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ENTROPY OF EXTREMAL BLACK HOLES

IN TWO DIMENSIONS
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In this paper we apply the entropy function formalism to the two-dimen-
sional black hole which come from the compactification of the heterotic
string theory with the dilaton coupling function. We find the Bekenstein-
Hawking entropy from the value of the entropy function at its saddle point.
Also we consider higher derivative terms. After that we apply the entropy
function formalism to the Jackiw–Teitelboim (JT) model where we consider
the effect of string-loop to this model.

PACS numbers: 04.70.Dy, 04.70.–s

1. Introduction

The entropy function method is appropriate way to determined the en-
tropy of two-dimensional black hole, since in two-dimensional black hole the
horizon is a point, then horizon area simply vanishes and seems entropy
must to be zero. However in two-dimensional dilaton gravities [1–4], it has
been shown that the entropy is proportional to the value of the dilaton field
at the horizon.

Recently, it has been proposed by Sen [5] that the entropy of a specific
class of extremal black hole in higher derivative gravity can be calculated
using the entropy function formalism. According to this formalism, the en-
tropy function for the black holes which have the near horizon geometry
AdS2 × SD−2 is defined as 2π times the Legendre transformation (with re-
spect to the electric charges ) of the integration of the Lagrangian over the
spherical coordinates on the horizon in the near horizon field configurations.
The result is a function of moduli scalar fields as well as the sizes of AdS2
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and SD−2. The values of moduli fields and the sizes are determined by ex-
tremizing the entropy function with respect the moduli fields and the sizes.
Moreover, the entropy is given by the value of the entropy function at the
extremum. So, the entropy function [5] can derived from Wald’s formula [6],
for these aim one first rewrite the Lagrangian density in terms of value of
fields near horizon, and then taking the Legendre transform of the resulting
function with respect to the electric field [6,7]. The near horizon geometry
of the extremal black hole is determined by extremizing the entropy function
and the black hole entropy is given by the extremum value of the entropy
function. This general method is an easier way to calculate the black hole
entropy.

Entropy function analysis provides a good understanding of the attractor
mechanism for spherically symmetric extremal black holes if:

1. We consider a theory of gravity coupled to Abelian (p-form) gauge
fields and neutral scalar fields.

2. The Lagrangian density f is gauge and general coordinate invariant.

3. Define an extremal black hole to be one whose near horizon geometry
is AdS2 × S2 (in D = 4).

In this approach, the theory need not be supersymmetric and f could
contain higher derivative terms. For such black holes one can define an
‘entropy function’ F as follows:

F = 2π[qiǫi − f ] , (1)

where qi denote electric charges, and ǫi are near horizon radial electric field.
F is a function of the qi and various parameters labeling the SO(2, 1)×SO(3)
symmetric near horizon background (e.g. sizes of AdS2 and S2, vacuum
expectation value of scalars, radial electric fields, radial magnetic fields).
Then for a black hole with given electric charges q and magnetic charges p,
all other near horizon parameters are obtained by extremizing F with respect
to these parameters. And finally the entropy is given by the value of F at
its extremum.

So, in Sec. 2 we calculate the entropy function for two-dimensional ef-
fective heterotic string theory. In that case the function of the dilaton Φ

appearing as a common factor of the corresponding action is given by some
series. By considering this series we account the string tree level contribu-
tion [8–11] and string-loop affect to the entropy function and obtained the
entropy of system. In Sec. 3 we apply the entropy function formalism to the
Jackiw–Teitelboim (JT) model [3].
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2. Two-dimensional effective heterotic string theory

First we consider the two-dimensional gravity, which may come from
the compactification of the heterotic string theory with the dilaton coupling
function B(Φ), U(1) gauge field F and the two-dimensional cosmological
constant λ. The action is given by,

S =
1

2π

∫

d2x
√
−gB(Φ)

[

R + 4(∇Φ)2 + 4λ2 − F 2

4

]

, (2)

where
B(Φ) = e−2Φ + C0 + C1e

2Φ + C2e
4Φ + · · · . (3)

The first term on the right-hand side is the string tree level contribution
[9, 10]. The higher terms represent the string-loop effects. Apart from the
fact that B(Φ) is a series in powers of exp(2Φ), little is known about the
global behavior of the dilaton coupling function B(Φ). Now we are going to
apply this theory to the Callan–Giddings–Harvey–Strominger (CGHS) [2].
In this model the authors investigated theory of quantum gravity coupled
to a dilaton and conformal matter in two space-time dimensions, also they
have shown that the theory is exactly solvable classically. In this paper the
problem of Hawking radiation and back reaction of the metric is analyzed
to leading order in a 1

N
expansion, where N is the number of matter fields.

