
Vol. 40 (2009) ACTA PHYSICA POLONICA B No 2

PARNI FOR IMPORTANCE SAMPLING

AND DENSITY ESTIMATION∗

André van Hameren†

H. Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences

Radzikowskiego 152, 31-342 Kraków, Poland

(Received October 28, 2008)

We present an aid for importance sampling in Monte Carlo integration,
which is of the general-purpose type in the sense that it in principle deals
with any quadratically integrable integrand on a unit hyper-cube of arbi-
trary dimension. In contrast to most existing systems of this type, it does
not ask for the integrand as an input variable, but provides a number of
routines which can be plugged into a given Monte Carlo program in order
to improve its efficiency “on the fly” while running. Due to the nature of
its design, it can also be used for density estimation, i.e., for the analysis
of data points coming from an external source.

PACS numbers: 02.70.Rr

1. Introduction

Numerical integration often is the only solution to integration problems
encountered in scientific research. If the space over which the integral has to
be performed, the integration space, has many dimensions, the Monte Carlo
method usually appears to be the only feasible option. It has the advantage
that it works for any quadratically integrable function, but the disadvantage
that the convergence rate may be low, i.e., that many function evaluations
may be needed to obtain a result to acceptable accuracy. Via the method of
importance sampling, however, it is possible to translate information about
the integrand into an enhancement of the rate of convergence, in principle
up to the point where only one function evaluation is needed to complete
the integral. In the latter case, the integration problem has essentially been
solved analytically.

∗ Supported in part by the EU RTN European Programme, MRTN-CT-2006-035505
(HEPTOOLS, Tools and Precision Calculations for Physics Discoveries at Colliders)
and by the Polish Ministry of Scientific Research and Information Technology grant
No 153/6 PR UE/2007/7 2007–2010.

†
Andre.Hameren@ifj.edu.pl

(259)



260 A. van Hameren

Obviously, information about the integrand is obtained during the Monte
Carlo integration process itself through the evaluation of the integrand at
the integration points. Importance sampling based solely on this informa-
tion is called adaptive importance sampling. It is the last resort to improve
the rate of convergence, possibly only applied to a sub-region of the inte-
gration space. In particular, it can be useful for so called general-purpose

integration systems which are supposed to be able to deal with many dif-
ferent integrands. Several such systems have been developed and are being
used extensively in the field of elementary particle phenomenology [1–5].
Most of these use the evaluated integration points to adapt the treatment
of sub-spaces in which they are generated during the integration process.

The ability to apply importance sampling successfully implies the avail-
ability of a probability density which has a shape comparable to the shape
of the absolute value of the integrand. An attempt to use importance sam-
pling is essentially the search and construction of such a probability density.
Consequently, given such a density, one can generate points in the integra-
tion space which are distributed following the shape of the absolute value
of the integrand, or at least one has a tool to increase the efficiency of such
generation process using straightforward methods like rejection. This is an
important issue if one wants to perform Monte Carlo simulations, and in
fact, many of the aforementioned general-purpose systems have been de-
signed also with this goal in mind.

One technical item most of the mentioned general-purpose systems have
in common is that they are integrators, possibly providing the probabil-
ity density to be used for simulation after the integration process. More
specifically, the integrand is an input variable, and the integration process is
performed by the system itself. Sometimes, however, one has his own Monte
Carlo program, and one would like to improve parts of it with adaptive im-
portance sampling “on the fly”, without having to turn it into a function
that can be used as the input in an initial “integration phase”. In this write-
up, we present the program PARNI, which has been designed with exactly
this in mind. It consists, apart of a trivial initialization, essentially of three
routines which can be called inside a Monte Carlo program; one for the gen-
eration of integration points, one to return their weights, and one to collect
the evaluated function values at those points. The collection routine builds
the probability density with which the integration points are generated, and
works independently from the generation routine. This means it can take
points from another generation process, and estimate the density following
which they are generated. In particular, the function evaluation may be ab-
sent and all points may have weight one, so that PARNI can serve as a pure
density estimator.



PARNI for Importance Sampling and Density Estimation 261

The outline of the paper is as follows. In Section 2 an issue concerning the
possible overestimation of integration errors when using adaptive importance
sampling is addressed. Section 3 explains how the algorithms work on which
PARNI is based. In Section 4 a technical detail concerning its architecture is
addressed. Section 5 explains how the program is used, and Section 6 gives
some examples. Section 7 finally contains the summary.

