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1. Introduction

The AdS/CFT correspondence [1] is a remarkable framework for study-
ing the dynamics of quantum field theories at strong coupling, in addition
to providing an in-principle answer to the question: “What is quantum
gravity?” The correspondence was originally proposed based on studies of
D-brane dynamics in flat space. By taking an appropriate decoupling limit
to focus on the dynamics of the light open string degrees of freedom, one
ends up with an isomorphism between the Hilbert space of open string de-
grees of freedom and a closed string system on a curved background. One
natural way to motivate the correspondence is to start from the open string
description and ‘integrate out’ the holes in the world-sheet. Over the years
the correspondence has been generalized and has yielded many interesting
insights into both the dynamics of field theories at strong coupling and into
the nature of quantum gravity.

One way to view the AdS/CFT correspondence is entirely at a kinemati-
cal level based on symmetries. While this does not capture the entire beauty
and the details of the correspondence, it nonetheless provides an entry point
towards discussing generalizations. In order to do this one has to distill the
essentials of the correspondence to asking the following question: “What is
the geometric description of a fixed point of the Wilsonian renormalization
group flow?” For instance, one could ask for a geometry that has the sym-
metries of a conformally invariant fixed point. In d > 1 spatial dimensions
∗ Lecture presented at the XLIX Cracow School of Theoretical Physics, “Non-pertur-
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for relativistic field theories this is just SO(d + 1, 2). The unique geometry
with this isometry group is AdSd+2 which is a maximally symmetric space-
time. Thus one might conclude that the holographic dual for a CFT in d+1
dimensional spacetime is provided by AdSd+2. Of course, this is certainly
far from adequate in string theory, for one would still have to complete the
AdSd+2 to a full solution of the world-sheet beta function equations. Never-
theless, from a phenomenological point of view this provides an elementary
perspective on the correspondence. Moreover, this viewpoint makes sense
in hindsight: from the study of the AdS/CFT correspondence we know that
the energy scale of the field theory should be treated as an extra dimension
(the radial direction of AdS).

Given field theories with different symmetries one could try to use this
type of heuristic reasoning to write down an effective geometry that could
potentially capture the dynamics of the field theory in some dual sense
holographically, à la AdS/CFT. Of interest to us will be the case of non-
relativistic conformal field theories which are invariant under the so-called
Schrödinger symmetry. For this case in [2,3] the phenomenological approach
to AdS/CFT outlined above was used to construct a dual spacetime which
we will discuss in detail in Sec. 4.

The basic philosophy behind these constructions and other recent devel-
opments in the AdS/Condensed Matter applications, (see [4–6] for recent
reviews) is to exploit the power of the holographic duality to learn about
strongly interacting quantum field theories, where conventional field theo-
retic methods have failed to provide detailed insight. The main advantage
of the AdS/CFT approach is the computational simplicity: strong coupling
dynamics in the field theory is mapped to the dynamics of some classical
fields interacting gravitationally. This allows one to extract interesting ob-
servables in a strongly coupled theory by performing calculations in the
effective gravity description. In most of the known examples of AdS/CFT
correspondence one could view the gravity description as providing a clas-
sical master field configuration capturing the planar sector dynamics of the
field theory.

One disadvantage of the phenomenological construction of holographic
duals, is that there is no control on the microscopic dynamics of the field
theory. We cannot a priori answer questions regarding the nature of the
microscopic degrees of freedom, the regime of validity of the holographic
description, and how to incorporate corrections beyond supergravity. Of
course, this would not be an issue if we were in a position to derive the
holographic correspondence given the field theory path integral. The deter-
mination of this gravitational lore even more generally a stringy master field
for an arbitrary field theory remains to date a hard problem.
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Motivated by this, we will explore recent attempts to embed the con-
structions of [2, 3] into string theory. This was achieved soon after the
original proposal in three concurrent papers [7–9] by exploiting certain solu-
tion generating techniques in string theory, viz., the Null Melvin Twist [10]
and the TsT transformation [11]. This particular embedding allows one to
understand better the nature of the field theories which have as their holo-
graphic duals the geometries proposed by [2,3]. This article will explore the
construction of such holograms and their implications.

Part of the interest in the non-relativistic conformal field theories is be-
cause they are expected to be realized in real-world systems. More specif-
ically, the dynamics of cold fermionic atoms such as lithium or potassium
with fine tuned interactions to achieve critical behaviour is predicted to be
one such system. Over the last decade or so, the development of precision
techniques to study many-body atomic systems has unearthed interesting
physical properties. Of interest in the current context is the dynamics of
Fermi superfluids which can be made to undergo a cross-over between a Bose
condensate and a standard BCS superconductor. This is often referred to as
the system of fermions at unitarity, since at this cross-over point the s-wave
scattering cross-section saturates the unitarity bound. Apart from intrinsic
interest as a many-body system, one also finds this system attractive for
particle physics reasons. These cold fermionic atoms provide another natu-
rally realized example of a system with low viscosity similar to the Quark
Gluon Plasma (QGP). One expects that the origins of the low viscosity are
due to the fact that the cross-over physics happens in the non-perturbative
regime; having theoretical tools to study such strongly coupled systems is
certainly of great interest.

The organization of this article is as follows: we will begin with a brief
review of the symmetry algebras involved in non-relativistic conformal sys-
tems in Sec. 2. Following this we will explore the experimental systems
which are said to realize such symmetries in Sec. 3. In Sec. 4 we will take
the first steps towards constructing a holographic dual spacetime using a
purely phenomenological approach and finally in Sec. 5 embed these con-
structions into string theory. In Sec. 6 we explore some basic applications
of the hologram in computing observables of interest such as the equation
of state, transport coefficients, etc. and conclude with a brief discussion in
Sec. 7.

2. Conformal symmetry in non-relativistic systems

We will begin our discussion with a review of conformal symmetries for
non-relativistic systems. We will in fact see that in the non-relativistic case
there are two distinct ways of enlarging the Galilean algebra to include scale
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invariance. As in relativistic field theories, scale invariance is expected to
arise in a non-relativistic quantum system when we fine tune the parameters
to achieve criticality. As we will see it is certainly possible to encounter
non-relativistic systems which are scale invariant without being conformally
invariant. However, it is believed based on theoretic studies of the Wilsonian
RG flow that the physics of fermionic cold atoms is described in terms of
conformally invariant Galilean theories.

