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Some principal problems of general relativity theory and attempts of
their solution are discussed. The Poincaré gauge theory of gravity as nat-
ural generalization of Einsteinian gravitation theory is considered. The
changes of gravitational interaction in the frame of this theory leading to
the solution of principal problems of general relativity theory are analyzed.
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1. Introduction

Einsteinian general relativity theory (GR) is the base of modern the-
ory of gravitational interaction, relativistic cosmology and astrophysics. GR
allows to describe different gravitating systems at widely changing scales
of physical parameters. At the same time GR possesses certain principal
difficulties, which, in particular, appear in cosmology. One of the most prin-
cipal cosmological problems remains the problem of cosmological singularity
(PCS): various cosmological models describing the evolution of the Universe
have the beginning in time in the past and in accordance with Einstein
gravitation equations the singular state with divergent energy density and
singular metrics appear at the beginning of cosmological expansion. The
PCS is a particular case of general problem of gravitational singularities of
GR appearing by description of gravitating systems at extreme conditions
(extremely high energy densities and pressures) [1]. Other principal prob-
lem of GR is connected with explanation of cosmological and astrophysical
observations. To explain observational cosmological and astrophysical data
in the framework of GR it is necessary to suppose that approximately 96%
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energy in the Universe is related to some hypothetical kinds of gravitating
matter — dark energy and non-baryonic dark matter, and only 4% energy
is related to usual gravitating matter, from which galaxies are built. As a
result, the situation in cosmology and generally in gravitation theory ac-
tually in certain relation is similar to that in physics at the beginning of
XX century, when the notion of “ether” was introduced in order to explain
various electrodynamic phenomena. As it is well known, the creation of
special relativity theory by A. Einstein allowed to solve existed problems
without “ether” notion.

There were many attempts with the purpose to solve indicated prob-
lems of GR. We will discuss briefly the most known from such attempts.
Because in the frame of GR there are not restrictions on admissible values
of energy density, and the energy density can reach the Planckian scale,
according to opinion of many physicists the solution of PCS has to be con-
nected with quantum gravitation theory. A number of regular cosmological
solutions was obtained in the frame of candidates to quantum gravitation
theory — string theory/M-theory and loop quantum gravity [2–5]. Radical
ideas connected with notions of strings, branes, extra-dimensions, space-
time foam etc. are used in these works. Note that indicated works are
not free from some problems and difficulties. So, the obtaining of regular
cosmological solutions in the frame of string theory is connected with the
breakdown of physical condition of energy density positivity for gravitating
matter (see, for example, [2, 3]). Moreover, the most part of cosmological
solutions in string theory by transition to 4-dimensional system of reference
are singular [6]. In connection with this note that the solution of PCS, from
our point of view, means not only obtaining regular cosmological solutions,
but also excluding singular solutions, this means all physically acceptable
cosmological solutions (or the most part of such solutions) in the frame of
correct gravitation theory have to be regular. Bouncing cosmological so-
lutions obtained in loop quantum gravity [4, 5] by more exact calculations
contain gravitational singularity with divergent Hubble parameter [7]. The
dark energy or quintessence as hypothetic kind of gravitating matter with
negative pressure was introduced with the purpose to explain accelerating
cosmological expansion at present epoch in the frame of GR [8]. In many
papers the dark energy is related to vacuum energy leading to cosmological
constant in Einstein gravitation equations. By taking into account that the
vacuum energy density has divergent value in quantum field theory and can
be eliminated by means of regularization procedure, the following question
appears: why only the very small part of it is manifested as cosmological
constant? Unlike dark energy, the distribution of dark matter in space is
not homogeneous; by using the method of gravitational lensing, dark matter
maps of its distribution in the Universe were made [9]. The nature of dark
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matter is unknown yet; according to the opinion of many physicists the dark
matter is formed from weak interacting massive particles (WIMP) revealed
in united supersymmetric models of elementary particles.

There is other treatment with the purpose of the solution of discussed
problems by using non-Einsteinian theories of gravity. So, now one discusses
largely gravitation theory in Riemannian space-time, based on gravitational
Lagrangian in the form of some function of a scalar curvature with the
purpose to solve the dark energy problem of GR (see, for example, [10]).
The phenomenological change of Newton’s dynamics was considered in so-
called MOND in order to solve the dark matter problem [11]. In the frame
of different non-Einsteinian theories of gravity the PCS was also studied.
We do not have an aim to consider here all these theories. Note only that
the most part of various generalizations of Einsteinian theory of gravitation
do not have solid theoretical foundation.

