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We analyze stationary accretion of self gravitating gas onto a compact
center within general-relativistic radiation hydrodynamics. Spherical sym-
metry and thin gas approximation are assumed. Numerical investigation
shows that transonic flows exist for small redshifts and they cease to exist
for high redshifts and high luminosities. There exist two branches of flows
(subsonic or supersonic) that originate at a bifurcation point and that em-
brace the set of subsonic solutions. The morphology of the set of subsonic
solutions is essentially independent of redshifts and flows that belong to
their boundary provide estimates of the gas abundance of subsonic solu-
tions. It appears that prescribed boundary data guarantee uniqueness only
of the bifurcation point, and that the latter has maximal luminosity.

PACS numbers: 04.40.Nr, 95.30.Lz, 95.30.Sf

1. Introduction

Consider a general-relativistic system — a compact core immersed in
a steadily accreting self gravitating gas. The gravitational binding energy of
the infalling gas can be converted to a radiation. Assume that an external
distant observer can measure total luminosity, asymptotic temperature and
redshifts of the radiation. Let be known: the total (asymptotic) mass of the
system and the physics of the mixture of gas and radiation. Then it would
be natural to ask: what mass is within the compact body? Alternatively,
the mass of the core would be known and the total mass would require
determination.

The main goal of this paper is the numerical investigation of this prob-
lem for stationary flows. We assume spherical symmetry and adopt thin gas
approximation in the transport equation. It is already known from studies of
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newtonian radiation hydrodynamics [1–3] that supersonic flows are gener-
ically not fixed by total luminosity, asymptotic temperature and redshift.
To each set of such data there can correspond two solutions with differ-
ent gas abundances. Changing luminosity one obtains two curves, on the
luminosity-(gas abundance) diagram, that originate at a bifurcation point.
This point is unique, for given boundary data. General-relativistic super-
sonic flows with small redshifts are similar to newtonian ones in that they
also branch from a bifurcation transonic flow. In the case of high redshifts
supersonic general-relativistic flows can be absent. A similar picture appears
in transonic flows of perfect gases, newtonian or general-relativistic, with-
out radiation. In this case boundary data can consist of the mass accretion
rate and the asymptotic speed of sound [4] and the only unique solution —
a branching point — corresponds to the maximal accretion.

Accretion systems with subsonic flows are not determined by the data de-
scribed hitherto. One needs additional information, for instance the asymp-
totic gas density, in order the specify the solution completely. We dis-
cover, however, an interesting fact valid in the newtonian case and in the
low-redshift regime of general relativity: transonic flows encompass, on
the luminosity-(gas abundance) diagram, the set filled with subsonic flows.
Therefore, the two transonic branches provide estimates of the mass abun-
dance of corresponding subsonic solutions. In particular, numerical analysis
suggests that the most luminous flow is supersonic. This picture is valid
in the newtonian level and also in the general-relativistic case, for small
redshifts. If redshifts are large, then the boundary of the set of subsonic
solutions may consist of transonicor subsonic flows, but it is remarkable
that the shape of the set of subsonic solutions is only weakly dependent on
redshifts. In particular, the flow with maximal luminosity is unique.

This investigation can be useful in the analysis of two important is-
sues. There is the question of identification of the so-called Thorne–Żytkow
stars [5], that consist of a hard core and overblown atmosphere. They are
conjectured to result in the merger of a main sequence star with a neutron
star or a black hole. If the core consists of a neutron star, then its mass
is roughly known. Results of this paper show that one can estimate the
total mass by measuring luminosity, asymptotic temperature and redshifts.
Another interesting application would be to distinguish compact stars (neu-
tron stars or gravastars [6]) from black holes, but the present analysis would
require further elaboration. Within the scenario investigated here it does
not seem feasible to distinguish between a black hole or a gravastar, but the
investigation of stability can possibly give further information.

The organization of the rest of this paper is following. Section 2 presents
spherically symmetric equations of radiation hydrodynamics. The next sec-
tion explains the concept of quasistationary solutions. The interaction of gas
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and radiation is treated in the thin gas approximation [7]. The final form of
required equations is displayed. Boundary conditions are described in Sec-
tion 4. The next section brings a discussion of boundary conditions. In par-
ticular, we explain the relation between the binding energy of collapsing
fluids and radiation redshifts. We demonstrate in Section 6 that supersonic
solutions constitute a one-sided boundary for the set of subsonic solutions
in newtonian test fluids. Section 7 shows main results of this paper — re-
lations between transonic and subsonic flows in the general-relativistic case.
The last section contains a summary.

