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The influence of a few different Alfvén speed profiles VA(z) on the de-
velopment of vertical oscillations of a curved coronal slab is investigated.
Three particular cases are discussed: (a) dVA/dz < 0, (b) dVA/dz = 0,
(c) dVA/dz > 0. These cases correspond respectively to the presence of
wave tunnelling into the ambient medium above the slab (a), lack of any
tunnelling (b), and tunnelling into the ambient medium below the slab (c).
Two-dimensional ideal magnetohydrodynamic equations are solved by nu-
merical means and the slab oscillations are triggered impulsively by an
initial pulse in the vertical component of the momentum. We find that
vertical oscillations exhibit time-signatures with characteristic wave period
P and attenuation time τ . These parameters vary with VA(z). A small-
est value of P is associated with the case of (c). A strongest attenuation
(smallest τ) of vertical oscillations takes place in the case of (a). A simple
model of coronal loop oscillations leads to numerical results which are akin
to the observational data of Wang and Solanki (2004).

PACS numbers: 95.30.Qd, 96.60.Hv, 96.60.P–, 96.60.Ly

1. Introduction

Waves and oscillations of a solar coronal loop is a topic of recent inten-
sive investigations (e.g. Smith et al. 1997; del Zanna et al. 2005; Murawski
et al. 2005; Selwa et al. 2006; Verwichte et al. 2006a,b,c; Diáz et al. 2006;
Gruszecki et al. 2006; Ofman 2007). The general conclusion drawn from
these investigations is that a coronal loop is able to sustain a cavity either
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for propagating or standing waves (Edwin and Roberts 1982). Among stand-
ing waves several modes are possible to distinguish. Hot loops are observed
to oscillate mainly in a slow magnetoacoustic mode (Wang et al. 2002). Cool
loops primarily oscillate in fast magnetoacoustic kink modes which are ob-
served in two polarizations: horizontal (Aschwanden et al. 1999; Nakariakov
et al. 1999; Van Doorsselaere et al. 2007) and vertical (Wang and Solanki
2004). An excellent review of these oscillations can be found in Nakariakov
and Verwichte (2005).

The role of different Alfvén speed profiles on the behaviour of magnetohy-
drodynamic waves in a coronal loop was already addressed in the literature.
For instance, Smith et al. (1997) studied the leakage of fast magnetoacous-
tic sausage and kink oscillations with exponentially decreasing Alfvén speed
profile. Brady and Arber (2005) discussed higher-order (n ≥ 5) fast mag-
netoacoustic kink modes in a semi-circle coronal loop and explained the
leakage as wave tunnelling through an evanescent barrier above the coronal
loop. Recently, Verwichte et al. (2006a,b,c) developed an analytical model
for vertically polarised fast magnetoacoustic waves in a curved coronal loop.
In Verwichte et al. (2006a) the coronal loop was modeled in the limit of
cold plasma approximation as a curved magnetic slab for equilibrium mass
density given by a piece-wise continuous power law profile. Depending on
this profile, the wave modes were trapped or they were all subject to lateral
wave leakage (upward or downward). Verwichte et al. (2006b) confirmed that
vertically polarised fast magnetoacoustic kink oscillations of isolated coronal
loops may be efficiently attenuated due to lateral leakage. Verwichte et al.

(2006c) concluded that the mechanism of lateral wave leakage was efficient
in attenuation of vertically polarised fast kink oscillations.

Of particular importance to this paper is the work by Brady and Arber
(2005) and Verwichte et al. (2006b), who investigated fast magnetoacoustic
waves in curved coronal loops and the role of lateral leakage in wave attenua-
tion, which includes the mechanism of wave tunnelling. However, Verwichte
et al. (2006b) considered the case of plasma beta β = 2µp/ ~B2 = 0 for a cur-
rent loop while we extend their model for the case of warm plasma (β 6= 0)
and introduce a current-free potential arcade loop model. Brady and Ar-
ber (2005) discussed the case of a finite-value of β. However, they limited
their discussion to higher-order modes, while we concentrate our attention
on fundamental vertical kink loop oscillation. As a result, our approach is
complementary to the work by Brady and Arber (2005) and Verwichte et al.

(2006b).
This paper is organised as follows: The numerical model is described in

Sect. 2. The numerical results are presented in Sect. 3. Here we explore the
effects of different parameters entering the problem. The conclusions are
given in Sect. 4.
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2. Setup

2.1. Magnetohydrodynamic equations and numerical methods

We perform numerical simulations in a two-dimensional magnetically
structured atmosphere. Henceforth, we neglect gravity, thermal conduction,
radiation, plasma heating, viscosity and resistivity. As a consequence of that
we use the ideal magnetohydrodynamic equations to describe the coronal
plasma:

∂̺

∂t
+ ∇ · (̺V ) = 0 , (1)

̺
∂V

∂t
+ ̺ (V · ∇)V = −∇p +

1

µ
(∇× B) × B , (2)

∂p

∂t
+ V · ∇p = −γp∇ · V , (3)

∂B

∂t
= ∇× (V × B) , (4)

∇ · B = 0 . (5)

Here γ = 5/3 is the adiabatic index, µ is the magnetic permeability, ̺ is
the mass density, V is the flow velocity, p is the gas pressure and B is the
magnetic field.