At the same time now there is the gravitation theory built in the frame-
work of common field-theoretical approach including the local gauge invari-
ance principle in 4-dimensional physical space-time, which is a natural gen-
eralization of GR and which offers opportunities to solve its principal prob-
lems. It is the Poincaré gauge theory of gravity (PGTG). The main goal
of this paper is to attract attention to this fact. In Section 2 the question
“Why we need the PGTG?” is considered. In Section 3 the changes of law
of gravitational interaction by certain physical conditions in the frame of
PGTG and their physical consequences are discussed.

2. Why we need the Poincaré gauge theory of gravity?

As it is known, the local gauge invariance principle is the basis of mod-
ern theories of fundamental physical interactions. From the physical point
of view, this principle establishes the correspondence between certain impor-
tant conserving physical quantities, connected according to the Noether the-
orem with some symmetries groups, and fundamental physical fields, which
have as a source corresponding physical quantities and play the role of car-
riers of fundamental physical interactions. The applying of this principle to
gravitational interaction leads, generally speaking, to generalization of Ein-
steinian theory of gravitation. Note that because the sources of gravitational
field are connected with space-time transformations, the gauge treatment to
gravitation has some differences in comparison with Yang–Mills fields con-
nected with internal symmetries groups.

GR and generally metric theories of gravity, in the frame of which the
energy-momentum tensor plays the role of source of gravitational field, can
be introduced by localizing the 4-parametric translations group [12,13]. Be-
cause the localized translations group leads us to general coordinate trans-



232 A.V. Minkevich

formations, from this point of view the general covariance of GR is connected
with gauge approach. At the same time the local Lorentz group (group of
tetrad Lorentz transformations) in GR and other metric theories of grav-
itation does not play any dynamical role from the point of view of gauge
approach, because the corresponding Noether invariant in these theories is
identically equal to zero [14]. The including of the tetrad Lorentz group to
gravitational gauge group leads to the PGTG [15] (see also e.g. [16] and ref-
erences herein). In the frame of PGTG the gauge Lorentz field, which has
transformation properties of anholonomic Lorentz connection [17], is con-
sidered together with orthonormal tetrad as independent gravitational field
variables, as a result the PGTG is gravitation theory in the 4-dimensional
Riemann–Cartan space-time U4. By other words, if one means that the
Lorentz group, which is fundamental group in physics, plays the dynamical
role in the gauge field theory and the Lorentz gauge field exists in the na-
ture, we obtain necessarily the gravitation theory in the Riemann–Cartan
space-time as natural generalization of GR. The torsion tensor Si

µν and the
curvature tensor F ik

µν play the role of gravitational field strengths in PGTG
and are defined by the tetrad hi

µ and the Lorentz connection Aik
µ by the

following way:

Si
µ ν = ∂[ν hi

µ] − hk[µAik
ν] , F ik

µν = 2∂[µAik
ν] + 2Ail

[µAk
|l |ν] , (1)

where holonomic and anholonomic components are denoted by means of
Greek and Latin indices respectively. If one uses minimal coupling of mat-
ter with gravitational field, the energy-momentum and spin tensors play
the role of sources of gravitational field in PGTG. Unlike gauge Yang–Mills
fields, the translational gauge strength — the torsion tensor defined by (1)
— depends also on the Lorentz gauge field. As a result in general case the
torsion can be created by the energy-momentum as well as by the spin mo-
mentum of gravitating matter. Despite the opinion presented in literature
(see, for example, [18]) that the torsion (non-Riemannian space-time charac-
teristics) is essential only for gravitating matter having the spin momentum,
really the torsion can play the principal role in the case of usual spinless
gravitating systems (see below Section 3). Although the direct interaction
of the torsion with minimally coupled spinless matter is absent, the dynam-
ics of such gravitating systems depends essentially on space-time torsion by
virtue of the interaction between metric and torsion fields. Note also that
the correspondence between conserving physical quantities and gauge fields
discussed at the beginning of this Section has some peculiarity in the case
of PGTG. The law of conservation of angular momentum current in the
frame of the field theory in Minkowsky space-time includes together with
the spin also orbital part. The procedure leading to this conservation law
is realized by using the system of orthogonal cartesian coordinates, where
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the coordinate basis and the local Lorentz tetrad coincide, and the origin
of orbital part of angular momentum current is connected with coordinate
transformations essentially and its tensor definition is possible only in this
case. However, the orbital part of angular momentum current is not a source
of gravitational field in PGTG; really it cannot play this role in the frame
of not homogeneous space-time, where its tensor definition does not exist
(cf. [19]). Note also that only localized tensor quantities can be sources of
physical fields. Unlike spin momentum the angular orbital momentum does
not have this property: even in Minkowsky space-time, where tensor def-
inition of angular orbital momentum is possible, its value depends on the
choice of the origin of coordinates system. We will consider below the PGTG
as relativistic gravitation theory in 4-dimensional Riemann–Cartan space-
time, in the frame of which the gravitational field is described by means
of interacting metric and torsion fields and is created by energy-momentum
and spin tensors of gravitating matter.