2. Equations of general-relativistic hydrodynamics

We use comoving coordinates t, r, 0 ≤ θ ≤ π, 0 ≤ φ < 2π: time, coordi-
nate radius and two angle variables, respectively. The metric can be chosen
in the form

ds2 = −N2dt2 + ãdr2 + R2dΩ2 . (1)

R in (1) is the area radius. The infall velocity of gas is equal to U =
1/N dR/dt and it is related to extrinsic curvatures of the Cauchy hypersur-
face t = const,

(tr K − Kr
r )R = 2U . (2)

tr K is the trace of the extrinsic curvature and Kr
r is its radial–radial com-

ponent.
The energy-momentum tensor reads Tµν = TB

µν +TE
µν , where the baryonic

part is given by TB
µν = (ρ+p)UµUν +pgµν with the time-like and normalized

four-velocity Uµ, UµUµ = −1. The radiation part has only four nonzero
components, T 0E

0 ≡ −ρE = −T rE
r and TE

r0 = TE
0r, which is consistent with

the so-called thin gas approximation (see the next section).
A comoving observer would measure local mass densities, material ρ =

TBµνUµUν and radiation ρE, respectively. The baryonic current is defined as
jµ ≡ ρ0U

µ, where ρ0 is the baryonic mass density. Define nµ as the unit nor-
mal to a centered (coordinate) sphere lying in the hypersurface t = const and
k as the related mean curvature scalar, k = (R/2)∇in

i = (1/
√

ã)∂rR. The
comoving radiation flux density reads j = UµnνNT µE

ν /
√

ã = NT 0E
r /

√
ã.

We assume a polytropic equation of state for the baryonic matter, p =
KρΓ

0 (K and Γ are constants) and the relation

ρ = ρ0 + h , (3)

where the internal energy h is easily shown to be equal to p/(Γ − 1). The
equations of motion consist, in the spherically symmetric case, of three Ein-
stein equations, of two constraints [8]
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(tr K)2

+
R

2
tr KKr

r , (4)

∂r(K
r
r − tr K)√

ã
= − 3

R
kKr

r − 8πj +
1

R
k tr K , (5)

and one dynamical equation

∂t(K
r
r − tr K) =

3N

4
(Kr

r )2 − Nk2

R2
− 2k

R
√

ã∂rN +
N

R2

+ 8πNT r
r +

3

4
N(tr K)2 − 3N

2
tr KKr

r . (6)

The baryonic current is conserved,

∇µjµ = 0 . (7)

There are four conservation equations ∇µT µB
ν = −∇µT µE

ν = Fν (here ν =
0, r). The quantity Fν is called the radiation force density and it describes
interaction between baryons and radiation. Its radial component will be
written as Fr ≡ k

√
ãFr; Fr is defined later.

The formulation of general-relativistic radiation hydrodynamics presented
here agrees with that of Park [9] and Miller and Rezzola [10], and (on
a Schwarzschildean background) with Thorne et al. [11]. One can solve
formally both constraints, arriving at [8]

k =

√

1 − 2m(R)

R
+ U2 ,

Kr
r = ∂RU − 4πR

j

k
,

tr K =
1

R2
∂R

(

UR2
)

− 4πR
j

k
. (8)

Here m(R) is the quasilocal mass

m(R) = m(R∞) − 4π

R∞
∫

R

drr2

(

ρ + ρE +
Uj

k

)

. (9)

The integration in (9) extends from R to the outer boundary R∞ of the
accretion system. m(R∞) can be equal (or arbitrarily close) to the total
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asymptotic mass M . The contribution to the mass coming from the exte-
rior of R∞ can be neglected. Comoving coordinates can be understood as
a choice of a particular integral-type gauge condition [12]. In what follows
we will use the comoving space-time foliations, with the time t but often with
the areal radius R instead of the comoving radius r. The parametrization
(t, R) can be interpreted as corresponding to an observer at rest at R.

