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formed nonrelativistic space-time is introduced and analyzed. The corre-
sponding equations of motions are studied using mostly numerical methods.
The time-dependent energy spectrum is presented as well.

PACS numbers: 02.20.Uw, 02.40.Gh, 03.65.–w

1. Introduction

Due to several theoretical arguments (see e.g. [1–4]) the interest in study-
ing of space-time noncommutativity is growing rapidly. There appeared a lot
of papers dealing with noncommutative classical [5–12] and quantum [13–21]
mechanics, as well as with field theoretical models (see e.g. [22–31]), defined
on quantum space-time.

At present, in accordance with Hopf-algebraic classification of all defor-
mations of relativistic and nonrelativistic symmetries (see [32, 33]) one can
distinguish two quite interesting kinds of quantum spaces. First of them
corresponds to the well-known canonical type of noncommutativity

[x̂µ, x̂ν ] = iθµν , θµν = const. , (1)

with antisymmetric constant tensor θµν. Its relativistic and nonrelativistic
Hopf-algebraic counterparts have been proposed in [34–36] and [37], respec-
tively1.

1 See also [38].
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The second class of mentioned deformations introduces the Lie-algebraic
type of space-time noncommutativity

[x̂µ, x̂ν ] = iθρ
µν x̂ρ , (2)

with particularly chosen constant coefficients θρ
µν . The corresponding

Poincaré quantum groups have been introduced in [39,40], while the suitable
Galilei algebras — in [41] and [37].

Recently, there was proposed a particular type of Lie-algebraic defor-
mation of nonrelativistic space-time with spatial directions commuting to
time2

[t, x̂i] = 0 = [x̂k, x̂ρ(τ)] , [x̂τ , x̂ρ] =
i

κ
t , ρ, τ, k − fixed and different .

(3)
The above noncommutativity has been obtained in the framework of quan-
tum groups in [37], while its basic properties have been investigated in a con-
text of nonrelativistic particle subjected to the external constant force [12].
In particular, there was demonstrated that such a kind of quantum space-
time produces additional acceleration of moving particle coupled to the force
terms generated by so-called space-like deformation [37].

In this article we extend our investigations of deformation (3) to more
complicated nonrelativistic system — the classical and quantum oscillator
model. It should be noted, however, that analogous studies have been al-
ready performed in a context of canonical deformation (1), i.e. the solution
of corresponding equation of motion has been provided and analyzed in [9],
while the (deformed) energy spectrum has been discussed in [18–20].

In this paper we adopt the general treatment proposed in [19] and show,
that the space-time noncommutativity (3) generates a proper (explicit) time-
dependence of oscillator Hamiltonian function. In such a way we discover
a connection between noncommutative geometry (a quantum group) and
nonrelativistic models with time-dependent mass and frequency (see e.g.

[42–46]). Besides, we also confirm that such a deformation introduces the
additional term proportional to angular momentum of considered system
[18, 19]. Finally, the numerical studies of the solutions of corresponding
equations of motion are presented in detail and the growing in time energy
spectrum is analyzed as well3.

In this article apart of deformation (3) we also introduced its natural
generalization

[t, x̂i] = 0 = [x̂k, x̂ρ(τ)] , [x̂τ , x̂ρ] = ifκ(t) , (4)

2 It will be call t-deformation of classical space.
3 It should be noted that for fixed time parameter t the obtained energy spectrum

becomes the same as one recovered in [19].
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with arbitrary time-dependent function fκ(t) approaching zero for parameter
κ running to infinity. We demonstrate that for such generalized space-time
the energy spectrum of the model depends on function fκ(t) and becomes
finite for large times. It should be noted however, that noncommutativity
(4) cannot be derived in the framework of quantum groups, and for this
reason, from formal point of view its geometric status remains unknown.

The paper is organized as follows. In second section we recall the Galilei
Hopf structure providing quantum space (3). Further, in Section 3, we inves-
tigate the classical oscillator model on such a space-time, i.e. the correspond-
ing equation of motion is provided and its solution is analyzed numerically
as well. In Section 4 the energy spectrum of a proper quantum model is
discovered. Section 5 deals with the classical and quantum oscillator sys-
tem defined on generalized space-time (4). The results are summarized and
discussed in the last section.