The program, finally, can be obtained upon request from the author.

2. Adaptive importance sampling

In this section we address an issue in the application of adaptive im-
portance sampling in Monte Carlo integration concerning possible overes-
timates of the integration error. First of all, we assume that the integra-
tion/generation problem has been formulated such that the integration space
is a hyper-cube ID = [0, 1)D of a certain dimension D. Monte Carlo inte-
gration is based on the fact that for a quadratically integrable function f
and a sequence of points (xi)

n
i=1 in the hyper-cube distributed independently

following a probability density g, the distribution of the average of the ratio
f/g over the sequence converges, following the Central Limit Theorem, to
a Gaussian distribution with expectation value

E

(

1

n

n
∑

i=1

f(xi)

g(xi)

)

=

∫

ID

f(x) dDx , (1)

and variance

V

(

1

n

n
∑

i=1

f(xi)

g(xi)

)

=
1

n

[
∫

ID

f(x)2

g(x)
dDx −

(
∫

ID

f(x) dDx

)2 ]

. (2)

Therefore, the average can be interpreted as an estimate of the integral,
with a possible integration error given by the square root of its variance.
The variance can be estimated by

1

n − 1

[

1

n

n
∑

i=1

f(xi)
2

g(xi)2
−

(

1

n

n
∑

i=1

f(xi)

g(xi)

)2 ]

, (3)

and approaches zero for large values of n. The only restrictions on the
density g are that it is non-zero on the support of f , and that there is an
algorithm available to generate the sequence of points distributed following
this density which is not too complex. Of course, the evaluation of the
density at the integration points should be feasible, or say, should not be
much more complex than the evaluation of the integrand. A first candidate



262 A. van Hameren

for the density g is unity on the hyper-cube. Importance sampling is the
attempt to construct a density g such that the variance (2) is, for a given
value of n, as small as possible.

In adaptive importance sampling, the evaluated integration points are
used to update the density during the integration process. In this case, the
Lévi Central Limit Theorem, which is the basis for the version of Monte Carlo
integration presented above, does not hold anymore since it applies only in
case the points are independently identically distributed. Theoretically, this
does not need to be problem since the Martingale Central Limit Theorem

may still apply [6]. In practice, however, it means that the integration error
is possibly unnecessarily overestimated. To see how this happens, assume
that a batch of n points has been generated with density g1, and another
batch with density g2 which possibly depends on the first batch of data. The
straightforward Monte Carlo estimate of the integral would be

Y =
X1 + X2

2
with X1 =

1

n

n
∑

i=1

f(xi)

g1(xi)

and X2 =
1

n

2n
∑

i=n+1

f(xi)

g2(xi)
. (4)

The variance of the estimate is given by1

V(Y ) =
V(X1) + V(X2)

4
. (5)

If the process by which g2 is updated using the first batch of data is efficient
enough, it may happen that V(X2) < 1

3V(X1), and the result for the integral
using both batches may be worse than the result using only the second batch.

The straightforward solution to this problem is to introduce an “opti-
mization phase” in the integration process, in which points are generated
and the integrand is evaluated to adapt the density, but do not contribute
to the final estimate of the integral. The integral is estimated in a second
“integration phase”, in which the optimized density is not changed anymore,
and the Lévi Central Limit Theorem applies.

The optimal solution would be to weigh the contributions with the in-
verse of the variance, i.e., to take

Y =
V(X1)V(X2)

V(X1) + V(X2)

(

X1

V(X1)
+

X2

V(X2)

)

. (6)

1 The correlation E(X1X2) − E(X1)E(X2) is zero. This is an indication for the mar-
tingale structure of a sequence of Monte Carlo estimates using adaptive importance
sampling.



PARNI for Importance Sampling and Density Estimation 263

This choice gives the minimum variance for Y , however, the variances have
to be estimated too, and replacing them by their estimates in the above
formula would lead to a biased estimator for the integral of f .

A third option is to weigh contributions of equal sized batches of integra-
tion points, which are generated with the same density, with pre-determined
weights. PARNI in particular generates batches of constant size with the same
density, and uses the information from a whole batch at once to update the
density, with which the next batch is generated. Weighing the contributions
with the order in the sequence, such that the first batch gets a relative weight
equal to 1, the second batch gets a relative weight equal to 2 etc., appears
to be a safe choice in the sense that the contribution of the early batches is
relatively low and the problem sketched above is avoided.