One can choose an alternative set of coordinates in a different space-
time foliation, in the so-called polar gauge tr K = Kr

r (no summation), with
the time tS = tS(R, t) and the areal variable R. We do not employ these
variables here (but see a remark below).

A simple but lengthy calculation shows that the local mass changes ac-
cording to the following rule

∂tSm(R) = (∂t − NU∂R) m(R)

= 4π

(

NkR2

(

j

(

1+

(

U

k

)2
)

+2ρE
U

k

)

+NUR2 (ρ+p)

)R∞

R

+A∞ , (10)

where A∞ is the value of −4πNUR2 (ρ + ρE + (Uj/k)) at R = R∞. It is in-

teresting to note that the expression 4πNkR2

(

j
(

1 + ((U/k))2
)

+ 2UρE/k
)

represents the radiation flux measured by an observer located at R in the
polar gauge foliation. The mass contained in the annulus (R,R∞) changes if
the fluxes on the right hand side do not cancel. In the case of quasistationary
flows the mass is approximately constant.

3. Quasi-stationary flows in the thin gas approximation

We will say that the accretion process is quasistationary if all rele-
vant quantities measured in the rest frame are approximately constant dur-
ing time intervals much smaller than certain characteristic time scale T .
In analytical terms, we assume that ∂tSX = (∂t −NU∂R)X = 0 for X = ρ0,
ρ, j, U . . .

Under quasi-stationarity assumption the evolution equation (6) can be
written as

U
dU

dR
=

k2

N

dN

dR
− m(R)

R2
− 4πR (p + ρE) . (11)

From this one easily obtains

N = k exp



−4π

R∞
∫

R

dr
r

k2

(

ρ + p + 2ρE +
Uj

k

)



 . (12)
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The local accretion mass rate Ṁ is defined as

Ṁ ≡ −4πUR2ρ0 . (13)

The baryonic current conservation equation (7) takes the form ∂RṀ =

−16π2jR3ρ0/k; thus the local mass accretion rate Ṁ can change, but the
quantity

M̃ ≡ −4πUR2ρ0 − (4π)2
R∞
∫

R

drr3j
ρ0

k
(14)

remains constant, d
dR

M̃ = 0. Notice that Ṁ (R∞) = M̃ .
As the characteristic time scale one can choose the quantity related to

the runaway instability, T ≡M/M̃ . One can obtain a rough estimate d
dt

M̃ ≤
CM2 where C is a constant (see [1] for the corresponding derivation in the
newtonian case).

Let M0 be the initial mass. Then M ≤ 1/ (1 − CM0t). If M/M̃ ≫ t
then M ≈ M0 and if t ≈ T then M ≫ M0; thus the time T sets the time
scale for the runaway instability.

The radiation force density has only one nonzero component. It is a sim-
ple exercise to show that the conservation of M̃ and relation (3) imply, for
polytropic gases, the vanishing of the zero-th component of the radiation
force, F0. Therefore, the two related energy and radiation energy balance
equations read

NU
dρ

dR
+ Ntr K (p + ρ) = 0 ,

N

UR2

d

dR

(

U2R2ρE

)

+
k

R2N

d

dR

(

N2R2j
)

− 8πNRj
ρE

k
= 0 . (15)

The two other energy-momentum conservation equations are displayed be-
low. The relativistic Euler equation is given by

1

N

dN

dR
(p + ρ) +

dp

dR
= Fr (16)

and the transport equation reads

N

UR2

d

dR

(

U2R2j
)

+
k

R2N

d

dR

(

N2R2ρE

)

− 8πRj2 N

k
− NkFr . (17)

There enters an important phenomenological assumption that can be easily
expressed in terms of quantities related with comoving coordinates. Namely
we assume the so-called thin gas approximation [7]

Fr = κρ0j . (18)
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The only direct interaction between baryons and radiation is through elastic
Thompson scattering. κ is a material constant, depending in particular on
the Thompson cross section σ, κ = σ/ (4πmpc). c is the speed of light and
mp is the proton mass.

In summary, the complete set of equations would consist of Eqs. (8), (9)
and (12)–(18).