The structure of gravitational equations of PGTG depends on the choice
of gravitational Lagrangian Lg built by means of gravitational field strengths
(and tetrad or metrics). The simplest PGTG is the Einstein–Cartan theory,
which corresponds to the choice of Lg in the form of scalar curvature of U4

and in the frame of which the torsion and spin tensors are connected by linear
algebraic way [15,20]. The Einstein–Cartan theory is a degenerate theory; in
particular, in the frame of this theory the torsion is equal to zero identically
for spinless matter, although the torsion tensor, as it was noted above, is
gravitational strength corresponding to translations connected with energy-
momentum tensor directly. Similar to Yang–Mills fields the gravitational
Lagrangian of PGTG has to include terms quadratic in gravitational field
strengths. Because explicit form of quadratic part of Lg is unknown, we will
consider PGTG by choosing Lg in general form including various invariants
quadratic in the curvature and torsion tensors:

Lg = f0 F + Fαβµν (f1 Fαβµν + f2 Fαµβν + f3 Fµναβ)

+Fµν (f4 Fµν + f5 Fνµ) + f6 F 2

+Sαµν (a1 Sαµν + a2 Sνµα) + a3 Sα
µαSβ

µβ , (2)

where Fµν = Fα
µαν , F = Fµ

µ, fi (i = 1, 2, . . . , 6), ak (k = 1, 2, 3) are
indefinite parameters, f0 = (16πG)−1, G is Newton’s gravitational con-
stant (the light speed in the vacuum c = 1). Gravitational equations of
PGTG are deduced from the action integral I =

∫

(Lg + Lm)hd4x, where
h = det

(

hi
µ

)

and Lm is the Lagrangian of gravitating matter. Although
the gravitational Lagrangian (2) includes a number of indefinite parame-
ters, gravitational equations of PGTG for homogeneous isotropic models
(HIM) considered below depend weakly on the choice of quadratic part of
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gravitational Lagrangian by virtue of their high spatial symmetry. The in-
vestigation of HIM in the frame of PGTG leads to some important physical
consequences concerning the gravitational interaction for usual gravitating
matter.

3. On gravitational interaction in PGTG

The system of gravitational equations of PGTG corresponding to gravi-
tational Lagrangian (2) in general case is a complicated system of differen-
tial equations. From mathematical point of view, HIM are the most simple
models, for which the system of gravitational equations of PGTG has a
sufficiently simple form. From a physical point of view, the study of HIM
has important cosmological applications. Isotropic cosmology including in-
flationary cosmology in the frame of PGTG was built and investigated in
our works (see [21–26] and references herein). Now we will discuss some
physical consequences of general character following from investigation of
HIM. The dynamics of HIM in PGTG is described in general case by three
functions of time: the scale factor of Robertson–Walker metrics R(t) and
two torsion functions S1(t) and S2(t) determining the form of the torsion
tensor. The functions S1(t) and S2(t) have different properties with respect
to transformations of spacial inversions: unlike S1(t) the function S2(t) has
pseudoscalar character. We will consider two types of HIM: HIM with one
torsion function S1 (S2 = 0) and HIM with two torsion functions.