For starters let us consider the simplest Lorentz violating scaling symme-
try: we consider a dynamical system in d-spatial dimensions1 (the spatial co-
ordinates will be denoted as x) which respects the following spatio-temporal
anisotropic scaling

t→ λz t , x→ λx , (2.1)
z here is often referred to as the dynamical critical exponent. This scaling
symmetry forms part of the so-called Lifshitz algebra which has in addition,
spatio-temporal translations and spatial rotations. In terms of the generators
for these symmetries: momenta Pi, Hamiltonian H, spatial rotations Mij

and dilatation D, we have the algebra (henceforth Lifz(d))

[Mij ,Mkl] = i (δikMjl − δjkMil + δilMkj − δjlMki) ,
[Mij , Pk] = i (δik Pj − δjk Pi) , [Mij , H] = 0 ,

[H,Pi] = [Pi, Pj ] = 0 ,
[D,H] = i z H , [D,Pi] = i Pi , [D,Mij ] = 0 , (2.2)

where the only unusual commutator is [D,H] which implies that the Hamil-
tonian has scaling dimension z, commensurate with the scaling symmetry
(2.1).

An important element which is missing in the Lifshitz algebras are the
Galilean boosts Ki: it is of course possible to include them and extend the
algebra. In fact, it is possible to go further and incorporate another scalar
operator N which can be viewed as the particle number. We will call this
enlarged algebra the Galilean Scaling Algebra, (henceforth GSAz(d), in d
spatial dimensions). In addition to the commutators given in (2.2) we have
to supplement the details for the generators Ki and N :

[Mij ,Kl] = i (δilKj − δjlKi) , [Mij , N ] = 0 ,
[Pi,Kj ] = −iN , [H,Ki] = −i Pi , [D,Ki] = i (1− z)Ki ,

[D,N ] = −i (2− z)N , [H,N ] = [Pi, N ] = [Ki, N ] = 0 . (2.3)

The algebras Lifz(d) and GSAz(d) are just involve non-trivial scale trans-
formations, but no obvious analog of special conformal symmetries. For gen-
eral values of z these are in fact, the best one can do. However, for special

1 We will adhere to the convention of stating the number of spatial dimensions for
non-relativistic systems, and will typically denote this number by d.
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values of z one can extend the algebra to allow for what would be non-
trivial special conformal transformations. One obvious value for z, where
the special conformal generators enter is z = 1, where the spatio-temporal
anisotropy disappears (and one can envisage extending the algebra all the
way to the Lorentz algebra).

There is however, another value of z, viz., z = 2 where things are more
interesting. In this case we will focus on and it goes by the name of the
Schrödinger algebra. In fact in this case, we encounter only a single special
conformal generator (which we denote by C). Furthermore, for this special
value of z, the generator N corresponding to particle number becomes a
central term; it only appears in the commutation relation in the [Pi,Kj ].

Having seen the algebra somewhat abstractly, it is worthwhile noting
some physical aspects which motivate one’s interest in it. The Schrödinger
algebra is the symmetry algebra of the free Schrödinger operator in d + 1
dimensions, i.e., is generated by operators that commute with

S = i ∂t +
1

2m
∂2
i . (2.4)

It is analog of the conformal algebra for relativistic systems — we will see
how to relate the two shortly. It is believed that the system of cold atoms at
unitarity is an example of an interacting QFT which realizes this symmetry
[12]. One can write down the Schrödinger group as the following set of
transformations:

x → x′ =
R x + v t+ a

γ t+ δ
,

t → t′ =
α t+ β

γ t+ δ

with αδ−βγ = 1. The group includes, spatial translations indicated by a,
rotations captured by R, Galilean boosts with velocity v, a scale trans-
formation and a special conformal generator. We will now re-derive the
Schrödinger algebra (2.6) for z = 2 by employing a useful trick.

Recall that one can get the Galilean algebra in d dimensions by reducing
the Poincaré algebra SO(d+ 1, 1) on light-cone

x± = x0 ± xd+1 , (2.5)

where x0 is the time direction in the relativistic theory. It is a well known
fact that propagation in light-cone time x+ respects Galilean invariance. We
can similarly reduce the conformal algebra SO(d+ 2, 2) in d+ 2 dimensions
on a light-cone to obtain the Schrödinger algebra in d-spatial dimensions.
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Starting from the conformal algebra we keep all generators which com-
mute with the particle number: {H, Mij , Pi, Ki, D, C, N} where the
particle number operator is simply the momentum in the light-cone direc-
tion P−.

Generator Galilean Conformal

Particle number N P−
Hamiltonian H P+

Momenta Pi Pi
Angular momenta Mij Mij

Galilean boost Ki Mi−
Dilatation D D +M+−
Special conformal C K−

By virtue of the fact that we are only allowing generators that commute
with P− we lose some of the relativistic conformal generators. In particu-
lar, all the spatial special conformal generators are projected out. The full
algebra is then given as

[Mij ,Mkl] = i (δikMjl − δjkMil + δilMkj − δjlMki) ,
[Mij , Pk] = i (δik Pj − δjk Pi) ,
[Mij ,Kk] = i (δikKj − δjkKi) ,
[Mij , H] = [Mij , D] = [Mij , C] = 0 ,
[Pi, Pj ] = [Ki,Kj ] = 0 ,
[Ki, Pj ] = i δij N ,

[H,Pi] = 0 , [H,Ki] = −i Pi ,
[D,Pi] = i Pi , [D,Ki] = −iKi ,

[C,Pi] = iKi , [C,Ki] = 0 ,
[D,H] = 2iH , [D,C] = −2i C ,
[H,C] = −iD . (2.6)

The Schrödinger algebra unfortunately is not the only conformal algebra
that one can write down for non-relativistic systems. As explained recently
in [13] one can have in addition the Galilean Conformal Algebra (GCA(d) in
d-spatial dimensions).This algebra can be obtained by a suitable contraction
of the relativistic conformal algebra in d+ 1 dimensions. A major difference
between the GCA(d) and the Schrödinger algebra is the fact that the for-
mer has many more generators. The GCA(d) retains all the generators of
the d + 1 dimensional relativistic conformal algebra, and in particular con-
tains the special conformal generators in the spatial directions (recall that
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the Schrödinger algebra only has the temporal special conformal genera-
tor). Furthermore, the GCA does not allow for the central extension of the
momentum-boost commutator. For further details we refer the reader to the
excellent account in [13].