4. Final equations

It is convenient to express all relevant quantities in terms of the speed
of sound a, given by a2 ≡ dp

dρ
, because we will search for flows possessing

transonic points. We find that it is computationally expedient to replace
the radiation energy balance equation (the second of Eqs. (15)) by the total
energy conservation

ṀN
Γ − 1

Γ − 1 − a2
+ 2ṀN

ρE

ρ0

= 4πR2jNk

(

1 +
U2

k2

)

+ C . (19)

Equation (19) is a direct consequence of quasistationarity and the equation
(10). The constant C is the asymptotic flux (i.e., flowing through the sphere
of a radius R∞) in (10).

Furthermore, write down Eq. (17) as

NU

R2

d

dR

(

R2j
)

= −κkNjρ0 −
kN

R2

d

dR

(

R2ρE

)

− 2Nj
dU

dR
− 2kρE

dN

dR
+ 8πNR

j2

k
. (20)

and replace the term NU
R2

d
dR

(

R2j
)

in the second of equations (15). After
some algebra one arrives at

(

1− 2m(R)

R

)

N

R2

d

dR

(

R2ρE

)

= −κk2Njρ0 + 2N (UρE − kj)
dU

dR

+ 2k (jU − kρE)
dN

dR
+ 8πNR

(

j2 − jρE
U

k

)

. (21)

Below we display a number of relations, that can be easily obtained from
the equation of state and (3), namely

p

ρ0

=
Γ − 1

Γ

a2

Γ − 1 − a2
,

p + ρ

ρ0

=
Γ − 1

Γ − 1 − a2
,
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∂Rp

p + ρ
= ∂R ln

(

ρ + p

ρ0

)

= −∂R ln
(

Γ − 1 − a2
)

,

ρ0 = ρ0∞

(

a

a∞

)
2

Γ−1

(

1 − a2
∞

Γ−1

)
1

Γ−1

(

1 − a2

Γ−1

)
1

Γ−1

. (22)

It is useful to insert (22) into Eqs. (14)–(18). One obtains following equa-
tions:

(i) the gas energy density conservation equation (the first of Eqs. (15))

d

dR
ln a2 = − Γ − 1 − a2

a2 − U2/k2

×
(

1

k2R

(

m

R
−2U2+4πR2

(

ρE +p+j
U

k

))

−κj

(

1− a2

Γ−1

)

)

, (23)

(ii) the baryonic mass conservation

dU

dR
= − U

Γ − 1 − a2

d

dR
ln a2 − 2U

R
+

4πRj

k
, (24)

(iii) the equation for the lapse

dN

dR
= N

(

κj
Γ − 1 − a2

Γ − 1
+

d

dR
ln
(

Γ − 1 − a2
)

)

. (25)

Eq. (25) follows from (16) and (22).
Equations (19), (21) and (23)–(25) constitute, with k and m(R) given by

(8) and (9), the complete model used in numerical calculations reported in
next sections.A remark is in order. It is clear from the inspection of (23) that
if a2 = U2/k2 (the speed of sound equals the spatial length of the infall veloc-
ity) then the expression 1/(k2R)

(

m/R − 2U2 + 4πR2 (ρE + p + j(U/k))
)

−
κj
(

1 − a2/(Γ − 1)
)

must vanish. There are four different ways of passing
through the transonic point (similarly as in the newtonian analysis in [13])
and only one of those corresponds to the accretion.

5. Boundary conditions

The overall picture of the system is as follows. A ball of gas is enclosed by
a sphere S∞ of a radius R∞ and connected, via a narrow transient zone filled
with baryonic matter and radiation, to the Schwarzschild vacuum space-
time. It is clear that by careful arrangement of data the mass within the



Transonic and Subsonic Flows in General Relativistic Radiation . . . 281

transient zone can be negligible. Therefore, we assume that the asymptotic
mass M is equal to m (R∞) (see Eq. (9)).

Boundary conditions at the outer sphere S∞ are needed for the radiation
quantities j, ρE, the mass accretion rate Ṁ , the square of the speed of sound
a2
∞ and the baryonic mass ρ∞. We assume that a2

∞ ≫ M/R∞ ≫ U2
∞; the

second inequality means that infall velocity is much smaller than the escape
velocity. These inequalities guarantee the fulfillment of the Jeans criterion
for the stability (see a discussion in [1] and studies of stability of accreting
flows in newtonian hydrodynamics [17]), suggesting the stability of solutions.