At first, we will consider HIM with vanishing pseudoscalar torsion func-
tion [21–23] filled by gravitating matter with energy density ρ and pressure
p (the average of spin distribution is equal to zero). In this case gravi-
tational equations of PGTG lead to the following generalized cosmological
Friedmann equations (GCFE):

k

R2
+

{

d

dt
ln

[

R
√

|1 + α (ρ − 3p)|
]

}2

=
8πG

3

ρ + α
4 (ρ − 3p)2

1 + α (ρ − 3p)
, (3)

R−1 d

dt

[

dR

dt
+ R

d

dt

(

ln
√

|1 + α (ρ − 3p)|
)

]

= −
4πG

3

ρ + 3p − α
2 (ρ − 3p)2

1 + α (ρ − 3p)
,

(4)

where indefinite parameter α =
f

3f0
2

> 0 (f = f1+
f2

2 +f3+f4+f5+3f6) has

the inverse dimension of energy density. The GCFE are obtained by using
the expression for the torsion function S1(t) following from gravitational
equations in the form:

S1 = −
1

4

d

dt
ln |1 + α(ρ − 3p)| . (5)
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Because the equations of motion for spinless matter in the frame of PGTG
(by minimal coupling with gravitation) have the same form as in GR, the
conservation law for gravitating matter has usual form:

ρ̇ + 3H (ρ + p) = 0 , (6)

where H = Ṙ/R is the Hubble parameter and a dot denotes the differentia-
tion with respect to time1. The difference of (3)–(4) from Friedmann cosmo-
logical equations of GR is connected with terms containing the parameter α.
The value of α−1 determines the scale of extremely high energy densities.
Solutions of GCFE coincide practically with corresponding solutions of GR,
if the energy density is small |α(ρ − 3p)| ≪ 1 (p 6= 1

3ρ). The difference
between GR and PGTG can be significant at extremely high energy den-
sities |α(ρ − 3p)| ∼ 1, where the dynamics of HIM depends essentially on
space-time torsion.

The structure of GCFE (3)–(4) ensures regular behavior of cosmological
solutions. It is because the gravitational interaction at extreme conditions
changes and has the repulsive character [22]. Unlike the gravitational repul-
sion effect in the frame of Einstein–Cartan theory, which appears for spinning
matter [27] and critically depends on the spin description [28], in the case
of discussed HIM the gravitational repulsion takes place for usual spinless
matter that leads to regularity of ordinary cosmological HIM. In order to
demonstrate this fact in the case of inflationary cosmological models, we will
consider HIM filled with scalar field φ minimally coupled with gravitation
and gravitating matter with equation of state in the form pm = pm(ρm)
(values of gravitating matter are denoted by means of index “m”). Then the
energy density ρ and the pressure p take the form

ρ = 1
2 φ̇2 + V + ρm (ρ > 0) , p = 1

2 φ̇2 − V + pm , (7)

where V = V (φ) is a scalar field potential. Because the energy density ρ
is positive and α > 0, from equation (3) in the case k = +1, 0 follows the
relation:

Z = 1 + α (ρ − 3p) = 1 + α
(

4V − φ̇2 + ρm − 3pm

)

≥ 0 . (8)

The relation (8) is valid also for cosmological solutions of open type (k = −1)

[21]. The domain of admissible values of scalar field φ, time derivative φ̇ and
energy density ρm determined by (8) is limited in space P of these variables
by bound L defined as

Z = 0 or φ̇ = ±
(

4V + α−1 + ρm − 3pm

)1/2
. (9)

1 It is easy to show that the conservation law (6) follows directly from (3)–(4).
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Unlike GR at compression stage the time derivative φ̇ does not diverge, and
by reaching the bound L the transition to the second part of cosmologi-
cal solution containing the expansion stage takes place. From cosmologi-
cal equation (3) by using the conservation law (6) follows that in space P
there are extremum surfaces, in points of which the Hubble parameter van-
ishes [21,23]. Extremum surfaces play the role of “bounce surfaces”, because
the time derivative of the Hubble parameter is positive on the greatest part
of these surfaces in the case of scalar field potentials applying in chaotic
inflation. All cosmological solutions have bouncing character and are reg-
ular with respect to metrics, Hubble parameter and its time derivative. If
gravitating matter satisfies standard conditions (energy density is positive,
energy dominance condition is valid), any cosmological solution is not limited
in the time, and before the expansion stage cosmological solution contains
the compression stage and regular transition from compression to expansion.
Note that the character of gravitational interaction in the frame of PGTG
depends essentially on properties of gravitating matter and at, first of all, on
its equation of state. The effect of gravitational repulsion at extreme con-
ditions in considered HIM takes place by virtue of the following condition
for total energy density and pressure: p > 1

