hooft large N : Higgsless theories
We concentrate on the lightest scalar f0(600) and on the vector meson

ρ(770). The qq̄ nature of the vector meson is clear. This means that its
mass does not scale with the number of colors while its width decrease as
1/N . We argued above that f0(600) is a multiquark state. In this case its
mass scales with a positive power of N and its width remains constant or
grows with N . In formulae:

m2
ρ ∼ Λ2

QCD , Γρ ∼ 1
N
, (E.1)

m2
f0
∼ NpΛ2

QCD , Γf0 ∼ N q , (E.2)

with p > 0 and q > −1.
Scaling up these results to the electroweak theory is straightforward. We

first generalize the number of technidoublets gauged under the electroweak
theory as well the number of technicolors NTC, holding fixed the weak scale
we have:

MTρ =
√

2vweak

Fπ

√
3√

NDNTC
mρ , (E.3)

MTf0 =
√

2vweak

Fπ
√
ND

(
NTC√

3

) p−1
2

mf0 , (E.4)

where ND is the number of doublets, vweak is the electroweak scale and the
extra

√
2 is due to our normalization of the pion decay constant. Note that

for p = 0 and q = −1 the f0(600) would scale like the ρ and would then be
regarded as a quark–antiquark meson at largeN . However, as we mentioned,
there are, by now, strong indications that this state is not of qq̄ nature and
hence p > 0 and q > −1.

Let us choose for definitiveness p = 1. Already for NTC ∼ 6, for any
ND the scalar is heavier than the vector meson. Hence for fermions in the
fundamental representation of the technicolor theory we expect no scalars
lighter than the respective vector mesons for any NTC larger than or about
6 technicolors. It is hence fair to call these theories Higgsless. Note that the
previous statements may be altered if the theory features walking dynamics.
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Alternative large N limits
The previous results are in agreement with the common lore about the

light spectrum of QCD-like theories. Interestingly even if for N = 3 one
has a scalar state lighter than the lightest vector meson it becomes heav-
ier already for N > 6. Clearly the reason behind this is that, due to its
multiquark nature, the lightest state possesses different scaling properties
than the vector meson. The situation changes when we consider alternative
extensions of QCD using higher dimensional representations. At large N
different extensions capture different dynamical properties of QCD.

The two index antisymmetric fermions — link to QCD

Consider redefining the N = 3 quark field with color index A (and flavor
index not written) as

qA = 1
2εABCq

[B,C] , q[B,C] = −q[C,B] , (E.5)

so that, for example, q1 = q23 and similarly for the adjoint field, q̄1 = q̄23
etc. This is just a trivial change of variables. However for N > 3 the
resulting theory will be different since the two index antisymmetric quark
representation has N(N − 1)/2 rather than N color components. As was
pointed out by Corrigan and Ramond [326], who were mainly interested in
the problem of the baryons at large N , this shows that the extrapolation of
QCD to higher N is not unique. Further investigation of the properties of
the alternative extrapolation model introduced in [326] was carried out by
Kiritsis and Papavassiliou [327].

It may be worthwhile to remark that gauge theories with two index
quarks have gotten a great deal of attention. Armoni, Shifman and Veneziano
[328] have proposed an interesting relation between certain sectors of the two
index antisymmetric (and symmetric) theories at large number of colors and
sectors of super Yang–Mills (SYM). Using a supersymmetric inspired effec-
tive Lagrangian approach 1/N corrections were investigated in [329].

Besides these two limits a third one for massless one-flavor QCD, which is
in between the ’t Hooft and Corrigan Ramond ones, has been been proposed
in [330]. Here one first splits the QCD Dirac fermion into the two elementary
Weyl fermions and afterwards assigns one of them to transform according to
a rank-two antisymmetric tensor while the other remains in the fundamental
representation of the gauge group. For three colors one reproduces one-flavor
QCD and for a generic number of colors the theory is chiral. The generic N
is a particular case of the Generalized Georgi Glashow model (GGG) [331].
The finite temperature phase transition and its relation with chiral symmetry
has been investigated in [163] while the effects of a nonzero baryon chemical
potential were pioneered in [332]. More recent work in this direction has
appeared in the literature [333,334]. In particular in [334] the authors have
shown that one of the high density QCD phases investigated in [332], i.e.
the color superconductive one, seem to be favored at large N . This is a very
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interesting result which modifies and improves on the results in [332]. On
the validity of the large N equivalence between different theories we refer
the reader to [335,336].