One can derive, after some algebra involving manipulations of equations
(20) and (21), the approximate equation d

dR

(

(ρE − j) R2
)

≈ 0 in the asymp-
totic region. This means, taking into account the fact that R∞ can be arbi-
trarily large, that one can safely assume j∞ = ρE ∞. Furthermore, the total
luminosity is with good accuracy given by L0 = 4πR2

∞j∞ and it must be
related to the accretion rate by the formula

L0 ≡ αṀ∞ . (26)

The coefficient α determines the relative binding energy. We assume

α ≡ 1 − N (R0)

k (R0)

√

1 − 2m (R0)

R0

, (27)

where R0 is the outer radius of the hard core of the system. The last two
formulae can be justified by two arguments. First, in the nonrelativistic
limit one gets α = |φ (R0) |; α is equal to the absolute value of the newtonian
potential on the surface of the hard body. It is clear now that (26) is just
the statement that all available binding energy is transformed into radiation,
and that there is an implicit assumption that the heat capacity of the core is
negligible. Second, the condition of stationarity implies the existence of the
approximate time-like Killing vector. By employing standard reasoning [18],
one arrives at the two formulae (26) and (27). Thus α can be regarded as a
proper binding energy. Let us remark that α gives the standard measure of
the gravitational red- or blue-shift. If stationary observers detect ω0 at R0

and ω at infinity, and 1/ω ≪ 2M (the geometric optics condition — see [19]
for a discussion) then ω = (1 − α) ω0.

In conclusion, boundary data consist of the binding energy coefficient α,
total luminosity L0 and the asymptotic speed of sound a2

∞. Not only L0

but also the two remaining quantities can be in principle determined from
observations: α from the measurement of the highest redshift and a2

∞ from
the asymptotic temperature. Then j∞ = ρE ∞ = L0/

(

4πR2
∞

)

, and the mass
accretion rate Ṁ = L0/α. These data in fact specify transonic flows up to,
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possibly, a bifurcation; for given data there can exist two solutions. In the
case of subsonic flows another boundary condition is needed, for instance
the baryonic mass density ρ∞. We show later that transonic flows can give
bounds onto some characteristics of relevant subsonic solutions.

6. Subcritical versus critical: lessons from newtonian

hydrodynamics of test fluids

In the Bondi model [13] the selfgravity of gases is neglected. The relevant
equations can be obtained from these presented above in the following way:
assume the test gas approximation, α = j = ρE = 0, k = N = 1 and
Γ − 1 − a2 ≈ Γ − 1. In this approximation ρ = ρ0. The whole problem
reduces to two algebraic equations

Ṁ = C , (28)

U2

2
+

a2

Γ − 1
− M

R
=

a2
∞

Γ − 1
. (29)

From (28) one has U = −Ṁ/(4πρR2). Since now ρ = ρ∞
(

a2/a2
∞

) 1

Γ−1 , one
obtains

U2 = 2
β

R4

(

a2
∞

a2

)
2

Γ−1

, (30)

where β ≡ Ṁ2/(32π2ρ2
∞). Insertion of (30) into (29) yields

β

R4

(

a2
∞

a2

)
2

Γ−1

+
a2

Γ − 1
− M

R
=

a2
∞

Γ − 1
. (31)

Thus newtonian transonic flows have this interesting property that the quan-
tity β is given by a simple analytic formula involving boundary data:

β ≡ βc =
M4

32a6
∞

(

2

5 − 3Γ

)
5−3Γ

Γ−1

, (32)

that means that, given Ṁ and a∞, the density ρ∞ and ρ is also specified.
One finds from Eq. (31) that

da2

dβ
= − (Γ − 1)

U2a2

β

1

a2 − U2
(33)

and there exists (from the implicit function theorem [14]) a local solution
a2(β). One infers from (33) that outside the supersonic sphere the speed
of sound decreases with the increase of β. Taking that into account, one
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concludes from the inspection of (30), that the infall velocity increases with
the increase of β. Therefore subsonic flows, for which U2 < a2, can exist
only for values of the parameter β smaller than βc. That means that, given
a transonic and subsonic flows with the same data a∞, Ṁ , the asymptotic
mass density of the subsonic flow must be bigger than that (ρc∞) of the (test
fluid) transonic flow,