Let us now return to the Schrödinger algebra which will be our primary
focus for the rest of the article. One interesting question we would like to
understand is the nature of the representation theory for this algebra and in
particular, whether the notion of the state-operator correspondence which
exists for relativistic conformal systems has an analog in this case.

It turns out that the representation theory of Schrödinger algebra can be
described in terms of highest weight states as usual, see [12]. In particular,
we will talk about 2 quantum numbers

• The scaling dimension:

[D,O] = i∆OO . (2.7)

• The particle number:
[N,O] = NOO . (2.8)

From the commutation relations it is clear that we have ∆H = 2 and ∆P = 1.
We will realize highest weight representations in terms of quasi-primary

operators which have a given conformal dimension ∆O and particle number
NO. As usual, the spacetime dependence of the operator can be inferred via
translation:

O(t,x) = eiH t−i Pi xi O(0) e−iH t+i Pi xi . (2.9)

The quasi-primary operators are defined so that lowering operators K and C
(which have scaling dimensions −1 and −2, respectively annihilate it i.e.,

[Ki,O] = [C,O] = 0 . (2.10)

Given a quasi-primary operator we can then construct descendants by acting
with the raising generators of the algebra H and Pi.

One can give a simple representation of the algebra in terms using the
usual expressions for the operators in terms of derivations. For an operator
O(t,x) we have:

[H,O] = −i ∂tO ,
[Pi,O] = i ∂iO ,
[D,O] = i (2 t ∂t + xi ∂i + ∆O)O ,

[Ki,O] = (−i t ∂i +NO xi)O ,
[C,O] = −i

(
t2 pt + t xi ∂i + t∆O

)
O (2.11)
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which in particular implies that the quasi-primary operators satisfy

e−i λDO(t,x) ei λD = eλ∆O O
(
e2λ t, eλ x

)
. (2.12)

In relativistic conformal field theories we have a state-operator corre-
spondence. States of the CFT on the cylinder R × Sd are in one-to-one
correspondence with local operators inserted at the origin of Rd,1. This is
familiar from the usual radial quantization methods. For the non-relativistic
conformal symmetry, there is an analogous state-operator correspondence.
In particular, the quasi-primary operators are in one–one correspondence
with the eigenstates of a quantum system in a harmonic trap.

Given an operator O with conformal weight ∆O we can consider a state
built by acting this operator on the vacuum state:

|ψO〉 = e−H O† |0〉 , (2.13)

where we have dressed the operator by e−H . It is not hard to check that is
an eigenstate of the Hamiltonian Hosc = H+C with eigenvalue ∆O. In fact,
the Schrödinger algebra has a SL(2,R) sub-algebra generated by {D,H,C}:

Hosc = 1
2 (H + C) ,

a† = 1
2 (H − C + iD) ,

a = 1
2 (H − C − iD) (2.14)

which makes is clear how the state-operator correspondence works.

3. Real world non-relativistic CFTs

It is worthwhile to understand the physical motivation to study non-
relativistic CFTs before we enter into a discussion of the holographic de-
scription of such theories. Part of the motivation will be to contrast the
class of examples we are interested from experimental stand-point, to those
that are amenable to a holographic treatment.

The experimental results from studies of cold atoms, specifically, fer-
mionic atoms like Li6 or K40 at the so-called Feshbach-resonance indicate
that the system is described by non-relativistic CFT. For a detailed account
of the experimental techniques and evidence we refer the reader to [14] (see
also [15] for a theoretical account). Basically, this phase of the atomic system
is a cross-over phase between two regimes: one where the fermionic atoms
pair up into bosonic molecules (the BCS phase), and another where the
binding mechanism is very strong and the bosonic molecules are tightly
bound enough to Bose condense (the BEC phase). The critical point is
achieved by tuning the s-wave scattering length by an external field.
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In terms of the basic physics, fermionic atoms exhibit no vibrational
losses near the Feshbach resonance, which is achieved by pairing the hyper-
fine levels in the atoms to an auxiliary molecular excitational level with high
vibrational damping. In the regime of interest the atoms achieve fermionic
superfluidity, with a large triplet scattering length.

To understand the critical behaviour as we saturate the s-wave scattering
cross-section, it is useful to study a model in 2 + ε dimensions following [12].
One considers a fermionic systems with hyperfine states ψ↑ and ψ↓ with
a characteristic four-fermi interaction. By standard renormalization group
arguments [12] were able to show that the system achieves a critical point
in 2 + ε dimensions. In physical terms the four-fermi interaction is tuned so
that the s-wave scattering length a diverges. For a < 0 we have the BCS
phase, while for a > 0 we end up in the BEC phase.

The excitement about this system is that it seems to provide another nat-
ural example of a nearly ideal fluid. Experiments with cigar shaped clouds
of fermionic atoms, show that the system evolves hydrodynamically with
η/s ∼ 0.5 which is close to the famous bound proposed in [33]. Further,
evidence for strong coupling in these systems comes from the notion of the
Bertsch parameter, which captures the deviation of the average energy per
particle from the free Fermi value ξ = ε/εfree which from Monte Carlo simu-
lations is expected to around 0.4. The parameter ξ is best thought of as the
analog of the famous 3/4 in the ratio of entropy density at strong coupling
to the entropy density at weak coupling for N = 4 SYM.

Given that there are systems which are strongly coupled and exhibit
non-relativistic conformal symmetry, it is interesting to ask whether one can
bring to bear the machinery of the holographic AdS/CFT correspondence
to shed some light on such systems. In the rest of this article we will explore
this possibility.

4. Phenomenological construction of the Galilean hologram

Having seen the symmetry algebra for non-relativistic conformal field
theories, we are now in a position to motivate the study of a particular class
of geometries. First of all let us consider the geometry of AdSd+3 whose
metric is given as

ds2 = −r2 ηµν dxµ dxν +
dr2

r2
, (4.1)

where ηµν is the Minkowski metric on flat Rd+1,1 parameterized by xµ, with
µ, ν ∈ {0, · · · , d+1}. This metric covers the Poincaré patch of AdS spacetime
and its isometry group is SO(d + 2, 2), which is the relativistic conformal
group in d+ 2 spacetime dimensions. Of this large set of symmetries, let us



3754 M. Rangamani

look at the scaling symmetry

xµ → λxµ , r → 1
λ
r (4.2)

which clearly leaves (4.1) invariant. These are the familiar scale transfor-
mations for the relativistic CFT on Rd+1,1 which is the timelike boundary
of (4.1) and illustrate clearly that the radial direction of the AdS spacetime
can be viewed as the energy scale of the dual field theory along the lines of
the holographic renormalization group [16].