Equations (1)–(5) are solved numerically using the code RAMSES (Teyssier
2002; Fromang et al. 2006). This code implements a second-order unsplit
Godunov solver with various slope limiters and Riemann solvers as well as
Adaptive Mesh Refinement (AMR). We use the Monotonized Central slope
limiter and the HLLD Riemann solver (e.g. Toro 1999). We set the simula-
tion box as (0, 2L)× (0, 2L), with L = 100 Mm. Open boundary conditions
for all perturbed plasma quantities are imposed in the two spatial directions.
In our studies we use AMR grid with a minimum (maximum) level of refine-
ment set to 5 (10). The refinement strategy is based on controlling numerical
errors in mass density. This results in an excellent resolution of steep spatial
profiles and greatly reduces numerical diffusion at these locations. Initially
(at t = 0) we cover the simulation region by 106 numerical cells.

2.2. Initial setup

In this section, we detail the initial setup used in this paper. The corona
is modeled as a low mass density, current free, highly magnetized plasma
laying over a dense photosphere. A dense curved slab is embedded in the
corona.
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2.2.1. The structure of the atmosphere

In this model, we assume that the gas pressure, pe, is initially uniform.
The boundary between the photosphere and the corona is chosen to lay at
the reference level, z = zph = 0.4L. If we neglect the effect of gravity, the
mass density can then be selected arbitrarily in the entire computational
domain. In particular we implement

̺e(z) = ̺c(z) +
1

2
̺c(z)(dph − 1)

[

1 − tanh

(

z − zph

sph

)]

. (6)

Here

̺c(z) = ˆ̺c exp

(

−z − zph

Λc

)

, (7)

where Λc is the mass density scale height and ˆ̺c denotes the mass density
at z = zph. The subscript e denotes the equilibrium mass density, sph is the
width of the transition region that is located at z = zph and dph is the ratio
of the mass density of the photosphere to the ambient coronal medium. In
this paper, we choose and hold fixed sph = 1 Mm and dph = 103 (Gruszecki
et al. 2008).

For the initial magnetic field, we adopt and modify the magnetic field
model which was originally described by Priest (1982) and recently used by
Gruszecki et al. (2008). In this model, we assume that at the equilibrium
the coronal arcade is embedded in a two-dimensional space. We limit our
discussion to a case of current-free magnetic field ∇× ~Be = 0 and introduce
the magnetic potential

A(x, z) = B0ΛB cos (x/ΛB)exp[−(z − zph)/ΛB] . (8)

It is related to the magnetic field through ~Be = ∇× (Aŷ). The equilibrium
magnetic field components (Bex, Bez) are then given by

(Bex, Bez) = B0(cos x/ΛB,− sin x/ΛB)exp[−(z − zph)/ΛB] , (9)

in addition to Bey = 0. Here B0 is the magnetic field at z = zph and the
magnetic scale height is ΛB = 2π/L.

2.2.2. The curved mass density slab

We implement a dense curved slab in the solar corona. It is established
such that its edges follow specific magnetic field lines. This can be done by
implementing the following mass density profile in the coronal region:

̺s(x, z) = ̺c(z) + 1
2
(d − 1)̺c(z)f(x, y) , (10)
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where the function f(x, y) is defined for z ≥ zph as

f(x, y) =

∣

∣

∣

∣

erf

(

A(x, z) − A1

B0ΛB

)

− erf

(

A(x, z) − A2

B0ΛB

)
∣

∣

∣

∣

. (11)

Here A1 = A(x1, 0) > A2 = A(x1 +2af , 0) and erf is the error function. The
symbol x1 corresponds to the external left slab footpoint and af denotes the
half-width of the slab at z = zph. We set x1/L = 0.3 and af/L = 0.025.
This slab embraces a region of enhanced mass density plasma with a mass
density contrast d = ̺i(z)/̺c(z) = 10 (Aschwanden and Nightingale 2005),
where ̺i(z) and ̺c(z) respectively stands for the mass density of the curved
slab and that of the local ambient coronal plasma.