3ρ. In the case of inflationary
HIM including together with usual gravitating matter also scalar fields this
condition is realized at certain moment of compression stage always inde-
pendently on conditions for usual matter: pm = 1

3ρm or pm > 1
3ρm. For

gravitating matter the condition pm > 1
3ρm is valid also at sufficiently high

energy densities [29]. The HIM filled with such a matter without scalar fields
have the limiting energy density, which is reaching at a bounce and is deter-
mined from the relation Z = 0 [30]. During the expansion stage, when the
energy density becomes sufficiently small and the equation of state changes
(p < 1

3ρ), the GCFE lead to additional gravitational attraction in com-
parison with GR and Newton’s theory of gravity. In particular, at matter
dominating stage with equation of state for dust (p = 0), by taking into
account the relation (αρ) ≪ 1, it is easy to obtain from (3)–(4) in the case
k = 0 that

R̈

R
= −

4πG

3
ρ(1 + 9αρ) . (10)

According to (10) the force of gravitational attraction is (1 + 9αρ) times
bigger than in Newton’s theory of gravity.

The space-time torsion in PGTG can lead to gravitational repulsion effect
not only at extreme conditions, but also at very small energy densities. Such
situation takes place in the case of HIM with two torsion functions [24, 26].
Cosmological equations for such HIM include also the pseudoscalar torsion
function S2 with its first time derivative and contain besides α two other
indefinite parameters: b = a2 − a1 with dimension of parameter f0 and
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dimensionless parameter ε, which is the function of coefficients fi. If |ε| ≪ 1,
the pseudoscalar torsion function contains at asymptotics, where physical
parameters of cosmological model are sufficiently small, some not vanishing
value and is equal to:

S2
2 =

1

12b

[

ρ − 3p + α−1 (1 − b/f0)
]

. (11)

As a result cosmological equations at asymptotics take the form of cosmo-
logical Friedmann equations with effective cosmological constant induced by
pseudoscalar torsion function:

k

R2
+ H2 =

1

6b

[

ρ +
1

4
α−1 (1 − b/f0)

2

]

, (12)

Ḣ + H2 = −
1

12b

[

ρ + 3p −
1

2
α−1 (1 − b/f0)

2

]

. (13)

By using at asymptotics the equation of state for dust (p = 0), we see that
cosmological equations (12)–(13) lead to observable accelerating cosmolog-
ical expansion by certain relation between indefinite parameters b and α.
If we suppose that the scale of extremely high energy densities defined by
α−1 is larger than the energy density for quark–gluon matter, but less than
the Planckian one, then we can obtain the corresponding estimation for b,
which is very close to f0. Hence, the acceleration of cosmological expan-
sion in PGTG has geometrical nature and is connected with the change
of gravitational interaction induced by space-time torsion. The investiga-
tion of inflationary HIM with two torsion functions at extreme conditions
at the beginning of cosmological expansion shows that the PGTG allows to
build totally regular inflationary Big Bang scenario by classical description
of gravitational field. If the energy density and values of torsion functions at
transition stage from compression to expansion are less than the Planckian
ones, quantum gravitational era was absent by evolution of the Universe.
If the Planckian conditions were realized at the beginning of cosmological
expansion, quantum gravitational corrections have to be taken into account;
however, classical cosmological equations of PGTG ensure the regular char-
acter of the Universe evolution.

4. Conclusion

From our consideration given above follows that the PGTG can have
the important meaning for theory of gravitational interaction. The PGTG
leads to certain principal differences in comparison with GR concerning the
character of gravitational interaction for usual spinless gravitating matter.
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According to PGTG, the domain of applicability of GR is limited, namely in
the case of cosmological HIM the domain of admissible energy densities has
upper limit determined by α−1 and lower limit equal to 1

4α−1(1−b/f0)
2. The

investigation of HIM with two torsion functions shows that the torsion can
be important in Newtonian approximation (see (11)) and the Newton’s law
of gravitational attraction has limits of its applicability in the case of usual
gravitating systems with sufficiently small energy densities. As it was noted
above, the law of gravitational interaction for such gravitating systems can
include corrections corresponding to additional attraction. This means that
the investigation of not homogeneous gravitating systems at galactic scales,
in particular, of spherically-symmetric systems in the frame of PGTG is of
direct physical interest in connection with the problem of dark matter of GR
with the purpose of its solution.
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