ρsub∞ > ρc∞ . (34)

Notice that the asymptotic mass density of transonic flows can be repre-
sented as ρc∞ ≡ βc/Ṁ ; therefore the mass density is now completely spec-
ified by the other data. Another way of rephrasing (34) is to say that test
fluid flows are more efficient than subsonic ones in the sense that a given
mass accretion rate demands less gas in the first case than in the other. See
also another derivation in [15]. One can infer from this description that the
branch of test fluid transonic flows embraces from below the set of subsonic
solutions, in the (mass accretion rate)–(gas abundance) diagram.

The same conclusion holds true for the Shakura model [16], assuming
the test fluid approximation. Indeed, in this case one has instead of Eq. (32)
the following [1]

|φ(R0)|
(

exp

(

− GL0M

R|φ(R0)|LE

)

− 1

)

=
β

R4

(

a2
∞

a2

)
2

Γ−1

+
a2

Γ−1
−M

R

− a2
∞

Γ − 1
, (35)

where only a2 and β depend on the mass parameter ρ∞. Here φ(R0) is the
newtonian potential on the surface of the compact core and G denotes the
gravitational constant. One can find the dependence of a2 as the function
of ρ∞ in a similar way as before. Thus a supersonic flow with a given
luminosity can have less gas than a subsonic flow of the same luminosity.
In particular, again we observe that subsonic flows lie above the supersonic
(test fluid) branch, in the luminosity–(gas abundance) diagram. Numerical
studies show more, that the set of subsonic solutions has a parabola-shaped
boundary that consists only of transonic solutions. The edge of the parabola
has maximal luminosity.

7. Numerical results

Below we will study how much of the newtonian picture drawn in the
preceding section is valid in the general-relativistic case.

The equations are put in the evolution form, see Eqs. (19), (21), (23)–
(25). We start from the outer boundary R∞ and evolve inwards until the
equality
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α = 1 − N (R)

k (R)

√

1 − 2m (R)

R
(36)

is met. The corresponding value of the radius is denoted as R0 and it is
regarded as the size of the inner core. It appears that the 4-th order Runge–
Kutta method fails almost immediately and for that reason we employed the
8th order Runge–Kutta method [20].

We assume required boundary data j∞ = ρE ∞, the mass accretion rate
Ṁ∞, the speed of sound a2

∞, the parameter α and the baryonic mass density
ρ∞. Inequalities U2

∞ ≪ M/R∞ ≪ a2
∞ are obeyed, since this ensures the

Jeans length of the configuration to be much larger than R∞, which in turn
suggests stability of the configuration (see a discussion in [1]). Solutions
are obtained by the method of shooting. Given a2

∞, α and L0 = αṀ∞,
one should vary the asymptotic baryonic mass density ρ0∞. We find that
solutions exist for a finite range of b1 ≤ ρ0∞ ≤ b2. The change of the
luminosity L0, while keeping constant a2

∞ and α, results in another segment
of solutions with baryonic densities b′1 ≤ ρ0∞ ≤ b′2. Solutions corresponding
to the extremal baryonic densities b1(L0), b2(L0) are shown in Figs. 1–3 as
the bifurcation curves. Each point in the first three Figs. 1–3 within the
region enclosed by bifurcation curves represents a solution with a specific
value of the asymptotic baryonic density and fixed boundary data (a2

∞, α

and L0 = αṀ∞).
The numerical integration is straightforward with the important excep-

tion of transonic solutions. It is clear from Eq. (23) that the flow becomes
critical at a sonic point and if a2 = U2/k2 then

1

k2R

(

m

R
− 2U2 + 4πR2

(

ρE + p + j
U

k

))

= κj

(

1 − a2

Γ − 1

)

. (37)

The numerical strategy for finding transonic flows is as follows. For a density
ρ0∞ chosen at random one either obtains no solution at all or a subsonic
solution. Using the bisection method one can obtain a boundary of the
solution set, later on called the bifurcation curve. This search process can
be automated and it works well for all values of the parameter α. For small
parameters α one gets convincing numerical evidence that the bifurcation
curve consists solely of transonic solutions.