This scaling symmetry respects spatio-temporal isotropy, but it is easy
to conjure up a version that breaks this. Consider introducing light-cone
coordinates (2.5) into the metric (4.1). It is easy to see that one can define
a non-trivial scaling as follows:

x+ → λz x+ , x− → λ2−z x− , xi → λxi , r → 1
λ
r , (4.3)

where now i = 1, · · · , d. This unconventional scaling is a symmetry of the
AdSd+3 metric and if one applied AdS/CFT with regarding x+ as time, then
one would have realized a theory with anisotropic spatio-temporal scaling. In
fact, one obtains a bit more than the scaling, for the symmetries transverse
to the light-cone is just the Galilean symmetry. This way one could hope
to realize a version of GSAz(d). In fact, shortly after the proposal of [2, 3]
it was proposed in [17,18] that one might achieve the required hologram for
non-relativistic CFTs simply by this light-cone reduction of AdS/CFT.

This is, however, a bit too quick: we are essentially exploiting the fact
that the light-cone reduction of any relativistic field theory gives rise to
a Galilean invariant system in a sector with fixed light-cone momentum.
However, we have to deal carefully with the zero mode under light-cone
reduction. This is familiar from the standard discussion of the Discrete
Light Cone Quantization (DLCQ). We will return to this issue shortly after
discussing another geometry that actually has the full GSAz(d) symmetry.

Consider the metric

ds2 = r2
(
−2 dx+ dx− − β2 r2ν (dx+)2 + dx2

)
+
dr2

r2
(4.4)

with z ≡ 1+ν, which naturally has the required scaling (4.3). The geometry
with ν = 0 corresponds to pure AdSd+3 as does the case β = 0. However, the
other values of ν lead to spacetimes with non-trivial asymptopia; for ν > 0
the causal structure of such spacetimes is non-distinguishing [19,21]. These
spacetimes were proposed by [2, 3] as holographic duals for non-relativistic
field theories which have the GSAz(d) as a global symmetry algebra. We
will call these spacetimes Schνd+3.
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It is worthwhile understanding the distinction between the light-cone
compactification of AdSd+3 and the spacetime with metric Schνd+3 in some
detail before we proceed to analyze the applications of (4.4). The main argu-
ment is that the causal structure of (4.4) naturally reproduces the Galilean
light-cone of the field theory. The causal structure of a non-relativistic field
theory is degenerate — interactions can propagate instantaneously. This
could sound like a problem for holography; a bulk geometry with decent
causal structure cannot be holographically dual to a non-relativistic field
theory. However, the spacetime geometry (4.4) evades this issue beautifully
— its causal structure is also degenerate and precisely in a manner to be
consistent with the boundary Galilean invariance.

The spacetime (4.4) is conformal (with an overall conformal factor r2) to
a pp-wave spacetime2. The class of pp-wave spacetimes which this belongs
to are known to be non-distinguishing [19]. This essentially means that
while the spacetime (4.4) is causal (in the sense of not having closed causal
curves), different points in the spacetime share the same past and future,
thereby preventing us from distinguishing spacetime events by their causal
sets. Note that the timelike future I +(p) for a point p is the set of points
which can be reached from p by future-directed timelike curves; the timelike
past I −(p) is defined similarly in terms of past-directed timelike curves.
Causal future/past are defined likewise in terms of causal (i.e., timelike or
null) curves.

In fact, in (4.4), all points on a surface with u = u0 (and arbitrary
values of other coordinates) have an identical causal future/past [19]. But
this is precisely the causal structure of a Galilean CFT; all spatial points
on an equal time surface can influence any abritrary spatial point at an
infinitesimal time later. More pertinently, the ν = 2 geometry has previously
been studied in the context of its causal properties in [21, 22]; it arises as
the holographic dual of non-commutative N = 4 Super Yang–Mills with
light-like non-commutativity [20].

The fact the bulk spacetime causal structure is consistent with the boun-
dary causal structure is a crucial ingredient in the AdS/CFT correspondence.
If this were not true we would have easily been able to set up gedanken
experiments wherein bulk physics would give drastically different results
from boundary physics. A pure AdS spacetime with boundary conditions
engineered to give Galilean invariance does not posses a bulk light-cone
which agrees with the light-cone of the relativistic field theory.

Before proceeding with the holographic duals for theories enjoying the
GSAz(d) symmetry, it is useful to realize that these phenomenological tech-
niques can be employed to construct duals for theories with Lifshitz symme-

2 The special case ν = 0 is of course pure AdS with a well-behaved causal structure.
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try as described originally in [23]. Since the Lifz(d) algebra does not have
Galilean boosts one can simply write down a geometry

ds2 = −r2 z dt2 + r2 dx2 +
dr2

r2
. (4.5)

These have been investigated in detail over the last year but so far this class
of spacetimes has not been embedded into string theory.

5. Non-relativistic CFTs in string theory

The geometry (4.4) can be consistently embedded in a solution to string
theory. Indeed, geometries of this type have previously been studied, in in-
vestigations of the application of solution generating transformations to con-
struct geometries corresponding to twisted versions of the D3-brane world-
volume theory [20,21]. In this section, we first review this solution generating
transformation, and use it to construct a string theory solution which re-
duces to (4.4) in five dimensions. We then apply the same transformation
to obtain a non-extremal generalization, and construct a five-dimensional
theory for which the non-extremal geometry is a solution.

5.1. Generating the geometry dual to the vacuum state

To begin with, consider the geometry of AdS5×S5 in Poincaré coordi-
nates, which is the near-horizon geometry of D3-branes in flat space:

ds2 = r2
(
−dt2 + dx2 + dy2

)
+
dr2

r2
+ (dψ +A)2 + dΣ 2

4 ,

F(5) = dC(4) = 2 (1 + ?) dψ ∧ J ∧ J , (5.1)

where we have written the metric on the unit S5 as a fibration over a CP2

base and now x = {x1, x2}. The five-form is given explicitly in terms of the
volume form of S5, which has been decomposed into quantities related to the
fibration. J is the Kähler form on CP2 and A is the associated potential.
Our conventions are

dA = 2 J , Vol
(
CP2

)
= 1

2J ∧ J . (5.2)

We apply a Null Melvin Twist to this geometry, as described in [10]; the
idea is to generate light-like NS–NS flux by a series of boosts and twisted
T-dualities. Algorithmically we proceed as follows3:

3 The D3-brane geometry above has a full SO(1,1) symmetry in the (t, y) plane which
renders the first step inconsequential here, but it will be meaningful for the non-
extremal solution which follows.
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1. Pick a translationally invariant direction (say y) and boost by amount γ
along y.