2. Twisted Galilei Hopf algebra and corresponding

Lie-algebraically deformed space-time

In this section (following the paper [37]) we recall the Lie-algebraically
deformed Galilei Hopf algebra Uκ(G) (κ denotes deformation parameter) pro-
viding nonrelativistic space-time (3). Its algebraic sector remains classical4

[Kij ,Kkl] = i (δil Kjk − δjl Kik + δjkKil − δikKjl) ,

[Kij , Vk] = i (δjk Vi − δik Vj) ,

[Kij,Πk] = i (δjk Πi − δik Πj) ,

[Kij ,Π0] = [Vi, Vj ] = [Vi,Πj ] = 0 ,

[Vi,Π0] = −iΠi , [Πµ,Πν ] = 0 , (5)

while the co-algebraic part takes the form (ρ, τ — fixed and different)

∆κ(Π0) = ∆0(Π0) +
1

2κ
Πτ ∧ Πρ , (6)

∆κ(Πi) = ∆0(Πi) , ∆κ(Vi) = ∆0(Vi) , (7)

∆κ(Kij) = ∆0(Kij) +
i

2κ
[Kij , Vρ] ∧ Πτ +

1

2κ
Vρ ∧ (δiτΠj − δjτΠi) , (8)

the antipodes and co-units remain undeformed (S0(a) = −a, ǫ(a) = 1).

4 The symbols Kij , Vi and Πµ denote rotations, boosts and space-time translation
generators, respectively.
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Thedeformed co-products (6)–(8) are obtained by the twist procedure [47],
i.e.

∆κ(a) = Fκ ◦ ∆0(a) ◦ F−1
κ ,

∆0(a) = a ⊗ 1 + 1 ⊗ a , (9)

where the twist factor Fκ ∈ Uκ(G) ⊗ Uκ(G) satisfies the classical cocycle
condition

Fκ12 · (∆0 ⊗ 1)Fκ = Fκ23 · (1 ⊗ ∆0)Fκ (10)

and the normalization condition

(ǫ ⊗ 1)Fκ = (1 ⊗ ǫ)Fκ = 1 , Fκ12 = Fκ ⊗ 1 , Fκ23 = 1 ⊗Fκ . (11)

It looks as follows

Fκ = exp

(

i

2κ
Πτ ∧ Vρ

)

. (12)

Obviously for deformation parameter κ approaching infinity the above Hopf
structure becomes classical.

Let us now turn to the deformed space-time corresponding to the Hopf
algebra Uκ(G). It is defined as the quantum representation spaces (Hopf
module) for quantum Galilei algebra, with action of the deformed symmetry
generators satisfying suitably deformed Leibnitz rules (see e.g. [48]). The
action of Galilei group Uκ(G) on a Hopf module of functions depending on
space-time coordinates (t, xi) is given by

Π0 � f(t, x) = i∂tf(t, x) ,

Πi � f(t, x) = i∂if(t, x) , (13)

Kij � f(t, x) = i (xi∂j − xj∂i) f(t, x) ,

Vi � f(t, x) = it∂i f(t, x) . (14)

Moreover, the ⋆-multiplication of arbitrary two functions is defined as follows

f(t, x) ⋆κ g(t, x) := ω ◦
(

F−1
κ � f(t, x) ⊗ g(t, x)

)

. (15)

In the above formula F· denotes twist factor (12) and ω ◦ (a ⊗ b) = a · b.
Consequently, we get the following factor

Fκ = exp

(

− i

2κ
∂τ ∧ t∂ρ

)

, (16)



Oscillator Model on Lie-Algebraically Deformed . . . 297

and the corresponding nonrelativistic space-time (see (3))

[t, xi]⋆κ = [xk, xρ]⋆κ = [xk, xτ ]⋆κ = 0 , [xτ , xρ]⋆κ =
i

κ
t , (17)

with indexes ρ, τ and k different and fixed, and [a, b]⋆κ := a⋆κb − b⋆κa.
Finally, it should be mentioned that for the deformation parameter κ running
to infinity the above quantum space becomes commutative.