Note that for the above choice of parameters, the curved slab does not
have a circular shape (see Fig. 1): the average radius and length are respec-
tively ∼ 70 Mm and ∼ 190 Mm. These values are close to the observational
data of Wang and Solanki (2004). In this paper, we choose ĉs =

√

γpe/ ˆ̺c =

2 × 105 ms−1 for the sound speed and V̂A = B0/
√

µ ˆ̺c = 106 ms−1 for the

Alfvén speed at z = zph. For such a choice, we find β = 2ĉ2
s/(γV̂ 2

A) = 0.012,
which is a realistic value in the corona.

Fig. 1. Initial equilibrium mass density profile in the x–z plane. The dense
photosphere-like layer is located at z/L < 0.4.

With the above choice of magnetic field and mass density profiles, the
Alfvén speed in the solar corona is given by:

VA(z) =
Be(z)

√

µ̺c(z)
=

√

B2
0

µ̺c
exp

(

(1 − 2Λc/ΛB)(z − zph)

Λc

)

. (12)

By varying the ratio Λc/ΛB, we can vary the vertical slope of the Alfvén
speed profile. As a magnetic field cannot be measured directly in the solar
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corona, the Alfvén speed profile is not known there. We can imagine that
there are different VA profiles and therefore in this paper, we compared six
models for which Λc/ΛB = 0.43, 0.47, 0.5, 0.53, 0.63 and 0.67. In the first
two, dVA/dz > 0. In the third model, dVA/dz = 0. Finally, in the last three
models, dVA/dz < 0. Figure 2 illustrates the resulting vertical profiles of
VA(z) in the cases Λc/ΛB = 0.63 (dotted line), Λc/ΛB = 0.5 (solid line) and
Λc/ΛB = 0.43 (dashed line).

Fig. 2. Vertical profiles of the Alfvén speed for the cases Λc/ΛB = 0.63 (dotted line),
0.5 (solid line) and 0.43 (dashed line). They correspond respectively to dVA/dz < 0,
dVA/dz = 0 and dVA/dz > 0.

In this paper, we aim to study impulsively excited fast magnetoacoustic
kink oscillations in the curved coronal slab that is described above. These
oscillations are triggered by an initial pulse in the vertical component of the
momentum (Gruszecki et al. 2008)

̺e(z)Vz(x, z, t = 0) = Ap exp

[

−(x − x0)
2 + (z − z0)

2

w2

]

, (13)

where Ap is the amplitude of the initial pulse and w is its width. We set
z0 = zph (the pulse originates at the base of the corona), x0/L = 1 (the
symmetry in the x-direction is preserved) and w/L = 0.35 for all cases.

Finally, we set Ap = 0.242 V̂A ˆ̺c.

3. Numerical results

3.1. Basic flow features

For all the simulations, the momentum pulse excited at t = 0 s at the
base of the corona triggers essentially fast magnetoacoustic waves. Vertical
oscillations of the dense curved slab are then excited as this pulse reaches
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a location of the slab. Figure 3 shows the time-signatures of these oscillations
by plotting the evolution of vertical profile of the mass density with time
near the curved slab summit. The left, middle and right panels correspond
respectively to Λc/ΛB = 0.63, 0.5 and 0.67. These time-signatures reveal
apex oscillations that decay with time.

Fig. 3. Time-signatures of mass density, evaluated at x/L = 1. Left panel cor-
responds to Λc/ΛB = 0.63 (dVA/dz < 0), the middle panel to Λc/ΛB = 0.5

(dVA/dz = 0) and right panel to Λc/ΛB = 0.67 (dVA/dz > 0).

For all the models, we plot in Fig. 4 the maximum of the vertical shift
of the slab apex zm versus VAt = VA(z/L = 2). It is clear that zm grows
with VAt. This growing trend results from the fact that for a larger value
of VAt wave tunnelling into the ambient corona above the apex is less effective
for a flatter descending VA profile or it is absent for dVA/dz ≥ 0. In a case of
dVA/dz > 0 wave tunnelling takes place to the medium below the apex. As
a result more energy is trapped below the slab and the apex is shifted more
substantially upwards. It is noteworthy that within the considered range
of VAt, we get 4.6 Mm < zm < 6 Mm, which is close to the observational
data of 7.9 Mm (Wang and Solanki 2004).

The slab oscillations can be traced by following the position of the slab
apex in time. This position is estimated from Fig. 3 as the maximum of
the Gaussian function fitted across the slab at its apex. To estimate the
wave period P and attenuation time τ of the oscillation, we fit the following
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Fig. 4. Maximum of vertical shift of the slab (zm) versus VA(z/L = 2).

attenuated sine function:

D(t) = D0 + D1 · sin (D2t + D3) exp (−D4t) , (14)

to the corresponding position of the slab apex for each model (e.g. Gruszecki
et al. 2008). The wave period and attenuation time of the oscillations are
related to the parameters of the fit through P = 2π/D2 and τ = 1/D4.
Figure 5 displays the variation of the wave period P with VAt. We found

Fig. 5. Plot of the wave period, P , versus VA(z/L = 2).

that P declines with VAt. This trend can be qualitatively understood by an
analogy with the straight slab (Gruszecki et al. 2007). In this case, the wave
period of the first magnetosonic kink mode can be estimated from:

P ≃ 2l

V̄A

, (15)
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where l is the initial length of the loop and V̄A is the average Alfvén speed
within the loop. As this speed grows with VAt, P is expected to decline
with VAt, which is in a qualitative agreement with the results of Fig. 5.