2. T-dualize along y.

3. Twist some one-form σ: σ → σ + αdy.

4. T-dualize along y again.

5. Boost by −γ along y.

6. Scale the boost and twist: γ →∞ and α→ 0, keeping

β = 1
2α e

γ = fixed . (5.3)

The only data needed to describe the construction is the choice of the
one-form σ. We can choose σ to be along the world-volume directions (linear
combination of dx1 and dx2) or transverse to the D-brane. The former leads
to turning on constant electric and magnetic fields on the D-brane world-
volume leading to a light-like non-commutative field theory [20,21].

Twisting along the R-symmetry direction is more interesting. A natural
choice is to take the one-form σ to be along the fiber direction: σ = dψ.
The Null Melvin Twist leads to the geometry [21]

ds2 = r2
(
−2 dx+ dx− − r2 du2 + dx2

)
+
dr2

r2
+ (dψ +A)2 + dΣ 2

4 ,

F(5) = 2 (1 + ?) dψ ∧ J ∧ J ,
B(2) = r2 dx+ ∧ (dψ +A) , (5.4)

where the light-cone coordinates are

x+ = β (t+ y) , x− =
1

2β
(t− y) . (5.5)

Note that our boosted x± coordinate frame scales β out not only from the
metric but also from the field strengths. The five-dimensional part of this
metric is precisely the geometry (4.4), with ν = 1 and d = 2. This geometry
will correspond to the vacuum state of the dual non-relativistic field theory.

One can equivalently obtain the solution by a different solution generat-
ing technique [8] known as the TsT transformation [11]. This transformation
involves a T-duality along the ψ direction followed by a shift x− → x− + ψ
and then a T-duality again on the resulting ψ direction. More pithily, given
the T2 spanned by the U(1) isometries ∂x− and ∂ψ we can perform a twisted
T-duality on this T2 which generates a non-trivial magnetic field (NS–NS
B-field flux). It is this flux that supports the deformation of the geometry
in (4.4).
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5.2. Kaluza–Klein reductions and effective actions

The solutions we have discussed above (5.4) and (6.2) satisfy the 10-
dimensional Type IIB equations of motion. In [2], the vacuum geometry
(4.4) was considered as a solution to Einstein–Proca theory with negative
cosmological constant, which has the action

SEP =
∫
dd+2x dr

√
−g

(
R− 2 Λ− 1

4Fµν F
µν − 1

2m
2AµAµ

)
, (5.6)

with Fµν = 2∇[µAν]. The metric (4.4) with A− = 1 satisfies the field
equations for the choice

Λ = −1
2(d+ 1)(d+ 2) , m2 = 2 (d+ 2) . (5.7)

We would now like to understand the relation between this phenomeno-
logical Lagrangian and the ten-dimensional IIB theory. Starting from Type
IIB supergravity, we can KK reduce the solution (5.4) on the S5 (which
is undeformed). The reduction of the metric is straightforward, and gives
(4.4) in five dimensions. The NS–NS two-form, however, depends on the S5

coordinates. In a linear analysis [24], such a mode of the two-form produces
a massive vector transforming in the 15 of SO(6): in AdS units (set here
to 1) its mass is m2 = 8. This is precisely the value of the mass required
according to (5.7) (with Λ = −6 as necessary to get AdS radius equal to 1).

While, the above argument shows that the phenomenological Lagrangian
introduced in [2] can be embedded into string theory, it does not fully ex-
plicate whether all solutions of (5.6) can be realized in Type IIB string
theory. For this we need some more information — we require that (5.6) be
a consistent truncation of Type IIB supergravity. By considering a suitable
ansatz for compactification of Type IIB supergravity down to five dimen-
sions, which generalizes the Freund–Rubin compactifications [8] was able to
show that there exists a consistent truncation of Type IIB supergravity in-
volving massive vectors. However, this theory has in addition three scalar
fields as well and the low energy effective action takes the form:

Sbulk =
1

16πG5

∫
d5x
√
−g
(
R+ V (φi)− 5(∂φ1)2 − 15

2 (∂φ2)2 − 1
2(∂φ3)2

−1
4g(φi)FµνFµν − 4e−2φ1−3φ2−φ3AµA

µ
)
,

V (φi) = 24 e−φ1−4φ2 − 4 e−6φ1−4φ2 − 8 e−10φ2 ,

g(φi) = e4φ1+φ2−φ3 . (5.8)

The special case where all the scalars are set to constant values results in
(5.6). In fact, we will be interested in a different sub-case of this system,
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one where the scalars are linearly related via

{φ1, φ2, φ3} =
{
−2

5 ,−
1
15 , 1

}
φ (5.9)

which results in a simpler Lagrangian than (5.8):

S =
1

16πG5

∫
d5x
√
−g

×
(
R− 4

3(∂µφ)(∂µφ)− 1
4e
−8φ/3FµνF

µν − 4AµAµ − V (φ)
)
,(5.10)

where the scalar potential is

V (φ) = 4 e2φ/3
(
e2φ − 4

)
. (5.11)

The scalar here appears from two sources: (i) the black hole geometry in-
volves a non-vanishing dilaton and (ii) the twist now causes the fibration
over CP2 to be squashed. Squashing is a common feature of solutions gen-
erated by the Null Melvin Twist [10] and intuitively can be ascribed to the
distortion of the asymptotics of the spacetime. It should be borne in mind
that (5.10) is not a consistent truncation of Type IIB supergravity, but will
suffice for our purposes when we turn to applications of the holographic
correspondence.

5.3. The dual field theory

The Null Melvin Twist construction makes the interpretation of the dual
field theory clean: it is nothing but N = 4 Super Yang–Mills twisted by
an R-charge. The U(1) isometry generating the R-charge is generated in
the spacetime by ∂

∂ψ . This twist breaks the SU(4) symmetry of N = 4
down to an SU(3) × U(1) (the isometry group of CP2) through the non-
vanishing NS–NS potential B(2) (the metric (5.4) of course enjoys full SU(4)
invariance).