The quantum nature of the black hole is also discussed.
So, the near horizon solutions of the static charged black hole which has

SO(2,1) symmetry for the action (2) can be written as

ds2 = v

(

−r2dt2 +
1

r2
dr2

)

,

φ = u ,

Frt = ǫ , (4)

where φ = e−2Φ.
Here u, v and ǫ are constants which can be determined in terms of the

charge q and cosmological constant λ. Note that the covariant derivatives of
the Riemann tensor, the scalar field and the gauge field strength all vanish
in this near horizon geometry. This plays an important role to construct
Sen’s entropy function from Wald’s formula. Therefore, by using Eq. (4) the
Lagrangian density becomes,

f(u, v, ǫ) =
v

2π
B(u)

[

−2

v
+ 4λ2 +

ǫ2

2v2

]

, (5)

where B(u) = u+C0 + C1

u
+ · · ·. Here we kept just three terms from dilaton

coupling function.
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From Eq. (5) one can finds the electric charged as,

q =
∂f

∂ǫ
=

ǫB(u)

2πv
. (6)

Now, the entropy function is defined as the Legendre transformation of the
Lagrangian density with respect to the gauge field ǫ,

F (u, v, q) = 2π[qǫ − f ] = vB(u)

[

2

v
− 4λ2 +

2π2q2

B2(u)

]

. (7)

The undetermined parameter u and v can be fixed by the equations of mo-
tion, which becomes the extremum equations as,

∂F

∂v
(ue, ve) =

[

−4λ2B(ue) +
2π2q2

B(ue)

]

= 0 , (8)

and
∂F

∂u
(ue, ve) =

[

2 − 4λ2ve −
2π2q2ve

B2(ue)

]

= 0 . (9)

Eqs. (8) and (9) yield solutions,

ue =
1

2

((

πq√
2λ

− C0

)

+

√

(
πq√
2λ

− C0)2 − 4C1

)

,

ve =
1

4λ2
. (10)

The entropy is given by the value of the entropy function at the extremum,

SBH(q) = F (ue, ve, q) = 2

(

ue + C0 +
C1

ue

)

. (11)

Therefore the string-loop correction give us the entropy as Eq. (11). Our
results in case of C0 = C1 = 0 agree with Refs. [11–12].

Now let us consider the effect of higher derivative terms. Since in two
dimensions Riemann tensor and Ricci tensor can be expressed in terms of
Ricci scalar, it is sufficient to consider the higher derivative terms of the form
Rn. This means we must do replacement R →

∑

anRn = R + a2R
2 + · · ·.

Due to higher derivative terms the corresponding action can be written by

S =
1

2π

∫

d2x
√
−gB(Φ)

[

R +
∑

anRn + 4(∇Φ)2 + 4λ2 − F 2

4

]

, (12)

so the entropy function is,

F = vB(u)

[

2

v
− 4λ2 +

2π2q2

B2(u)
−

∑

an

(

−2

v

)n]

. (13)
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We note that the entropy (11) is modified as,

Smod = B(ue)
[

2 −
∑

nan(−2)nv1−n
e

]

. (14)

Also Eqs. (8) and (9) are modified as

∂F

∂v
(ue, ve)=

[

−4λ2B(ue)+
2π2q2

B(ue)
−B(ue)

∑

(1−n)an(−2)nv−n
e

]

=0 , (15)

and

∂F

∂u
(ue, ve) =

[

2 − 4λ2ve −
2π2q2ve

B2(ue)
−

∑

an(−2)nv1−n
e

]

= 0 . (16)

Using these equations, the entropy (14) can be written in terms of q,

Smod =
4π2q2ve

(

ue + C0 + C1

ue

) . (17)

3. Jackiw–Teitelboim (JT) model

Another interesting model in two-dimensional gravity is the Jackiw–
Teitelboim (JT) model [3]. We add the effect of string-loop to this model.
Moreover in order to study the extremal charged black hole, one can include
a gauge field in the model with the following form of the action,

S =
1

2π

∫

d2x
√
−gB(Φ)

[

R + 4(∇Φ)2 + 4λ2 − B2(Φ)
F 2

4

]

. (18)

The near horizon solutions are same as Eq. (4). Therefore one can study the
black hole entropy in the similar way. As before the entropy function F is
the Legendre transform of the Lagrangian density f in terms of the electric
field.

F (u, v, q) = vB(u)

[

2

v
− 4λ2 +

2π2q2

B4(u)

]

, (19)

where the electric charge is given by,

q =
ǫB3(u)

2πv
. (20)

Extremizing the entropy function with respect to v and u,

∂F

∂v
(ue, ve) =

[

−4λ2B(ue) +
2π2q2

B3(ue)

]

= 0 , (21)
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and
∂F

∂u
(ue, ve) =

[

2 − 4λ2ve −
6π2q2ve

B4(ue)

]

= 0 , (22)

provides the extremizing solutions,

ue =
1

2





(
√

πq√
2λ

− C0

)

+

√

(
√

πq√
2λ

− C0

)2

− 4C1



 ,

ve =
1

8λ2
. (23)

By plugging these back into the entropy function, we obtain the black hole
entropy as

SBH(q) = 2

(

ue + C0 +
C1

ue

)

=

√

πq√
2λ

(24)

which agree with the results of Ref. [13]. We can consider the higher deriva-
tive corrections in the similar way. In that case one can find,

Smod =
4π2q2ve

(

ue + C0 + C1

ue

)4
. (25)

4. Conclusion

The entropy formalism describes the attractor equations and black hole
entropy in a general non-supersymmetric and higher derivative gravity the-
ory. In this formalism, the near horizon geometry is determined by extrem-
izing a single entropy function F . The entropy of the black hole is given by
the value of F at the extremum. In this paper we use the entropy function to
obtain entropy of two-dimensional charged black hole. We study two models
in dilaton gravity and also consider the effect of string loop in both models,
and generalized it, then find correct entropy. Finally we obtain modified en-
tropy under effect of higher derivative terms. In this work we consider just
three terms of dilaton coupling function. If we include higher order terms to
this theory we will find same entropy, but in this case the value of dilaton
field at horizon will be different.
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