3. Classical oscillator model

Let us start with the following Lie-algebraically deformed phase space
corresponding to the quantum space-time (17) (see [12])5

{t, x̄i} = 0 = {x̄k, x̄ρ(τ)} , {x̄τ , x̄ρ} =
1

κ
t , (18)

{x̄i, p̄j} = δij , {p̄i, p̄j} = 0 , (19)

where indices k, ρ and τ are different and fixed, i, j = 1, 2, 3. One can check
that the relations (18), (19) satisfy the Jacobi identity and for deformation
parameter κ running to infinity become classical.

We define the Hamiltonian function for isotropic harmonic oscillator with
constant mass m and frequency ω as follows

H̄(p̄, x̄) =
1

2m

(

p̄2
ρ + p̄2

τ + p̄2
k

)

+
mω2

2

(

x̄2
ρ + x̄2

τ + x̄2
k

)

. (20)

Next, in order to analyze the above system we represent the noncommutative
variables (x̄i, p̄i) on classical phase space (xi, pi) as (see e.g. [18, 19, 21])

x̄ρ = xρ +
t

2κ
pτ , x̄τ = xτ − t

2κ
pρ , x̄k = xk , p̄i = pi , (21)

where

{xi, xj} = 0 = {pi, pj} , {xi, pj} = δij . (22)

Then, the Hamiltonian (20) takes the form

H(p, x) = H(t) =

(

p2
ρ + p2

τ

)

2M(t)
+

M(t)Ω2(t)

2

(

x2
ρ + x2

τ

)

+
tmω2Lk

2κ
+

p2
k

2m
+

mω2x2
k

2
(23)

5 We use the correspondence relation {a, b} = 1

i
[â, b̂] (~ = 1).
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with symbol Lk = xρpτ − xτpρ denoting angular momentum of particle in
direction k. Besides, the coefficients M(t) and Ω(t) present in the above
formula denote the time-dependent functions given by6, 7

M(t) =
m

1 + m2ω2t2

4κ2

, Ω(t) = ω

√

1 +
m2ω2t2

4κ2
, (24)

respectively. One can check that

M(t)Ω2(t) = mω2 = const . (25)

As it was already mentioned in Introduction, the considered system (23)
with neglected last three terms as well as with arbitrary “mass” and “frequency”
functions M(t), Ω(t) has been studied at classical and quantum levels in
[42–46]. Obviously, in our case, due to the condition (25) the coefficient of
a second term in Hamiltonian function (23) remains constant, i.e.

M(t)Ω2(t)

2

(

x2
ρ + x2

τ

)

=
mω2

2

(

x2
ρ + x2

τ

)

. (26)

Using the formulas (22), (23) one gets the following canonical Hamilto-
nian equations of motions

ẋρ =
pρ

M(t)
− tmω2

2κ
xτ , ṗρ = −mω2xρ −

tmω2

2κ
pτ , (27)

ẋτ =
pτ

M(t)
+

tmω2

2κ
xρ , ṗτ = −mω2xτ +

tmω2

2κ
pρ , (28)

ẋk =
pk

m
, ṗk = −mω2xk , (29)

which when combined yield the equations














ẍρ = mω2

2κ t
(

−2ẋτ + M(t)
κ ẋρ

)

+ mω2

2κ

(

mω2

2κ2 M(t)t2−1
)

xτ −ω2xρ ,

ẍτ = mω2

2κ t
(

2ẋρ+ M(t)
κ ẋτ

)

+ mω2

2κ

(

1−mω2

2κ2 M(t)t2
)

xρ−ω2xτ ,

ẍk = −ω2xk .

(30)

The solution of Eq. (30) has been studied numerically and the corresponding
trajectories are illustrated on Fig. 1. If the parameter κ runs to infinity the
equation (30) becomes undeformed and describes the periodic motion of
classical harmonic oscillator [49].

6 lim
t→∞

M(t) = 0, lim
t→∞

Ω(t) = ∞.
7 See Fig. 2(a).
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Fig. 1. The particle trajectory for parameters m = ω = κ = 1. The dashed line
corresponds to the case of classical (undeformed) oscillator and the time parameter
runs from 0 to 15, 30 and 50 for figures (a), (b) and (c), respectively.