To illustrate the large N counting when quarks are designated to trans-
form according to the two index antisymmetric representation of color SU(3)
one may employ [29] the mnemonic where each tensor index of this group
is represented by a directed line. Then the quark–quark gluon interaction
is pictured as in Fig. 53. The two index quark is pictured as two lines with

Fig. 53. Two index fermion — gluon vertex.

arrows pointing in the same direction, as opposed to the gluon which has
two lines with arrows pointing in opposite directions. The coupling constant
representing this vertex is taken to be gt/

√
N , where gt does not depend on

N and is kept fixed.
A “one point function”, like the pion decay constant, Fπ has as its simplest

diagram, Fig. 54.

Fig. 54. Diagram for Fπ for the two index quark.

The X represents a pion insertion and is associated with a normalization
factor for the color part of the pion’s wavefunction,

√
2√

N(N − 1)
, (E.6)

which scales for large N as 1/N . The two circles each carry a quark index so
their factor scales asN2 for largeN ; more precisely, taking the antisymmetry
into account, the factor is

N(N − 1)
2

. (E.7)

The product of Eqs. (E.6) and (E.7) yields the N scaling for Fπ:

F 2
π (N) =

N(N − 1)
6

F 2
π (3) . (E.8)

For large N , Fπ scales proportionately to N rather than to
√
N as in the

case of the ’t Hooft extrapolation.
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Using this scaling the ππ scattering amplitude, A scales as,

A(N) =
6

N(N − 1)
A(3) , (E.9)

which, for large N scales as 1/N2 rather than as 1/N in the ’t Hooft extrap-
olation. This scaling law for large N may be verified from the mnemonic in
Fig. 55, where there is an N2 factor from the two loops multiplied by four
factors of 1/N from the Xs.

Fig. 55. Diagram for the scattering amplitude, A with the 2 index quark.

There is still another different feature with respect to the ’t Hooft ex-
pansion; consider the typical ππ scattering diagram with an extra internal
(two index) quark loop, as shown in Fig. 56.

Fig. 56. Diagram for the scattering amplitude, A including an internal 2 index
quark loop.

In this diagram there are four Xs (factor from Eq. (E.6)), five index loops
(factor from Eq. (E.7)) and six gauge coupling constants. These combine to
give a large N scaling behavior proportional to 1/N2 for the ππ scattering
amplitude. We see that diagrams with an extra internal 2 index quark loop
are not suppressed compared to the leading diagrams. This is analogous,
as pointed out in [327], to the behavior of diagrams with an extra gluon
loop in the ’t Hooft extrapolation scheme. Now, Fig. 56 is a diagram which
can describe a sigma particle exchange. Thus in the 2 index quark scheme,
“exotic” four quark resonances can appear at the leading order in addition
to the usual two quark resonances. The possibility of a sigma-type state
appearing at leading order means that one can construct a unitary ππ am-
plitude already at N = 3 in the 2 antisymmetric index scheme. From the
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point of view of low energy ππ scattering, it seems to be unavoidable to say
that the 2 index scheme is more realistic than the ’t Hooft scheme given the
existence of a four quark type sigma.

Of course, the usual ’t Hooft extrapolation has a number of other things
to recommend it. These include the fact that nearly all meson resonances
seem to be of the quark–antiquark type, the OZI rule predicted holds to a
good approximation and baryons emerge in an elegant way as solitons in the
model.

A fair statement is that each extrapolation emphasizes different aspects
of N = 3 QCD. In particular, the usual scheme is not really a replacement
for the true theory. That appears to be the meaning of the fact that the
continuation to N > 3 is not unique.

Quarks in two index symmetric color representation

Clearly the assignment of femions to the two index symmetric represen-
tation of color SU(3) is very similar to the previous case. We denote the
fields as,

q{AB} = q{BA} . (E.10)

There will be N(N + 1)/2 different color states for the two index symmetric
quarks. This means that there is no value of N for which the symmetric
theory can be made to correspond to true QCD. On the other hand, for
large N we can make the approximation

Asym(N) ≈ Aasym(N) , (E.11)

for the ππ scattering amplitude.
As far as the large N counting goes, the mnemonics in Figs. 53–56 are

still applicable to the case of quarks in the two index symmetric color rep-
resentation. For not so large N , the scaling factor for the pion insertion
is

√
2√

N(N + 1)
, (E.12)

and the pion decay constant scales as

F sym
π (N) ∝

√
N(N + 1)

2
. (E.13)

With the identification AQCD = Aasym(3), the use of Eq. (E.11) enables
us to estimate the large N scattering amplitude as,

Asym(N) ≈ 6
N2

AQCD . (E.14)
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In applications to minimal walking technicolor theories this formula is
useful for making estimates involving weak gauge bosons via the Goldstone
boson equivalence theorem [337].