From the CFT point of view, the twist by R-symmetry corresponds to
a deformation by an irrelevant operator of dimension 5 transforming in the
antisymmetric tensor representation of SU(4). The operator in question [25]

is OIJµ = Tr
(
Fµ

ν Φ[I DνΦJ ] +
∑
K

DµΦK Φ[KΦIΦJ ]

)
+ fermions, where ΦI

are the adjoint scalars of N = 4 SYM transforming in the vector 6 of
SU(4) and Fµν is the gauge field strength. The Lorentz symmetry is broken
by adding OIJ+ to the field theory Lagrangian. This field theory realization
makes it clear that the massive vector used in the construction of [2] oxidises
to NS–NS flux in ten dimensions.
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The TsT transformation, however, gives a better insight into the dual
field theory. Recall that generating a world-volume magnetic field results in
spatially non-commuting field theories (in an appropriate decoupling limit)
[26]. Likewise, a non-trivial B-field obtained by twisted T-duality in the
transverse directions will result in an analog of β-deformed field theories [11].
Both of these are special examples of the TsT transformation, where the
U(1) isometries are either entirely in the world-volume directions (non-
commutative field theories) or completely transverse (beta-deformation).
We are interested in situations where the TsT transformation acts on a T2

spanned by one U(1) isometry in the directions transverse to the D3-brane
and another along the world-volume, which is a hybrid of the two situations
described above. The resulting field theory can be described by deforming
the original relativistic CFT by a (heterotic) star product

f ? g = ei β (Vf Rg−Vg Rf) f g , (5.12)

where V is the x−-momentum of the field and R refers to a global U(1)R
charge.

So for the special case where we take the internal space to be S5 we
obtain a non-relativistic deformation of N = 4 SYM via the star-product
(5.12). Since the deformation only depends upon the existence of a U(1)
isometry in the space transverse to the D3-branes one can immediately en-
gineer examples starting from the infinite class of N = 1 SCFTs obtained
from D3-branes probing Calabi–Yau singularities.

6. Applications of the Schr/NRCFT correspondence

Having described the basic features of the correspondence we are now in
a position to apply the same to derive some physical observables of interest.
While the choice of observables we calculate is governed by the interest from
the experimental systems of cold atoms, one should, however, take the results
with a grain of salt, for the field theories whose duals we are describing here
are not quite fermions at unitarity.

6.1. Thermal non-relativistic CFTs

As we have generated (5.4) by a solution generating technique, we can
just as well generate the non-extremal version of the solution. To do so,
rather than starting with the near horizon geometry of extremal D3-branes,
we start with non-extremal D3-branes and repeat the Null Melvin Twist.
Consider then the planar Schwarzschild–AdS black hole (times S5, with the
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geometry supported by the five-form flux F(5))

ds2 = r2
(
−f(r) dt2 + dy2 + dx2

)
+

1
r2

(
dr2

f(r)
+ r2 dΩ2

5

)
, (6.1)

where as before we will write the S5 as a S1 fibration over CP2. The Null
Melvin Twist leads to the string frame metric [27]:

ds2str = r2
(
−β

2 r2 f(r)
k(r)

(dt+ dy)2 − f(r)
k(r)

dt2 +
dy2

k(r)
+ dx2

)
+

dr2

r2 f(r)
+

(dψ +A)2

k(r)
+ dΣ 2

4 ,

eϕ =
1√
k(r)

,

F(5) = dC(4) = 2 (1 + ?) dψ ∧ J ∧ J ,

B(2) =
r2 β

k(r)
(f(r) dt+ dy) ∧ (dψ +A) , (6.2)

with

f(r) = 1−
r4+
r4
, k(r) = 1 + β2 r2 (1− f(r)) = 1 +

β2 r4+
r2

. (6.3)

The solution has a horizon at r = r+. Note that the parameter β appearing
in this metric is an independent physical parameter; in the extremal case,
we could set it to one by boosting in the t–y plane, but non-extremality has
broken this boost symmetry. The remainder of the paper will be devoted to
an exploration of the physics of this non-extremal solution.

If we perform the same Kaluza–Klein reduction for the non-extremal
solution (6.2), we obtain

ds2E = r2 k(r)−2/3
(
−β2r2f(r)(dt+ dy)2 − fdt2 + dy2 + kdx2

)
+k(r)1/3

dr2

r2f(r)
,

= r2k(r)−2/3

([
1− f(r)

4β2
− r2 f(r)

]
(dx+)2 +

β2r4+
r4

(dx−)2

− [1 + f(r)] dx+dx−

)
+ k(r)1/3

(
r2dx2 +

dr2

r2 f(r)

)
, (6.4)
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where we have introduced the light-cone coordinates (5.5) in the second line
for future convenience, with the massive vector and scalar

A =
r2β

k(r)
(f(r) dt+ dy) =

r2

k(r)

(
1 + f(r)

2
dx+ −

β2r4+
r4

dx−
)
,

eφ =
1√
k(r)

, (6.5)

where f(r) and k(r) are given in (6.3). Note that in these light-cone coor-
dinates, the solution asymptotically approaches the extremal solution (4.4),
but β remains a physical parameter, as the full metric depends on β. We
will henceforth work with the solution (6.4).

The quantities of interest are the thermodynamic variables associated
with the black hole solution (6.2). We first note that the NMT/TsT does
not change the entropy of the black hole and hence:

S =
r3+ β

4G5
∆x− V , (6.6)

where V is the spatial volume in two dimensions and ∆x− the radius of
the null circle. In order to obtain finite charges we are going to have to
compactify the direction x−. A priori this sounds like a problem, for we are
once again going to have to figure out how to deal with the zero modes of
this compactification since it sounds like we are once again back to doing
DLCQ. Thankfully, the presence of the black hole makes these issues much
more benign; for instance, the x− circle in the presence of a horizon has
become space-like and avoids the issues associated with DLCQ.

