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The sticking probability of the muon to the α-particle produced in the
fusion process is the real bottleneck in the muonic three-body fusion. In
this work, the stopping power of muonic helium ion in deuterium–tritium
target has been obtained for different temperatures and densities as a func-
tion of velocity in plasma conditions. By taking all processes which can
strip the muonic helium ion into account, the muon regeneration probabil-
ity is computed. The calculated stopping power decreases with increasing
temperature and density at any muonic helium ion velocity. The effective
sticking decreases with increasing temperature and density. The results for
the regeneration probability and the effective sticking are encouraging, and
this investigation makes a contribution towards the goal of finding appro-
priate conditions which allow to achieve a positive energy balance in the
muon catalyzed fusion (µCF) process.

PACS numbers: 28.5.–s, 36.10.Ee, 25.60.Pj

1. Introduction

The process of using a muon to repeatedly induce the fusion of hydrogen
isotopes is known as muon catalyzed fusion (µCF) [1–11]. Transfer of a muon
from hydrogen to helium is a loss channel in the µCF induced by hydrogen
isotope nuclei. In the µCF cycle, the average number of fusion reactions
catalyzed in deuterium–tritium (D–T) fuel for temperatures about 1000◦C
and liquid hydrogen density (LHD ≡ 4.25×1022 atoms/cm3) experimentally
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found to be less than about 170 per muon [12]. The muons are produced
during the decay of pions that are created in nucleon–nucleon collisions.
The energy required to produce a muon was estimated to be about 5 GeV,
therefore a fusion reactor based on µCF would only be viable if temperature
and density of the fuel increase. Since fusion of deuterium with tritium
generates 17.6 MeV, the average number of fusion reactions catalyzed should
be about 285 to reach the scientific break-even (1/3 of the commercial break-
even). For this purpose, it is usual to inject muons into a solid or liquid D–T
target and then compress the fuel using drivers such as a laser or ion beam
on a spherical media. As the fuel temperature and density increases it will
change to plasma.

2. Theoretical calculations

When a muon beam is shot into an ionized dense plasma, the nega-
tive muons stop and thermalize in the medium. In the process of slow-
ing down, a muon in D–T mixture replaces a hydrogen atom electron and
a muonic atom is formed. The formation of muonic atoms can proceed
via three distinct routes. The first of them involves a muon and hydrogen
molecules (D2, T2) and therefore occurs at temperatures and densities prior
to molecular dissociation. These atoms, formed in exited states, de-excite
to the ground-states due to numerous cascade processes. Radiative cap-
ture of a muon and three-body transitions are second and third processes
that may occur when the medium is ionized. Three-body reactions are less
probable at normal target densities but due to the non-linear density depen-
dence of the corresponding reaction rates they become important as density
increases. Therefore the formation of muonic atoms in such a plasma is
possible through the following processes:

a. Radiative recombination

µ− + D+ → dµ + γ , (1)

µ− + T+ → tµ + γ . (2)

b. Three-body recombination

µ− + D+ + X → dµ + X , (3)

µ− + T+ + X → tµ + X , (4)

µ− + D+ + e → dµ + e , (5)

µ− + T+ + e → tµ + e , (6)

where X is a ion or neutral particle. The difference between binding energies
of tµ and dµ is about 48.1 eV. Therefore, in subsequent collisions of dµ atom,
the muon is captured from deuterium to tritium nucleus at density, φ for all
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temperatures with a rate λdt = 2.8×108φ (dµ+ t → tµ+d+48.1 eV). Muon
transfer from tµ to a deuterium nucleus is possible when the temperature
of plasma approaches or exceeds 48.1 eV (tµ + d → dµ + t − 48.1 eV) [13].
In a cold D–T mixture (< 1000◦C), the dtµ molecules are formed during
a time interval τdtµ ≤ 10−8 sec [14] through following resonance reactions:

tµ + D2 → [(dtµ)Jνdee](λdtµ−d) , (7)

tµ + DT → [(dtµ)Jνtee](λdtµ−t) , (8)