When α is close to one, then the automated search produces a bifurcation
curve, but the question whether it consists of transonic flows has to be
studied in a more detailed way. If α is significant then the numerical problem
becomes quite sensitive on tiny deviations — of the order of 10−15ρ0 — from
the right values of the asymptotic mass density. The bifurcation curve is
found within some margin error and that error would in many cases be larger
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than 10−15ρ0; thence automated search becomes inconclusive. Investigating
collected data one can in some cases determine the character of a solution
that lies on the bifurcation curve.

Another subtle problem is evolving Eq. (23) in the vicinity of the sonic
point. The analytic reason is due to the fact that the sonic point is a crit-
ical spatial point at which coalesce four different solutions: two accretion
branches and two wind branches, in each case one inside and one outside of
the sonic sphere. This agrees with the well known feature of the standard
Bondi accretion of test fluids [13]. The accretion flow solution consists of two
branches, that existing outside of the sonic sphere and the other that bifur-
cates inward from the sonic point. The accretion branch is unstable beneath
the sonic sphere. From the numerical point of view when the denominator
a2 −U2/k2 of Eq. (23) is small (smaller than 10−12) then the whole fraction
is calculated with a large error. For that reason there must exist a procedure
for checking the value of a2 − U2/k2 at a point and if it becomes too small
then a regularization method must be implemented. It appears that it is
enough to do this regularization only during one step while passing through
the sonic point.

We assumed following asymptotic parameters. We choose M⊙/M =
5.95496×10−7, where M⊙ is the Solar mass. Let us remark here that, while
a definite choice is needed by the nature of numerical calculation, there is
nothing peculiar in the above data. One can repeat this analysis assuming
that the total mass is of the order of the Solar mass.
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The parameter κ = σ/ (4πmpc), as we explained earlier. In this paper
we adopt the traditional choice of units G = c = 1 and supplement it by the
scaling M = 1. This leads to the value of the κ = 2.1326762×1021 (M⊙/M),
that is κ = 1.27 × 1015. The size of the system is R∞ = 106. The speed
of sound is given by a2

∞ = 4 × 10−4 in all numerical calculations that are
described below. The Eddington luminosity reads LE = 4πM/κ = 9.9847×
10−15.

Figs. 1–3 show accreting solutions on the diagram luminosity-(mass of the
central core). Each point within the set embraced by two curves (bifurcation
curves) corresponds to an accretion solution.

Solutions are absent outside of this region. Typically, for small binding
energies (that is, small α) and small luminosity L0, there exist two accret-
ing solutions possessing sonic points, with asymptotic densities ρ0∞1 and
ρ0∞2. There appear subsonic flows for each ρ0∞ ∈ (ρ0∞1, ρ0∞2). Thus the
two bifurcation branches of transonic flows embrace a set of subsonic flows.
Accreting stationary flows are absent above the bifurcation point, which
maximizes the luminosity. All that is illustrated in Fig. 1.

Two forthcoming figures demonstrate that with increase of the parameter
α the shape of the set of subsonic solutions does not change significantly. Its
boundary, however, can consist both of subsonic or transonic flows. We call
corresponding solutions lying on the bifurcation curve as extreme. Fig. 2 is
done for α = 0.5.
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Fig. 2. Bifurcation curve for intermediate binding energy, α = 0.5. Two bifurcation
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Fig. 3 presents the bifurcation curve for α = 0.9. The bifurcation point
with the luminosity L0 = 0.31130LE on the extreme curve corresponds to
a subsonic solution (see Fig. 8 for the behavior of its speed of sound and of
the infall velocity).
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Fig. 3. Bifurcation curve for high binding energy, α = 0.9. Two bifurcation
branches encompass the set of subsonic flows. Abscissa shows the luminosity and
the ordinate shows the mass of the compact core.

A transonic solution exists for L0 = 0.1LE, α = 0.9 on the lighter branch,
but the partner lying on the more massive branch is a subsonic flow, as shown
in Fig. 4.

Fig. 5 shows how squares of the speed of sound a2 and of the spatial veloc-
ity U2/k2 depend on R for different gas abundances. The flow with greater
gas abundance (hence with a relatively lighter compact center) possesses
a sonic point that is closer to the center than in the other case. Intuitive ex-
planation is that for greater gas density the radiation pressure is bigger and
prohibits quick falloff; the infall velocity can approach the speed of sound
only close to the gravity center.