Furthermore, using the canonically normalized Killing generator of the
horizon:

ξa =
(

∂

∂x+

)a
+

1
2β2

(
∂

∂x−

)a
(6.7)

one concludes that the black hole corresponds to the system in a grand
canonical ensemble at temperature:

T =
r+
π β

(6.8)

and particle number chemical potential:

µ =
1

2β2
. (6.9)

One can go further and determine the Gibbs potential of this grand
canonical ensemble, via an “Euclidean action” computation. To do so we
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analytically continue the t coordinate and end up with a complex geometry,
which nevertheless has a real Euclidean action. This is the correct saddle
point of the Euclidean quantum gravity path integral and can be used to
compute the Gibbs potential by evaluating the on-shell action. We want to
interpret this action as the saddle-point approximation to the grand canon-
ical partition function,

Ξ (T, µ) = e−Q(T,µ)/T = Tr

(
exp

(
−Ĥ
T
− µ P̂v

T

))
≈ e−I , (6.10)

with temperature T and chemical potential µ given as in (6.8) and (6.9),
respectively. Note that the Euclidean action (6.10) is always negative, so
the black hole solution makes the dominant contribution to this partition
function for any non-zero temperature.

This however, is complicated by the fact that a naive computation leads
to a divergent answer. The issue is that in writing down the effective actions
in five dimensions (5.8) or (5.10) we have not worried about the boundary
terms. By a careful analysis of the asymptotics of the black hole solution
(large r fall-offs) and including a complete set of counter-terms allowed by
symmetry, in [7] it was found that the following action satisfies the variation
principle δS = 0

S =
1

16πG5

∫
d5x
√
−g

×
(
R− 4

3
(∂µφ)(∂µφ)− 1

4
e−8φ/3FµνF

µν − 4AµAµ − V (φ)
)

+
1

16πG5

∫
d4ξ
√
−h

×
(

2K − 6 +AµA
µ + c4AµA

µφ+ c5 (AµAµ)2 + (2 c4 − 4 c5 + 3)φ2
)

(6.11)

for some arbitrary constants c4 and c5. It should be noted that the analysis
was carried out only for a restricted class of variations where the sub-leading
fall-offs in the metric, massive vector and scalar field were taken to be linearly
related (for details we refer the reader to [7]). For the record, it is trivial to
extend the analysis to the consistent truncation action of [8]; one finds that
the appropriate set of counter-terms are

Sbdy =
1

16πG5

∫
d4ξ
√
−h
(

2K − 2 c0 + cI1 φI + cIJ2 φI φJ

+
(
c3 + cI4 φI

)
AαA

α + c5 (AαAα)2
)

(6.12)
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with
c0 = 3 , cI1 = 0 , c3 = 1 , (6.13)

and

− 1350 + 72 c11
2 + 24 c12

2 − 360 c13
2 + 2 c22

2 − 60 c23
2 + 450 c33

2

+ 360 c14 + 60 c24 − 900 c34 = 0 . (6.14)

Putting the pieces together one can directly compute the on-shell action
with the prescribed set of counter-terms to find

I = −
β r3+
16G5

∆x− V (6.15)

which leads to

S =
π3 T 3

16G5 µ2
V ∆x− , (6.16)

which is the same as the result (6.6) we obtained earlier by direct calcula-
tion. That S is given both in terms of the horizon area and by (6.16) is
a consistency check of our calculation: in general, by foliating the region
outside the horizon by surfaces of constant time, we can always rewrite the
Euclidean action as I = 1

T (E + µN) − S, which implies the assumed rela-
tion between entropy and action. Moreover, this action is the identical to
the on-shell action (regulated) for the Schwarzschild–AdS black hole. This
is another consistency check for the NMT/TsT does not change the leading
large N thermodynamic properties (follows from star product) [8].

We then obtain the conserved charges

〈N〉 = 〈P−〉
∆v
2π

=
π2 T 4

64G5 µ3
V (∆x−)2 , (6.17)

and

〈E〉 =
π3 T 4

64G5 µ2
V (∆x−) . (6.18)

Furthermore, the pressure is given in the grand canonical ensemble directly
in terms of the Gibbs potential Q(T, µ, V ):

P V = −Q(T, µ, V ) =
π3 T 4

64G5 µ2
V ∆x− , (6.19)

leading thus to an equation of state

P V = E . (6.20)



Holography for Non-relativistic CFTs 3765

A non-relativistic system with Galilean conformal invariance has different
scalings for temporal and spatial directions as given in (2.1) for z = 2. This
feature leads to an equation of state dP V = 2E in d-spatial dimensions [2],
which is satisfied by (6.20). So indeed, the black hole solution constructed
describes a state in the grand-canonical ensemble at temperature T and
chemical potential µ for a non-relativistic conformal field theory.

A few comments about this computation are in order:

• The result we have can be readily generalized to higher dimensions, by
invoking the scaling symmetry. In fact, it was anticipated in [7] that
the Euclidean action in d-spatial dimensions should take the form

I = −Γ ′ β rd+1
+ = −Γ

T d+1

µ
d
2
+1

(6.21)

from which one can derive the rest of the thermodynamics. This was
later independently derived by [28] who constructed black hole space-
times in a phenomenological model extending (5.10) to higher dimen-
sions.
• A curious fact with the Gibbs free energy or indeed the other thermo-

dynamic variables is the divergence as µ→ 0. This was contrasted with
the expected behaviour in fermions at unitarity in [28] who showed
that the real-world systems do not show such power-law divergence in
thermodynamic quantities.
• In fact, the underlying cause for this divergence can be traced to the

fact that despite the non-trivial background (4.4) for the vacuum state,
these field theories behave like DLCQ of conventional relativistic CFTs.
By considering a mode sum over light-cone states, in a beautiful piece
of work, [29] was able to show that the origin of the small µ divergence
is related to the light-cone momentum states.
• We have derived the thermodynamic quantities by first computing the

Gibbs potential and then using standard thermodynamic relations to
extract the physical quantities. One could alternately have directly
used a holographic prescription to compute a full stress-tensor complex
for the dual field theory. This was achieved recently in [30] by using
the boundary counter-terms proposed above (6.11).

6.2. Hydrodynamic properties of non-relativistic CFTs

Stationary black hole solutions such as (6.4) correspond to equilibrium
configurations of the dual field theory in an appropriate ensemble. By per-
turbing these black holes one can derive physics of linear response in the
near-equilibrium regime. This fact has been well explored in the AdS/CFT
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context starting from the seminal work of [31,32] and resulted in the famous
conjecture for the ratio of shear viscosity to entropy density [33]. An excel-
lent review of these works can be found in [34]. More recently the framework
of the fluid-gravity correspondence [35] has provided an useful way to think
about the hydrodynamic limit of strongly coupled field theories and in par-
ticular construct inhomogeneous, dynamical black hole solutions which are
dual to arbitrary fluid flows (for a review see [36]).