3. The algorithm

The main ingredient of the algorithm PARNI uses to build the probability
density is to divide the hyper-cube into sub-regions on which the density is
constant, in a way similar to other systems, in particular the one in [3].
The second ingredient is to consider the probability density a weighted sum
of probability densities restricted to those sub-regions. This is essentially
an application of the multi-channel method [7]2. It excellently suits the
task of updating the probability density “on the fly”, by collecting batches of
integration points of constant size during the generation of which the density
is not changed. The disadvantage is that it requires extra memory during
the computation, since the weights of all the sub-densities have to be stored,
something which is avoided for example in [3].

To be more specific, at a given stage during the Monte Carlo computa-
tion, the density is given by

g(x) =

m
∑

k=1

wkgk(x) , (7)

where each gk is the constant probability density on a sub-region Ak of the
hyper-cube, and the weights wk are positive and sum up to 1

m
∑

k=1

wk = 1 . (8)

The regions are non-overlapping hyper-rectangles, and their union is the
hyper-cube:

∀k 6=l Ak ∩ Al = ∅ and
m
⋃

k=1

Ak = ID . (9)

2 Notice the difference with the application of the multi-channel method in [8], where
each channel consists of a probability density on the full hyper-cube.



264 A. van Hameren

A triple (Ak, gk, wk) will be referred to as channel number k.
The creation of new channels is incorporated such that it aims at equidis-

tribution, i.e., it aims at moving the values of the channel weights towards
the average 1/m. Given a batch of evaluated integration points and a method
how to update the weights, one of the updated weights, say wk, will be the
largest. Hyper-rectangle Ak is divided into two equal sized pieces, and gk

becomes a weighted sum of two probability densities. The weight of each of
these new densities in the full sum of densities simply becomes half of the
original updated weight. The division of the original rectangle happens such
that it is cut in the middle perpendicularly to the dimension along which
it has the longest edges. If it has several dimensions for which the edges
are of equal length and the longest, one of them is chosen at random. This
way, the hyper-rectangles tend to have the shape of hyper-cubes. After one
division, we have a new set of m′ = m + 1 channels. The division process is
repeated until the weight efficiency

1

m′ maxk wk

(10)

does not increase anymore (notice that m′ increases while maxk wk decreases
with each division).

We have reserved a few options how to update the weights before the
division process. In order to achieve variance minimization, the relative
weights should be taken proportional to3

wk ∝
√

√

√

√
vol(Ak)2

∫

ID

f(x)2gk(x) dDx , (11)

where vol(Ak) is the volume of sub-region Ak. The integral is estimated by

F
(2)
k /F

(0)
k , where

F (k)
p =

∑

xi∈Ak

f(xi)
p . (12)

We do not calculate the numbers F
(k)
p per batch, but calculate them in-

crementally during the whole adaptation process, by dividing them by 2 if
the corresponding channel is divided into two pieces during the creation of
channels.

Variance minimization might not lead to the optimal density to be used
for simulation purposes; the density with which the simulation is most effi-
cient. For this, a more point-wise recovery of the integrand may be desirable.

3 Realize that gk is a probability density, so it is the indicator function of Ak divided
by the volume of Ak.



PARNI for Importance Sampling and Density Estimation 265

Better results may be expected by putting the relativeweights proportional to

wk ∝ vol(Ak)

∫

ID

f(x)gk(x) dDx . (13)

The integral is estimated by F
(1)
k /F

(0)
k .

In the case of PARNI used for the task of density estimation, implying
that only the full weight coming with each data point is supplied, the channel
weights are put proportional to

wk ∝ S
(1)
k , (14)

where
S

(p)
k =

∑

xi∈Ak

sp
i (15)

and si is the weight coming with xi. This way essentially a multi-dimensional
histogram with non-equal sized bins is being built.

With the creation of more and more channels, more and more memory is
needed, which may not be available anymore at some point. PARNI provides
the option to set a maximum to the number of channels. If this number
is reached, PARNI will continue to divide channels, but it will also start to
merge channels in order to keep the total number close to the maximum set.
Merging is performed with the channels which came from the same parent
channel during the division process, and have the smallest sum of weights
of all such pairs. The original parent hyper-rectangle is restored, and it gets
a channel weight which is the sum of the weights of the pair of daughter

channels. Also the values of the quantities F
(p)
k and S

(p)
k are obtained by

adding those of the daughters together.