λdtµ = λdtµ−dCd + λdtµ−tCt , (9)

where J = ν = 1 are the quantum numbers of excited rotating-vibrational
state and Cd and Ct are relative concentrations of deuterium and tritium nu-
clei, respectively. At high temperatures, resonance formation of dtµ muonic
molecule becomes slow and three-body formation mechanisms dominate
[15]. There are other possibility for formation mechanisms of dtµ muonic
molecule, such as ionic capture and non-resonance formation which are al-
ways dominated by the resonance or three-body formation. The processes
of muonic molecules formation are described by the following reactions:

a. by collisions with electrons

tµ + d + e → dtµ + e′ , (10)

tµ + D + e → (dtµ)e + e′ . (11)

b. by neutral-neutral transitions

tµ + D + X → (dtµ)e + X ′ . (12)

c. by ion-ion or neutral-ion transitions

tµ + D + X → dtµ + X + e′ , (13)

tµ + d + X → dtµ + X+ + e′ , (14)

where X stands for deuterium or tritium. All of these three-body reactions
involve the excitation of an electron to remove the binding energy of dtµ11.
The sum of reaction rates of the resonance and the three-body mechanisms
yields,

λdtµ(formation) = λdtµ(resonance) +
∑

j

λj
dtµ(three − body) , (15)

where λdtµ(formation) is the total formation rate of dtµ11 muonic molecule.
This molecule is an analogue of H+

2 ion except that it’s bond length is
smaller by a factor equal to the muon–electron mass ratio (≈ 207). The
dtµ muonic molecule makes deuterium and tritium closer within a distance
of 5×10−11 cm which allows them to overcome the Coulomb potential barrier
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and fuse together in a time interval of order 10−12 sec with an energy release
of 17.6 MeV. The negative muon is not involved in the fusion process (plays
a role of a catalyst) and it will be released after the fusion. There is, however,
some small fraction of muons which are captured by the recoiling helium
nucleus but most of them are freed to start another chain of µCF processes
(τµ = 2.197 × 10−6 sec). The probability of formation of a muonic helium
ion (with a kinetic energy K in

αµ = 3.47 MeV) is called the initial sticking

probability ω0
s (= 0.912%) [16]. Once the muonic helium ion is formed, the

muon can be stripped from the muonic helium ion by successive collisions
with nucleus:

αµ + X → α + µ + X (16)

→ α + µX . (17)

This process is called muon regeneration, with a corresponding fraction, R.
Hence the effective sticking coefficient, ωeff

s become:

ωeff
s = ω0

s (1 − R) . (18)

The effective sticking coefficient (ωeff
s ) is the most important parameter

in the study of D–T µCF. The cycling rate or the number of fusions per
muon in the idealistic case (without muon loss), is limited by the sticking
probability. The muon regeneration probability depends upon the stopping
power of the media and several important cross sections. The kinetics of
regeneration described by the various rates can be obtained using a set
of coupled differential equations. The total stripping probability, Pst(t) is
a time-dependent quantity determined by

dPst(t)

dt
=

∑

i

λ
(i)
st (v(t)) Pi(t) , (19)

where λ
(i)
st (v(t)) are velocity-dependent stripping rates from the individual

energy levels and Pi(t) are the time-dependent populations for the state i of
muonic helium ion and can be determined by

dPi(t)

dt
=

∑

i′(n
i′>ni)

(

λ
(i′→i)
Au + λ(i′→i)

ra + λ
(i′→i)
de−ex

)

Pi′(t)

+
∑

i′(n
i′<ni)

λ(i′→i)
ex Pi′(t) +

∑

i′(n
i′=ni)

λ
(i′→i)
Stark Pi′(t)

−λ
(i)
st Pi(t) −

∑

i′(n
i′<ni)

(

λ
(i→i′)
Au + λ(i→i′)

ra + λ
(i→i′)
de−ex

)

Pi(t)

−
∑

i′(n
i′>ni)

λ(i→i′)
ex Pi(t) −

∑

i′(n
i′=ni)

λ
(i→i′)
Stark Pi(t) , (20)
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where λAu, λra, λde−ex, λex, λStark and λst are the Auger de-excitation,
radiative, Coulomb de-excitation, Coulomb excitation, Stark mixing and
stripping rates, respectively. The excitation rates were obtained using Born
approximation given by Bracci and Fiorentini [17]. The de-excitation rates
are determined by substitution of λex in λn→1

de−ex = λ1→n
ex /n2. The ioniza-

tion rates were obtained by continuum distorted wave-eikonal initial state
(CDW-EIS) method given by Igarashi and Shirai [18]. The charge transfer
rates are obtained by Bracci and Fiorentini [17]. The Stark mixing rates
were calculated using the formulas given by Leon and Bethe [19, 20] and
the Auger rates have been replaced by the de-excitation rates in collisions
with free electrons. The radiative rates were obtained by scaling the results
of hydrogen atom following Bethe and Salpeter [21]. The dependence of
velocity on time is calculated using,