4. Quantum oscillator model

The main aim of this section is to study the spectrum of the following
quantum-mechanical counterpart of Hamiltonian (23)

Ĥ(t) =

(

p̂2
ρ + p̂2

τ

)

2M(t)
+

mω2

2

(

x̂2
ρ + x̂2

τ

)

+
tmω2L̂k

2κ
+

p̂2
k

2m
+

mω2x̂2
k

2
, (31)

with x̂i and p̂i denoting the classical position and momentum operators such
that

[x̂i, x̂j ] = 0 = [p̂i, p̂j ] , [x̂i, p̂j] = iδij . (32)

In accordance with the scheme proposed in [19] (see also [18]) we introduce

a set of time-dependent creation (a†A(t)) and annihilation (aA(t)) operators

â±(t) =
1

2

[

(p̂ρ ± ip̂τ )
√

M(t)Ω(t)
− i

√

M(t)Ω(t)(x̂ρ ± ix̂τ )

]

, (33)

âk =
1√
2

(

p̂k√
mω

− i
√

mωx̂k

)

, (34)

satisfying the standard commutation relations

[âA, âB ]=0 , [â†A, â†B ]=0 , [âA, â†B ]=δAB , A,B=±, k . (35)

It should be noted, that for the parameter κ running to infinity the cre-
ation/annihilation operators (33) take the classical form, i.e. they become
time-independent. Further, one can easily check that in terms of the opera-
tors (33) and (34) the Hamiltonian function (31) looks as follows

Ĥ(t) = Ω+(t)

(

N̂+(t) +
1

2

)

+ Ω−(t)

(

N̂−(t) +
1

2

)

+ ω

(

N̂k +
1

2

)

, (36)
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M
Ω

t/κ

ω
=

m

0

Ω+

Ω−

Ω
±

t/κ

ω

0

∆E
E0,0,0

E1,1,1

E
n

+
,n

−
,n

k

t/κ0

(a) (b) (c)

Fig. 2. The time evolution of functions Ω(t), M(t), Ω±(t), E0,0,0(t), E1,1,1(t) and
difference ∆E(t) = E1,1,1(t) − E0,0,0(t) with fixed parameter κ and m = ω = 1.

with coefficient Ω±(t) given by8

Ω±(t) = Ω(t) ∓ tmω2

2κ
. (37)

Besides, the following objects

N̂±(t) = â†±(t)â±(t) , N̂k = â†kâk , (38)

play a role of particle number operators in ± and k direction, respectively.
The eigenvectors of Hamiltonian (36) are generated by creation operators

a†±(t), a†k acting on vacuum state |0〉

|n+, n−, nk〉t =
1

√

n+!

1
√

n−!

1√
nk!

(

â†+(t)
)n+

(

â†−(t)
)n−

(

â†k

)nk |0〉 . (39)

Then, the corresponding eigenvalues take the form

En+,n−,nk
(t) = Ω+(t)

(

n+ +
1

2

)

+ Ω−(t)

(

n− +
1

2

)

+ ω

(

nk +
1

2

)

. (40)

One can also see that the difference between two neighboring levels of spec-
trum (40) is given by the formula

∆E(t) := En++1,n−+1,nk+1(t) − En+,n−,nk
(t) = 2Ω(t) + ω , (41)

with function ∆E(t) growing in time. Obviously, for deformation parameter
κ running to infinity the spectrum (40) as well as its difference (41) become

8 See Fig. 2(b).
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classical. As an illustration of relation (40) the time evolution of E0,0,0(t)
and E1,1,1(t) eigenvalues has been presented in Fig. 2(c).

Finally, it should be noted that for fixed parameter t the above system
can be identified with canonically deformed oscillator model proposed in [19],
i.e. the spectrum (40) for time parameter t = κθρτ (see (1)) becomes the
same as one derived in [19].