4. Binary-tree structure

One technical detail which is worth mentioning because it highly con-
tributes to the computational efficiency of the program is that the structure
of sub-spaces is, like in [3], organized in a binary-tree structure. So for every
hyper-rectangle, the program keeps track of the parent it was created from
by the division process, and the daughters created by its own division. This
means that the program keeps track of twice as many hyper-rectangles as
there are channels, but this disadvantage is fully compensated by the in-
crease in computational efficiency. For example, in order to evaluate the
built density at a given point in the hyper-cube, the hyper-rectangle has to
be found in which the point is situated. Because of the binary-tree structure
this can be done very quickly with a binary search. Also for the genera-
tion of a point in the hyper-cube following the built density a binary-tree



266 A. van Hameren

search is used. The channel weights are put in a row on the unit interval,
and a random number is thrown in. Now the interval, corresponding to the
weight in the row, has to be found in which this random number exactly fell.
This interval then corresponds to the channel delivering the next integration
point.

5. Use of the program

The program is written in Fortran77 using long names, underscores in
names, enddo and do while statements. It has been designed in such way
that an arbitrary number of instances of the algorithm can work in parallel,
dealing with completely different integrands living in different numbers of
dimensions. Before PARNI can be used, some integer type global parameters
have to be set. This happens in the header-file avh_parni.h. There is
avh_parni_size, which is a measure of the total amount of memory one is
willing to spend on all instances of PARNI together. The amount consists of
the equivalent of this parameter times 4 double precisions plus 6 integers.
Then there is avh_parni_ncopy, setting the maximal number of instances
of PARNI, and finally there is avh_parni_dim, setting the largest dimension
an instance of PARNI may be ordered to deal with.

Next, the user of the program has to implement the contents of the the
routine

subroutine avh_parni_random(rho ,nn)

which is supposed to generate double precision arrays rho of arbitrary length
nn consisting of uniformly distributed (pseudo) random numbers. In practice
one line with a call to an external routine of this type will suffice.

An instance of PARNI has to be initialized before the Monte Carlo loop
with

call avh_parni_init(ID ,itask ,ndimen ,nbatch ,nchmax)

All variables are input and integers, and the first one, ID, is the id of the
instance of PARNI. This number should be larger than 0 and not larger than
the value of avh_parni_ncopy. The second one, itask, specifies the way the
channel weights are updated. The choice itask=1 corresponds to Eq. (13)
and itask=2 corresponds to Eq. (11). For the task of density estimation,
one has to put itask=11. The third input variable, ndimen, specifies the
number of dimensions of the hyper-cube. The fourth input variable, nbatch,
specifies the size of the batches of data points to be collected before a new
adaptation step is performed. The larger this number, the more conservative
the algorithm and the less channels will be created for a given total number
of data points. From experience we find that this number should best be



PARNI for Importance Sampling and Density Estimation 267

of the order of the square-root of the total number of data points that is
expected to be encountered. The fifth input variable, nchmax, is the maximal
number of channels one wishes to reach. If its value is put to 0, the number
of channels will grow indefinitely.

Inside the Monte Carlo loop, an integration point distributed following
the density built so far is generated by

call avh_parni_generate(ID ,xx)

The first variable, ID, is input and is the id of the instance of PARNI. The
second variable, xx, is output consisting of a double precision array of length
ndimen, where the latter is the number given on input at the initialization
of this instance of PARNI. This integration point is stored together with its
weight, and these data are returned by

call avh_parni_weight(ID ,ww,xx)

Here, the weight ww and the point xx are output. One can obtain the value
of the built probability density at any point inside the hyper-cube with the
function

avh_parni_density(ID ,xx)

Here, xx is input. The weight coming with an integration point is given by 1
divided by the number obtained by evaluating this function at the generated
point. A data point is collected for the adaptation of the density with

call avh_parni_adapt(ID ,value ,xx)

All variables are input. The third one, xx, is the data point in the hyper-
cube, and the second one, value, is the full weight coming with this point,
so including the weight from the generation of PARNI itself in the case of
importance sampling.

Besides the necessary routines described above, there are some diagnostic
routines available. With

call avh_parni_marg(ID ,nunit ,label)

for each dimension a file is created with two columns of data corresponding to
the marginal density in that dimension. In other words, it gives the density
obtained when all other dimensions are “integrated out”. The integer input
variable nunit refers to the unit the file is written to, and label is, if it is
chosen to be positive, an extra label to the file name. If, for example, ID=13
and label=25, then the file name with the marginal density of dimension
number 2 is PARNI13d2_25.