As one might anticipate the general analysis of black hole perturbations
and their response can be carried out for different black hole spacetimes,
appropriately taking care of boundary conditions. In particular, there is
nothing preventing us from studying fluctuations of the solution (6.4). The
fluctuations of the metric degrees of freedom which are polarized along the
spatial directions x are especially interesting as they correspond to shear-
driven diffusion in the dual field theory [34]. Furthermore, for symmetry
reasons these fluctuations decouple from the rest of the fluctuations, e.g.,
the fluctuations of the scalar field and massive vector field sourcing the
background (6.4). This follows from the fact these modes are the only modes
transforming in the symmetric traceless representation of the spatial rotation
group. By studying their dynamics one expects to learn about the shear
mode diffusion in the dual field theory.

In particular, one can study the two point function of the spatial stress
tensor Πij(u,x) to learn about η for one has via a linear-response Kubo
formula a relation between the two-point function of the stress tensor and
the shear-viscosity. Specifically, consider the two-point function

G12,12(ω, 0) = −i
∫

dx+ d2x eiω x
+
θ(x+)〈 [Πx1x2(x+,x),Πx1x2(0,0)] 〉.

(6.22)
The shear viscosity is given by the zero-frequency limit of this two point
function,

η = − lim
ω→0

1
ω

Im (G12,12(ω)) . (6.23)

As explained above, generically the fluctuations δg, δA and δφ give a
coupled system: however, the shear mode δgx1x2 which is involved in the
computation of (6.22) decouples. Not only that, in fact δgx1x2 satisfies mass-
less, minimally coupled wave equation (for zero spatial momentum), which
turns out to reduce to a familiar wave equation (viz., the wave equation on
Schwarzschild–AdS background upto a rescaling of the frequency ω). This
in fact follows from the fact that the stress tensor has zero particle number
P− = 0, and the general arguments given in [18]. Putting the pieces together
one can easily compute 〈Πx1x2 Πx1x2 〉 at zero spatial momentum and read
off η using a Kubo formula. One finds [7, 9]:
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η

s
=

1
4π

. (6.24)

Finally, note that non-relativistic conformal invariance requires that the bulk
viscosity vanish; ζ = 0. This follows essentially from a conformal Ward
identity [12].

We have thus far described the basic derivation of transport properties
of non-relativistic CFTs. One can of course, use the fluid-gravity corre-
spondence [35] to understand the gravity dual to a generic fluid flow in the
boundary non-relativistic CFTs. To do so one must take the asymptotically
Schrd+3 black hole and generalize it to a d + 2 parameter solution which is
achieved by performing a Galilean boost in the spatial directions to make the
dependence on the d parameters corresponding to the Galilean velocities vi
explicit. Then one should promote the background parameters r+, β and vi
to fields depending on {x+,x} and solve the bulk gravity equations order
by order in derivatives of {x,x} for asymptotically Schrd+3 solutions. The
result of this exercise would give the gravity dual of non-relativistic confor-
mal Navier–Stokes equations. In particular, the radial constraint equations
(on a fixed r hypersurface) will result in the constraint equations which are
the boundary Navier–Stokes equations. One can use the prescription of [30]
to extract the boundary stress tensor (really a stress tensor complex) which
would exhibit the correct dependence of the fluid dynamical variables on the
velocity field, temperature, chemical potential, etc.

However, one can use a trick to simplify the analysis. As noted in [8] the
leading planar physics of the non-relativistic theory is the same as the par-
ent relativistic theory even with the non-trivial deformation that converts an
asymptotically AdS spacetime to an asymptotically Schrödinger spacetime.
One can use this fact and obtain the stress tensor complex for the non-
relativistic theory by reducing the corresponding relativistic stress tensor
on the light-cone (along x−). The bulk metric is obtained by TsT trans-
formation of the asymptotically AdS fluid black hole solutions constructed
in [35], with ∂x− being the null Killing vector. This procedure was carried
out in [37] to which we refer the interested reader. A brief account can also
be found in [36].

This light-cone reduction makes it clear that the transport coefficients
of the non-relativistic theory are inherited from the parent relativistic hy-
drodynamics. In this description it is clear that non-relativistic fluids with
holographic duals will saturate the conjectured viscosity bound η/s = 1/4π,
which was verified explicitly in [7, 9]. Furthermore, it is also possible to use
this light-cone reduction to infer the heat conductivity of the non-relativistic
fluid:

κ = 2 η
ε+ P

ρT
(6.25)
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which can be rephrased as the statement that the Prandtl number of the
fluid is unity. We recall that the Prandtl number is defined as the ratio of
the kinematic viscosity ν and the thermal diffusivity χ,

Pr =
ν

χ
, (6.26)

where
ν =

η

ρ
, χ =

κ

ρ cp
, (6.27)

where cp is the specific heat at constant pressure.

7. Dicsussion

In this article we have described how the holographic AdS/CFT corre-
spondence may be extended to systems with more exotic symmetries, such
as non-relativistic conformal symmetries. We have discussed the spacetimes
that have the correct causal structure and allied properties to capture the
dynamics of the field theory holographically. However, as we have seen the
simplest embeddings of such geometries in string theory have not quite re-
alized the hope of finding duals for real-world systems such as fermions at
unitarity. To some extent, this could be anticipated as the following argu-
ment reveals.

Consider, the known class of AdS/CFT examples where one has a large
hierarchy between the conformal dimensions of operators dual to supergrav-
ity fields and those dual to string oscillators. This is familiar from the pro-
totype examples of the correspondence such as N = 4 SYM and strings on
AdS5×S5. The supergravity states correspond to operators whose conformal
dimensions are of O (1) while the stringy states have conformal dimensions
of O

(
λ1/4

)
in the regime where λ � 1. Typical condensed matter and

atomic systems do not exhibit such a large hierarchy of operator dimen-
sions. Perhaps one should learn to do string theory in backgrounds such as
(4.4) in order to realize physical effects more closer to the real world. In
the present case one should also try to understand whether it is possible to
achieve geometries such as (4.4) without recourse to simple deformations of
known supersymmetric field theories.

This article has considered only the basics of the correspondence for non-
relativistic CFTs. Over the past year, many interesting results have been
derived in this context and we refer the reader to the growing literature on
the subject for further details.
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