5. Beyond the quantum group

Let us consider the following generalized phase space

{t, x̄i} = 0 = {x̄k, x̄ρ(τ)} , {x̄τ , x̄ρ} = fκ(t) , (42)

{x̄i, p̄j} = δij , {p̄i, p̄j} = 0 , (43)

where fκ(t) denotes arbitrary time-dependent function approaching to zero
for parameter κ running to infinity. Obviously, the above relations sat-
isfy the Jacobi identity and for parameter κ approaching to infinity become
classical. Besides, as it was already mentioned in Introduction, the gener-
alized noncommutativity (42) cannot be realized as a translation sector in
the Hopf-algebraic framework of relativistic and nonrelativistic symmetries.
Nevertheless, due to the link (for particular choices of function fκ(t)) with
oscillator models [45,46], the study of such a system appears quite interesting
and shall be discussed in present section.

The relations (42) and (43) can be represented in terms of classical phase
space variables as follows

x̄ρ = xρ +
fκ(t)

2
pτ , x̄τ = xτ −

fκ(t)

2
pρ , x̄k = xk , p̄i = pi . (44)

Then, the corresponding Hamiltonian function takes the form

Hf (t)=

(

p2
ρ+p2

τ

)

2Mf (t)
+

mω2

2

(

x2
ρ+x2

τ

)

+
fκ(t)mω2Lk

2
+

p2
k

2m
+

mω2x2
k

2
, (45)

with generalized coefficient Mf (t)

Mf (t) =
m

1 + m2ω2

4 f2
κ(t)

. (46)
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By direct calculation one can also find the corresponding equation of motion







































































ẍρ = mω2fκ(t)
2

(

ḟκ(t)Mf (t)ẋρ − 2ẋτ

)

+ mω2 ḟκ(t)
2

(

mω2Mf (t)
2 f2

κ(t) − 1
)

xτ − ω2xρ ,

ẍτ = mω2fκ(t)
2

(

ḟκ(t)Mf (t)ẋτ + 2ẋρ

)

+ mω2 ḟκ(t)
2

(

1 − mω2Mf (t)
2 f2

κ(t)
)

xρ − ω2xτ ,

ẍk = −ω2xk ,

(47)

which in the case fκ(t) = t/κ leads to the system (18), (19) related with
quantum group [37]. Besides, for the choice fκ(t) = θρτ we get the equations
of motion for canonical deformation of Galilei algebra proposed in [9].

The above equations have been investigated numerically for two partic-
ular choices of function fκ(t) with fixed parameter κ

fκ(t) = sin

(

t

κ

)

(48a)

and

fκ(t) =
(

e−
t
κ − 1

)

. (48b)

First of them corresponds to the periodic time evolution of generalized coeffi-
cient (46) and can be compared with the oscillator system studied in [45,46]9.
The second choice introduces, as we shall see below, the finite for large times
energy spectrum of a proper quantum oscillator model. Of course, for κ → ∞
the both functions (48a)) and (48b)) approach to zero, and the phase space
(42), (43) becomes classical. We add that the corresponding trajectories are
illustrated in Figs. 3 and 4.

Let us now turn to the energy spectrum of quantum oscillator model
defined on generalized phase space (42), (43). If we introduce the set of the
following generalized creation/annihilation operator

âf±(t) =
1

2

[

(p̂ρ ± ip̂τ )
√

Mf (t)Ωf (t)
− i

√

Mf (t)Ωf (t)(x̂ρ ± ix̂τ )

]

, (49)

9 More preciously, there was considered in [45, 46] the oscillator model described by
the Hamiltonian function (45) with neglected Lk-, xk- and pk-terms as well as with
time-periodic coefficient Mf (t) (m = Mf ) and constant frequency ω.
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Fig. 3. The particle trajectory for function fκ(t) = sin
(

t
κ

)

and parameters m =

ω = κ = 1. The dashed line corresponds to the case of classical (undeformed)
oscillator and the time parameter runs from 0 to 30, 50 and 100 for figures (a), (b)
and (c), respectively.

xk

xτ

xρ
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xk

xτ

xρ

b)

xk

xτ

xρ
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Fig. 4. The particle trajectory for function fκ(t) =
(

e−
t

κ − 1
)

and parameters

m = ω = κ = 1. The dashed line corresponds to the case of classical (undeformed)
oscillator and the time parameter runs from 0 to 30, 50 and 100 for figures (a), (b)
and (c), respectively.