In the case when the integration space is 2-dimensional, the density can
be visualized with the file created by



268 A. van Hameren

call avh_parni_plot(ID ,nunit ,label)

In the example above, the name of the file name will be PARNI13p_25. It is
in a format to be used by gnuplot [9]:

gnuplot> plot ’PARNIp13_25’ w l

will visualize the 2-dimensional structure of rectangles, whereas

gnuplot> splot ’PARNIp13_25’ w l

will visualize a full 3-dimensional picture of the density.
The number of channels which finally has been reached is send to stan-

dard output by

call avh_parni_result(ID)

Also an integration estimate with error estimate are printed, but the latter
may be an overestimation.

Finally we want to remark that the program is distributed over 3 source
files with a total length of less than 1500 lines including comments, and
that the names of all subroutines, functions and common blocks start with
avh_parni.

6. Some examples

A typical problem in a general purpose Monte Carlo program for ele-
mentary particle phenomenology is that certain variables which have to be
generated may be distributed very differently for different processes. An ex-
treme example would be a distribution consisting of a sharp delta-like spike
with an unknown position. In order to simulate this situation, we use PARNI

to integrate a function consisting of a truncated Cauchy-density

f(x) =
N(x0, ε)

(x − x0)2 + ε2
, (16)

where N(x0, ε) is the normalization such that the correct integral is equal
to 1. We take x0 = 0.6 and ε = 10−5, so that relative to the unit interval the
density becomes a sharp delta-like spike. In Fig. 1 we show the density built
by PARNI after 104 integration points applied to the adaptation in batches
of 102. We did not restrict the number of channels, and PARNI created 202
of them. To give a quantitative measure of the result: integration of the
integrand with importance sampling using this density (so after its creation,
not during) is done with a crude efficiency4 of about 23%. Without any

4 The average weight divided by the maximal weight in the Monte Carlo process.



PARNI for Importance Sampling and Density Estimation 269

0

5000

10000

15000

20000

25000

30000

0 0.2 0.4 0.6 0.8 1
0

5000

10000

15000

20000

25000

30000

0.60010.60.5999

Fig. 1. The density built by PARNI during the integration of the function in Eq. (16)

with ε = 10−5. The picture on the right is a zoom-in.

importance sampling, the Monte Carlo integration of this integrand would
be performed with a crude efficiency of 0.0037%.

The program VEGAS [1] works very well for multi-dimensional integration
problems for which the integrand is factorisable over the dimensions, i.e.,
when the integrand can be seen as a product of integrands with each of
them depending on only one of the dimensions. In the second example, we
visualize why it is very important to use this knowledge about the integrand
when available. We choose an integrand which is the product of truncated
Cauchy-densities

f(x, y) =
N(x0, a)

(x − x0)2 + a2
· N(y0, b)

(y − y0)2 + b2
, (17)

with (x0, a) = (0.6, 0.02) and (y0, b) = (0.33, 0.04). Now we attack the
integration problem in two different ways. In the first approach, we let
one instance of PARNI deal with the full 2-dimensional problem at once.
A rudimentary Monte Carlo program in this approach would look like

call avh_parni_init(1,itask,2,nbatch,nchmax) ! ndimen=2

result = 0d0

do iev=1,nev

call avh_parni_generate(1,x)

weight = integrand(x(1),x(2))

& / avh_parni_density(1,x)

call avh_parni_adapt(1,weight,x)

result = result+weight

enddo

result = result/nev



270 A. van Hameren

In the second approach, we let two instances of PARNI deal with the prob-
lem, each of them with one of the dimensions. A rudimentary Monte Carlo
program in this approach would look like

call avh_parni_init(1,itask1,1,nbatch1,nchmax1) ! ndimen=1

call avh_parni_init(2,itask2,1,nbatch2,nchmax2) ! ndimen=1

result = 0d0

do iev=1,nev

call avh_parni_generate(1,x1)

call avh_parni_generate(2,x2)

weight = integrand(x1,x2)

& / avh_parni_density(1,x1)