dKαµ

dt
= −vαµS(Kαµ) = −

√

2Kαµ

mαµ
S(Kαµ) , (21)

where S(Kαµ) = −dKαµ/dl is the plasma stopping power. The stopping
power, which is a measure of energy loss of energetic charged particles in
unit length of target medium, is of continuing theoretical and experimental
interest in diverse areas such as interaction of charged particles with solids
[17–20] and beam-heating of plasma. For high velocity particles or clusters,
the energy loss may be mainly due to collective and single-particle excita-
tions in the target medium. The energy loss of a high velocity projectile is
formulated, originally following Lindhard [26], by considering the justifiable
assumption of a weak coupling between the particle and a target medium
which is modelled by a linear response function of the degenerate electron
gas (DEG). The total field generated by the muonic helium ion, which travels
with velocity ~v at the position ~rαµ(t) = ~r0 + ~vt is

~Etot
~κ,ω =

~Eαµ
~κ,ω

D(~κ, ω)
, (22)

where ~Eαµ
~κ,ω = (2πq) exp(−i~κ.~r0)δ(ω − ~κ.~v) is the Fourier transform of

~Eαµ(~r) = q(~r − ~rαµ(t))/|~r − ~rαµ(t)|3. The dielectric function, D(~κ, ω) de-
scribes the response of a degenerate free electron gas to an external (lon-
gitudinal) perturbation in terms of the momentum transfer, ~κ and energy
transfer, ~ω. A charged particle passing through a plasma will induce an
electric field, ~Epol(~rαµ, t) by polarizing the medium. The induced electric
field can be related to the dielectric function, D(~κ, ω) of the medium through
its Fourier transform. The field generated from the background particles is
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~Epol(~rαµ, t) =

∫

~Epol(~κ, ω) exp(i~κ.~rαµ − iωt)
d3κ

(2π)3
dω

2π

= q

∫

~ǫk

[

1

D(~κ,~κ.~v)
− 1

]

d3κ

(2π)3
, (23)

where ~ǫκ is a unit vector in the direction of ~κ. The electric field, ~Epol(~rαµ, t)
will then act back on the particle and cause it to lose kinetic energy, K
according to the following formula

dK

dl
= −q

~v

v
. ~Epol(~rαµ, t) , (24)

which can be rewritten

dK

dl
=

q2

2π2

∫
[

~κ.~v

κ2v

ImD(~κ,~κ.~v)

|D(~κ,~κ.~v)|2

]

d3κ . (25)

Now we apply the drag on the muonic helium ion by the degenerate electrons.
The dielectric function, D(~κ, ω) in a completely degenerate plasma can be
calculated using

D(~κ, ω) = 1 +
3ω2

pe

κ2v2
F

[fr(u, z) + ifi(u, z)] , (26)

fr(u, z) =
1

2
+

1

8z

[

1 − (z − u)2
]

log

(∣

∣

∣

∣

z − u + 1

z − u − 1

∣

∣

∣

∣

)

+
1

8z

[

1 − (z + u)2
]

log

(
∣

∣

∣

∣

z + u + 1

z + u − 1

∣

∣

∣

∣

)

, (27)

fi(u, z) =







π
2 u if |z + u| < 1 ,
π
8z

[

1 − (z + u)2
]

if |z − u| < 1 < |z + u| ,
0 if |z − u| > 1 ,

(28)

where z = ~κ/(2mevF), u = ω/(κvF) and ωpe =
√

4πNe2/me is the plasma

frequency and vF = (~/me)(3π
2N)1/3 = 4.16 × 10−3φ1/3c is the Fermi ve-

locity.
Finally, substitution of Eqs. (26)–(28) in Eq. (25) leads us to,

dK

dl
=

4πz2e4

mev2
neL , (29)
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where the stopping number is

L =
6

π

v/vF
∫

0

udu

∞
∫

0

fi(u, z)

[z2 + χ2fr(u, z)]2 + χ4f2
i (u, z)

z3dz , (30)

where χ2 = e2/(π~vF) is the density parameter. The stopping number in
plasma as a function of velocity have been calculated for different tempera-
tures and densities and have been shown in Figs. 1 and 2. As it is clear from
the figures, the stopping number decreases with increasing density in a given
temperature and velocity while it decreases with increasing temperature in
a given density and velocity.