3.2. Wave tunnelling
3.2.1. Simulations results

The oscillations of the dense curved slab are attenuated because waves
tunnel into the ambient corona (Verwichte et al. 2006b). The amount of
attenuation depends on the thickness of the tunnelling region. The thicker
it is, the weaker wave leakage into the corona is, and the longer it will
take for the slab oscillations to attenuate. The thickness of the tunnelling
region depends on the Alfvén velocity vertical profile. This thickness is
infinite for the case of VA = const. as wave tunnelling is absent there. For
dVA/dz < 0 wave tunnelling takes place into the top ambient corona and
the thickness is smaller for a flatter VA(z) profile (a larger value of VAt). For
a case of dVA/dz > 0, for which VAt attains a larger value than for a case
of dVA/dz < 0, a larger value of τ/P results from the fact that P declines
with VAt (Fig. 5). Thus, we expect longer attenuation timescales for a larger
value of VAt. As shown in Fig. 6, it is indeed the case. The quality signal,
τ/P , grows with VAt, supporting our claims. As an additional confirmation,
we computed the time-averaged kinetic energy of magnetoacoustic waves,
Ēk, in a region located just above the curved slab apex (0.979 < z/L < 1).
We found that Ēk

(

VAt = 1500 km s−1
)

≃ 0.57 Ēk(VAt = 640 km s−1). This

indicates that energy leakage is higher for the case of VAt = 640 km s−1 than
for VAt = 1500 km s−1. We infer that energy leakage into the top ambient
corona is more substantial for a lower value of VAt.

3.2.2. Comparison with observations and analytical results

It is noteworthy that the numerically obtained values of τ/P (Fig. 6) are
consistent with the observational data of Wang and Solanki (2004), which
exhibits a value of τ/P ≃ 3.

The trend obtained in Fig. 6 also agrees qualitatively with the analytical
findings of Verwichte et al. (2006b). This can be seen for example in their
Fig. 10, bottom panel. For ascending (dVA/dz > 0) Alfvén speed profile, the
values we obtained are even in good quantitative agreement with the values
of τ/P quoted in Verwichte et al. (2006b). For descending (dVA/dz < 0)
and constant (dVA/dz = 0) Alfvén speed profiles, Verwichte et al. (2006b)
found that 0.2 < τ/P < 0.9. This is smaller by a factor of at least two than
exhibited by our numerical simulations.

First, it is worth noting that a one to one comparison is difficult, as Ver-
wichte et al. (2006b) adopted the zero-β plasma limit approximation, while
we placed the curved slab in the β 6= 0 corona. Second, the differences are
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Fig. 6. Ratio of the attenuation time to the wave period, τ/P , versus VA(z/L = 2).

also likely to be due to the different Alfvén speed profiles we used compared
to Verwichte et al. (2006b). Another difference is that the curved slab is
akin to a half-ring in Verwichte et al. (2006b) while in our case it is oval. As
a result the apex is shifted further up than in our case (Fig. 4).

4. Summary

In this paper, we presented a parametric study of the influence of the
vertical profile of the Alfvén speed on the spatial and temporal evolution of
vertical oscillations of a curved coronal slab. In particular, we discussed de-
scending (dVA/dz < 0), constant (dVA/dz = 0) and ascending (dVA/dz > 0)
Alfvén speed profiles. Our findings can be summarised as follows. The ini-
tial pulse of momentum imposed at the start of the simulation triggers verti-
cal oscillations that exhibit leakage into a photosphere-like layer (Gruszecki
et al. 2008) and into the ambient medium. The latter results from curvature
of magnetic field lines (Selwa et al. 2007) as well as from wave tunnelling
into the top and bottom ambient corona (Verwichte et al. 2006b) which is
present respectively for descending and ascending with height Alfvén speed
profiles.

The numerical results obtained in this paper are in good agreement with
the observational data of Wang and Solanki (2004) who reported P = 234
s and τ/P ≃ 3. We found P in the range 220–300 s and τ/P ∼ 2.85 in the
case of an ascending Alfvén velocity profile.

Thus we have shown that, even in the absence of thermal conduction,
radiation, plasma heating, viscosity or any other non-ideal effects, a sim-
ple conceivable model of coronal loop oscillations gives acceptable results,
with wave periods and quality signals that are in good agreement with the
observational data.
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