âk =
1√
2

(

p̂k√
mω

− i
√

mωx̂k

)

, (50)

then, in analogy to Section 2, one gets:

Ef n+,n−,nk
(t)=Ωf+(t)

(

n++
1

2

)

+Ωf−(t)

(

n−+
1

2

)

+ω

(

nk+
1

2

)

, (51)

with time-dependent coefficients

Ωf±(t) = Ωf (t) ∓ fκ(t)mω2

2
and Ωf (t) = ω

√

1 +
m2ω2

4
f2

κ(t) . (52)

Additionally, one can observe that

∆Ef (t) := Ef n++1,n−+1,nk+1(t) − Ef n+,n−,nk
(t) = 2Ωf (t) + ω . (53)
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Mf

Ωf

t/κ

ω
=

m

0

Ωf+

Ωf−

Ω
f
±

t/κ

ω

0

∆Ef

Ef 0,0,0

Ef 1,1,1

E
f

n
+

,n
−

,n
k

t/κ0
a) b) c)

Fig. 5. The time evolution of functions Ωf (t), Mf (t), Ωf±(t), Ef 0,0,0(t), Ef 1,1,1(t)

and difference ∆Ef (t) = Ef 1,1,1(t) − Ef 0,0,0(t) for function fκ(t) = sin(t/κ) with
fixed parameter κ and m = ω = 1.

Finally, let us note that in the case of function (48a) with fixed param-
eter κ, the formula (52) takes the form:

Ωf (t) = ω

√

1 +
m2ω2

4
sin2

(

t

κ

)

, (54)

and difference (53) becomes periodic in time (see Fig. 5). For the second,
“exponential” choice of fκ(t), the function

Ωf (t) = ω

√

1 +
m2ω2

4

(

e−t/κ − 1
)2

, (55)

Mf

Ωf

t/κ

ω
=

m

0

Ωf+

Ωf−

Ω
f
±

t/κ

ω

0

∆Ef

Ef 0,0,0

Ef 1,1,1

E
f

n
+

,n
−

,n
k

t/κ0
a) b) c)

Fig. 6. The time evolution of functions Ωf (t), Mf (t), Ωf±(t), Ef 0,0,0(t), Ef 1,1,1(t)

and difference ∆Ef (t) = Ef 1,1,1(t) − Ef 0,0,0(t) for function fκ(t) = (e−t/κ − 1)

with fixed parameter κ and m = ω = 1.
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is smaller than Ωf = ω
√

1 + m2ω2

4 for large times, and then, the difference

(53) becomes finite (see Fig. 6). The time evolution of E0,0,0(t) and E1,1,1(t)
eigenvalues has been presented for two considered cases in Figs. 5 and 6,
respectively.

6. Final remarks

In this article we investigate the classical and quantum oscillator model
defined on noncommutative space-time (3) and its generalized version (4).
The corresponding equations of motion are provided and the time-dependent
spectra of both quantum models are analyzed and illustrated.

As we already mentioned, the presented investigations describe the link
between noncommutative space-time geometry and oscillator models with
time-dependent mass and frequency [42–45]. We mentioned that better un-
derstanding of such a connection based on more detailed studies is postponed
for future investigations.

It should be noted that the present project can be extended in vari-
ous ways. First of all, one should consider more complicated system like
a particle in a central field potential defined on quantum spaces (3) and (4).
Secondly, one can investigate the oscillator model on other deformed space-
times such as a fuzzy or twisted quantum spaces [50] and [37]. Finally,
one should ask about oscillator system defined on phase space with posi-
tion noncommutativity (18), (42) supplemented by suitable deformation of
the momentum sector. Such a model has been considered recently in [21]
in a context of noncommutative space-time (1) with additionally deformed
Poisson brackets for momentum coordinates pµ. The studies in these direc-
tions are in progress.

The authors would like to thank J. Lukierski, Z. Haba, J. Jedrzejewski,
R. Olkiewicz, Z. Petru, Z. Popowicz, L. Turko and M. Woronowicz for valu-
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