Finally we remark on the large N scaling rules for meson and glue-
ball masses and decays in either the two index antisymmetric or two index
symmetric schemes. Both meson and glueball masses scale as (N)0. Fur-
thermore, all six reactions of the type

a→ b+ c , (E.15)

where a, b and c can stand for either a meson or a glueball, scale as 1/N .
This is illustrated in Fig. 57 for the case of a meson decaying into two glue-
balls; note that the glueball insertion scales as 1/N and that two interaction
vertices are involved.

Fig. 57. Diagram for meson decay into two glueballs.

Spectrum for higher dimensional representations: Higgsful theories

Combining our knowledge of the QCD spectrum together with the rules
above for the two index antisymmetric representation we deduce the follow-
ing large N scaling:

m2
ρ ∼ Λ2

QCD , Γρ ∼ 2
N(N − 1)

, (E.16)

m2
f0
∼ Λ2

QCD , Γf0 ∼
2

N(N − 1)
. (E.17)

The fact that in QCD the state f0(600) is not narrow indicates that the
unknown coefficient in the expression for the width, expected to be order one,
is large. However, as we increase the number of colors we expect this state
to become quickly narrow. Scaling up these results for a technicolor theory
with NTC colors and fermions in the two index antisymmetric representation
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we have:

MTρ =
√

2vweak

Fπ

√
3
√

2√
NDNTC(NTC − 1)

mρ , (E.18)

MTf0 =
√

2vweak

Fπ

√
3
√

2√
NDNTC(NTC − 1)

mf0 . (E.19)

The input values here are the QCD masses for f0(600) and ρ(770). Differ-
ently from the ’t Hooft case the scalar will remain lighter than the associate
technivector meson for any number of technicolors. Finally, increasing the
number of technicolors and techniflavors we can achieve a very light scalar,
lighter then its own technivector. Since in these theories one cannot differ-
entiate a fermion–antifermion state from a multi fermion states we map the
lightest scalar into the composite Higgs.

So, even without invoking walking dynamics, higher dimensional repre-
sentations provide a composite Higgs lighter than the technivector meson.
These theories are Higgsful for any number of colors.

One can pass from the two index antisymmetric to the two index sym-
metric by replacing NTC − 1 with NTC + 1 in the expressions above and
matching the result at infinite number of colors. In Fig. 58 the physical
spectrum of spin one vector bosons and the lightest scalar is reported in
TeV units in the case of two doublets (ND = 2) of technifermions for differ-
ent number of colors. At N = 3 we match the spectrum to QCD for the two
index antisymmetric representation. On the left panel we draw the spec-
trum for the two index antisymmetric extension of QCD while on the right
we consider the two index symmetric representation normalized at large N
with the two index antisymmetric one. For any ND and NTC the scalar
is always lighter than the associated vector meson. In the case of the two
index symmetric on approaches light masses a little faster when increasing
the number of colors.

Above we demonstrated that (i) It is possible to have composite theories
which are Higgsful (ii) the resulting composite Higgs is light with respect
to the TeV scale. The comparison with precision data must then be revised
for these theories since the associated S parameter constraint changes. Note
that in the proof we used only a straightforward geometrical scaling.

What happens to the mass of the composite Higgs in the case of walking?
By increasing the number of flavors all of the composite states from the
chiral-symmetric broken side become massless when reaching the fixed point
since the only invariant scale of the theory vanishes there [338]. This is
supported by lattice simulations [168]. We are, however, interested in the
ratio between the masses of the various states to the pion decaying constant
which is fixed to be the electroweak scale. Simple arguments suggest that if
the transition is second order then there will be a light composite Higgs or
else its mass to decay constant ratio will not vanish near the conformal point.
In any event one can write a low energy effective action for the composite
scalar with the quantum numbers of the Higgs — treating it as a dilaton —



3730 F. Sannino

Fig. 58. Mass of the lightest vector meson — higher curve, and scalar meson —
lower curve, as function of the number of colors in TeV units. At N = 3 we match
the spectrum to QCD for the two index antisymmetric representation. Here we use
ND = 2. On the left panel we draw the spectrum for the two index antisymmetric
extension of QCD while on the right we consider the two index symmetric repre-
sentation. Note that now for any ND and NTC the scalar is always lighter than the
associated vector meson.

using trace and axial anomaly as well as chiral symmetry as done in [339].
A similar analysis using trace anomaly has been also discussed in [340].
The resulting action contains, by construction, non-analitc powers of the
composite Higgs field [339] and must be treated as generating functional for
the anomalous transformations of the underlying dynamics.

The possibility of a light composite Higgs in (walking) technicolor was
first advocated in [17,18,20,155] and also proposed in [340] and [341]. Since,
as shown above using standard scaling arguments, it is possible to construct
technicolor theories with a light composite Higgs it is relevant to study its
phenomenological signatures [103,342].
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