The muon regeneration probability is obtained using the stripping prob-
ability Pst(t) at time t = ∞,

R =
Pst(t = ∞)

ω0
s

. (31)

The initial conditions used to calculate muon regeneration probability (R)
are: Kαµ(0) = K in

αµ = 3.47 MeV, Pst(0) = 0 and the level populations are
equal to the partial sticking fractions,

Pi(0) = ω0
s (i) ,

∑

i

Pi(0) = ω0
s . (32)

The initial sticking probability, ω0
s and fractions of the nl states are given

in [16, 27]. The populations Pi(t) for n = 1, 2, . . . , 6 and the l sub-levels are
considered for n < 4. The muon regeneration probability and the effective
sticking have been obtained from Eqs. (31) and (18) after a numerical so-
lution of a set of coupled differential Eqs. (19)–(21) along with the initial
conditions given by Eq. (32).

The calculated regeneration probability and the effective sticking coef-
ficient as a function of plasma density and temperature are presented in
Figs. 3 and 4. These figures show that variation of temperature in the re-
gion considered significantly changes the regeneration probability and the
effective sticking coefficient at densities 1 < φ < 100 LHD. The changes
are less pronounced for φ > 100 LHD. Finally, the regeneration probability
increases and the effective sticking coefficient decreases rapidly with increas-
ing density at any fuel temperature while these occur slowly in liquid phase
(< 1000◦C) [27]. The results obtained in this work for R are compared with
results given in Refs. [27] and [28] in Table I.



326 M.R. Pahlavani, S.M. Motevalli

0.0
 5.0x10

6


1.0x10

7


1.5x10

7


2.0x10

7


0


1


2


3


4


5


6


7


8


T=100 eV

 0.1 LHD

 1 LHD

 2 LHD

 4 LHD

 6 LHD

 8 LHD

 10 LHD

 100 LHD
  


 


S
to

pp
in

g 
nu

m
be

r


Velocity (m/s)


Fig. 1. The stopping number in plasma, as a function of velocity at T = 100 eV

and different densities presented in the inset, in units of liquid hydrogen density

(LHD).
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Fig. 2. The stopping number in plasma, as a function of velocity at φ = 1.2 LHD

and different temperatures presented in the inset.
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Fig. 3. The regeneration probability, as a function of plasma density at different

temperatures presented in the inset.
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TABLE I

The regeneration probability, R and the effective sticking coefficient, ωeff
s for the

muonic helium ion in liquid and plasma fuel at φ = 1.2 LHD.

Source R (Ref. [27]) R (Ref. [28]) R (this work) ωeff
s (this work)

T < 1000◦C 0.391 — — —
T = 0.1 eV — — 0.363 0.580%
T = 1 eV — — 0.366 0.578%
T = 10 eV — — 0.368 0.576%
T = 50 eV — 0.352 0.386 0.560%
T = 100 eV — 0.403 0.417 0.531%
T = 200 eV — 0.493 0.461 0.491%
T = 500 eV — — 0.543 0.416%
T = 1000 eV — 0.676 0.619 0.347%

3. Conclusion

In the present study, the stopping number in plasma has been obtained
for different temperatures and densities as a function of velocity (Figs. 1
and 2). Our calculations in plasma conditions show that the maximal value
of stopping power (as function of velocity) decreases with increasing temper-
ature at any density. The maximal value of stopping power for temperatures
higher than 18 eV in plasma conditions at 1 LHD is smaller than its value in
liquid phase which is comparable with T > 20 eV in Ref. [28]. Calculations
for the muon regeneration probability and the effective sticking coefficient
have been done by solving a set of coupled differential equations numeri-
cally. The results of our numerical method for the regeneration probability
is compared with liquid phase [27] and results given by Jändel et al. [28]
in Table I. Comparison of our results for R-values with the ones obtained
by Jändel et al. [28] indicates differences that do not exceed 10%. The dis-
crepancies are due to different reaction rates and initial conditions used in
both calculations. The regeneration probability increases and the effective
sticking coefficient decreases with increasing the plasma temperature and
density. But the formation rate of muonic molecule ion, at high temper-
atures, is very slow (at high temperatures, resonance formation of muonic
molecule becomes small and three-body formation mechanisms dominate).
Therefore, the average number of fusion reactions catalyzed by one muon can
be increased rapidly with increasing density at low temperatures in plasma
conditions and the energy gain could be fulfilled while positive energy bal-
ance is never achieved in liquid phase.
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