& / avh_parni_density(2,x2)

call avh_parni_adapt(1,weight,x1)

call avh_parni_adapt(2,weight,x2)

result = result+weight

enddo

result = result/nev

In order to compare the two approaches in a fair way, we demand that
the sum of the number of channels used by the two instances in the latter
approach should be the same as the number of channels used by the one
instance in the former approach. Fig. 2 depicts the density built using 105

integration points in batches of 316 in the first approach. The number of
channels is 200. The picture on the right is the top-view of the picture on
the left, and shows the structure of rectangles. The picture on the left of
Fig. 3 shows the marginal densities in the two dimensions for this case. The
picture on the right, on the other hand, shows the density built by each of
the instances of PARNI in the second approach. In this picture, the densities
look much nicer because more “bins” are available, namely 100 for each of

0 0.2 0.4 0.6 0.8 1 0
0.2

0.4
0.6

0.8
1

0
2
4
6
8

10
12
14

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Fig. 2. Density (left) and structure of rectangles (right) built during the integration

of the integrand in Eq. (17).



PARNI for Importance Sampling and Density Estimation 271

0

2

4

6

8

10

12

14

16

0 0.2 0.4 0.6 0.8 1

dim 1

dim 2

0

2

4

6

8

10

12

14

16

0 0.2 0.4 0.6 0.8 1

dim 1

dim 2

Fig. 3. Marginal densities obtained with one instance of PARNI dealing with the full

problem (left) and with the VEGAS-approach (right), using the same total number

of channels.

them, whereas in the picture on the left this number is only of the order
of

√
200. Since we are dealing with a factorisable integrand, we know that

the marginal densities are sufficient to capture all information about the
integrand, and we can thus confirm visually that the second, VEGAS-like,
approach works much better. This is also shown more quantitatively by the
crude efficiency of the integration of the integrand using the densities (again
after their creation, not during): 66% for the VEGAS-approach against 15%
for the other approach.

When the integrand is not factorisable, VEGAS does not work so well, and
for example [3] has particularly been designed to deal with this problem.
Also PARNI can deal with non-factorisable integrands, and as an example,
we give some results for a 2-dimensional integration problem in which the
support of the integrand is concentrated around a circle. It is proportional
to

f(x, y) ∝ exp

(

− (r − c)2

d2

)

with r =
√

(x − a)2 + (y − b)2 , (18)

and we put a = 0.57, b = 0.62, c = 0.3 and d = 0.01. The structure of
rectangles built by PARNI after 106 integration points in batches of 103 is
shown in Fig. 4. We did not put a restriction on the number of channels
to be created, and PARNI created 1819 of them. If we try to deal with this
integrand using the VEGAS-like approach, around 2800 channels are created
for either dimension. Still, the integration is less efficient: with the same
number of integration points, the VEGAS-like approach reaches an estimate of
the relative error of 0.24%, whereas the approach with one instance dealing
with the full problem reaches an estimated 0.081%. In comparison, without
any importance sampling, one reaches an estimated relative error of 0.43%.



272 A. van Hameren

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Fig. 4. Structure of rectangles built during the integration of the integrand in

Eq. (18).

7. Summary

We presented the program PARNI, a practical aid for importance sampling
in Monte Carlo integration. It adapts automatically to integrands on the unit
hyper-cube of in principle any dimension, and can therefore be considered to
be of the general-purpose type. However, it does not ask for the integrand
as an input variable, but provides a number of routines which should be
incorporated into an existing Monte Carlo program, so that the optimization
happens “on the fly” while the Monte Carlo is running. The generation of
integration points and the adaptation of the probability density following
which they are generated happen independently, and the program can also
be used only to adapt the probability density using data from another source.
In other words, it can also be used as a pure density estimator. The program
can be obtained upon request from the author.

REFERENCES

[1] G.P. Lepage, J. Comput. Phys. 27, 192 (1978).

[2] S. Kawabata, Comput. Phys. Commun. 88, 309 (1995).

[3] S. Jadach,Comput. Phys. Commun.152, 55 (2003) [arXiv:physics/0203033].

[4] T. Hahn, Nucl. Instrum. Methods A559, 273 (2006) [arXiv:hep-ph/0509016].

[5] P. Nason, arXiv:0709.2085 [hep-ph].

[6] A.F.W. van Hameren, arXiv:hep-ph/0101094.

[7] R. Kleiss, R. Pittau, Comput. Phys. Commun. 83, 141 (1994).

[8] T. Ohl, Comput. Phys. Commun. 120, 13 (1999) [arXiv:hep-ph/9806432].

[9] http://www.gnuplot.info/