Fig. 6 sketches the behavior of the speed of sound and U2/k2 for one of
the subsonic solutions, with identical boundary data — but different bary-
onic densities — as for the flows depicted in Fig. 5.

The next figure shows characteristics of the bifurcation solution for the
binding energy parameter α = 0.0025. The striking feature is that the
content of gas abundance approaches 0.31. We observed earlier that in
the pure hydrodynamic accretion [4] the maximum accretion rate occurs
when the gas abundance is equal to 1/3. That is valid both in the general-
relativistic [4] and newtonian [21] case. In the Shakura model [1] one can
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Fig. 6. α = 2.5 × 10−3, L0/LE = 0.00318008. Behavior of a2 and U2/k2 in
a subsonic flow generated by the same boundary data as in Fig. 5.

analytically prove that at the bifurcation point the luminosity is maxi-
mal and the gas abundance must be smaller that 1/3. The inspection of
Figs. 1–3 shows that this property is satisfied also in the general-relativistic
case. Here brightest flows coincide with bifurcation points. Their gas abun-
dance is always smaller than 1/3 and decreases with the increase of L0/LE.

The last figure displays the dependence of a2 and U2/k2 on the area
radius R in the case of the most luminous solutions corresponding to α = 0.9.
It is clear that it is a subsonic flow.

8. Concluding remarks

The present analysis is fully general-relativistic, with the backreaction
effects included. The picture emerging here is different from the former
investigation of spherical accretion in which the space-time geometry has
been fixed and, therefore, backreaction has been ignored [22]. The main
new feature is the existence of an upper limit for the asymptotic baryonic
mass density and of a massive bifurcation branch. The new striking element
is the fact that the brightest configuration is unique for given redshift α
and asymptotic speed of sound. In the case of low α (which is associated
with low luminosity) the brightest object flow is rich in gas — about 1/3 of
its mass is in the gaseous accreting matter [4]. On the other hand general-
relativistic radiating systems with accreting gas behave in a qualitatively
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similar way to selfgravitating newtonian ones for small redshifts (i.e., for
small binding energies). In both cases one observes the following feature:
two arms of the bifurcation curve of transonic flows embrace, in the dia-
gram L0 −m(R0) (or the gas abundance versus asymptotic luminosity L0),
a set of subsonic solutions (see Fig. 1). For given asymptotic data (M — the
total mass, L0 — asymptotic luminosity and a2

∞ — the asymptotic speed
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of sound) there exist two transonic solutions and an infinite number of sub-
sonic solutions with intermediate baryonic densities. The mass of the central
core in subsonic flows is comprised between two bounds of the two limiting
transonic flows. The bifurcation point, where the two supersonic branches
cross and the luminosity is maximal for a given (binding energy) parameter
α, is unique.

Some features of this picture change in the case of larger redshifts. This
happens at some value of the parameter α larger than 10−2. The massive
part of the bifurcation curve is replaced by a curve of subsonic solution
(inspect Figs. 2 and 3). Transonic flows survive only on that section of
the test fluid bifurcation branch where most of the mass is comprised in
the compact core and the luminosity is relatively low. One observes (for
instance for α = 0.5 and α = 0.9) that as one increases the total luminosity
L0, the transonic flows completely cease to exist on the bifurcation curve
and they are replaced by subsonic solutions. Nevertheless, the set of all
flows has a similar shape that in the case of small α, as exemplified in
Fig. 1–3. Subsonic solutions are not specified uniquely for given boundary
data, as we point out earlier, but the length of the interval of allowed values
of the asymptotic baryonic density ρ0∞ becomes shorter with the increase
of L0. The solution corresponding to the maximal luminosity is unique.
In particular flows corresponding to highest possible luminosities (that can
be close to the Eddington luminosity LE if α is close to 1) are uniquely
determined.

Finally, it is interesting that quasi-stationary solutions of the model con-
sidered in this paper can have a significant abundance of the gas. Accreting
systems with maximal luminosities (in particular close to the Eddington lu-
minosity) can possess even 33% of gas for small redshifts and still almost
10% of gas for α = 0.9. It is an open and important question whether this
picture is valid for generic nonspherical flows.
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