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In spite of the heading, these approaches to nuclear structure physics
are not in any contrast. They approach the problem of nuclear structure
from opposite directions. We believe, however, that when many-body cal-
culations will achieve their final goal, we will eventually understand why
the simple shell model works so well and where it fails. The shell model
has been used extensively and successfully for almost 60 years. It is still
not understood why it is such a good approximation.

PACS numbers: 21.60Cs, 21.10.–k, 21.10.Pc

The aim of this talk is to demonstrate by rather old examples how the
shell model can be simple and elegant and yet efficient. This situation will
be compared with some results of many-body theory which is much more
fundamental and ambitious but is still making its first steps on a very difficult
road.

Why so far, has nuclear many body theory not reached a complete solu-
tion? Its input is the interaction between free nucleons. This interaction has
been studied for more than 50 years and there is still no theory from which
it may be derived. Of course, not resorting to string theory, QCD is consid-
ered to be a sufficiently exact theory of protons and neutrons. For nuclear
structure, however, it is needed for rather low energies where perturbation
theory does not work. Perhaps QCD on a lattice will give a satisfactory so-
lution. So far, various models have been constructed which reproduce rather
exactly many results of scattering experiments but their off-shell behavior
is arbitrary to a large extent. Another point is the relative importance of
3-body forces. Many of the calculations introduce them as input but their
strength is determined only from bound 3 and 4 body systems.
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When the second generation shell model was introduced in 1949, it was
clear to Maria Mayer that a mutual interaction between nucleons is necessary
to explain ground state spins of nuclei [1]. The interactions which followed
were taken from various versions of free nucleon interaction published in
those days. After a few years it was found that this interaction is rather
singular and cannot be used with shell model wave functions. It became
clear that the bare nuclear interaction must be strongly renormalized to be
used in the shell model. This was attempted by Brueckner theory of the
G-matrix and later by a long list of authors who refined it and tried to make
it useful for shell model calculations.

It should be made clear that these attempts which finally seem to have
succeeded, as described by Covello [2], start from the shell model. They do
not attempt to calculate binding energies of nuclei with closed shells. Nor
do they attempt to calculate separation energies of single nucleons outside
closed shells (single nucleon energies). Their aim is to calculate the effec-
tive interactions between nucleons outside closed shells, valence nucleons.
The idea is that the bare interaction introduces strong short range correla-
tions between nucleons. These mix into the shell model wave functions of
independent motion, states of high lying configurations to which nucleons
are excited by the interaction. It is possible to continue using shell model
wave functions if the effects of mixing of high lying states are attributed
to a change of the mutual interaction. The resulting effective interaction
should be much more tame and could be used as a perturbation.

Recently, more ambitious attempts were initiated. They start ab initio,
from the bare interaction between free nucleons and use shell model wave
functions only as basis for their calculations. One of these approaches is the
No Core Shell Model (NCSM) which uses harmonic oscillator wave functions
as basis functions. Due to computational complexity they are able to use
oscillator functions up to 6hω. Some of their results will be discussed in
the following. The resulting wave functions are very complicated and it is
not clear how the simple shell model will emerge from them. In fact, their
results so far, seem to show that the shell model could not possibly be a good
approximation . . .

Since early many-body calculations did not produce reliable values for
the effective interaction, an alternative approach was developed [3]. In it,
matrix elements of the effective interaction were determined from measured
energies of nuclei. To obtain meaningful results, some limitations on the ef-
fective interaction had to be imposed. In the many-body theory the resulting
effective interaction is a complicated operator. Even if the bare interaction
acts only between two nucleons, the effective interaction contains not only
two-body terms but also 3-body terms and higher order ones. There was no
way to determine how big those terms should be.
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If the effective interaction is assumed to be a two-body one, matrix
elements of a configuration with n > 2 nucleons are linear combinations
of matrix elements of two-body configurations. Hence, a set of measured
energies in a group of nuclei can be expressed in terms of a smaller number of
two-body matrix elements. If such two-body matrix elements are found, this
gives confidence that the choice of configuration was correct. It also means
that the matrix elements so obtained may be used to calculate energies of
other states, not yet measured. Examples of this approach will be presented
in the following.

The first successful application of this method which demonstrated its
power, is the relation between the spectra of 38Cl and 40K. According to the
simple shell model, in 40K there are three 1d3/2 protons coupled to Jp = 3/2
(one d3/2 hole) and one 1f7/2 neutron. In such a configuration there are
4 states with spins J = 2, 3, 4, 5. If these are taken to belong to the 4
nucleon configuration, their interaction energies are linear combinations of
the interaction energies of the 2 nucleon d3/2f7/2 J = 2, 3, 4, 5 states. Hence,

spacings of the 40K levels are linear combinations of the spacings of the two-
nucleon configuration expected in 38Cl. Since the 40K levels were known,
we calculated the spacings of the 38Cl levels. There was no resemblance
between them and published data. When new measurements were published,
the agreement with our predicted energies turned out to be very good [4]
as shown in Fig. 1. Such a calculation was carried out independently by
Pandya and published a little later [5].

1.5

1.0

0.5

0

MeV J=4 4-

3-

5-

2-
4-3 -

5-

2- J=3

J=5

J=2

40

19
K

21

38

17
Cl

21

experimental calculated experimental

Fig. 1. Prediction of 38Cl levels from those of 40K.
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This good agreement indicated that in 40K and 38Cl, the states consid-
ered do not mix appreciably with other states. Moreover, it indicates that
the J = 3/2 state in 37Cl is due to a single 1d3/2proton outside closed shell
of 1d5/2 and 2s1/2 orbits. This fact was noticed, but unlike the practice of
these days, no discovery of a new magic number, Z = 16, was announced.

The (3 spacings of) two-body matrix elements of the effective interaction
determined in this way satisfy consistency conditions of nicely reproducing 6
experimental data (3 level spacings in 38Cl and in 40K). Hence, they may be
safely adopted and be used in calculating spectra of other nuclei. Another
very important result was that matrix elements, or differences thereof, do
not change appreciably when going from one nucleus to its neighbors. This
rather regular behavior is an important ingredient in applications of this
method.

This was the first shell model calculation with significant quantitative
agreement with experiment. It was followed by other such calculations which
became more and more complicated, culminating in calculations with many
millions of shell model states. In all these calculations, only two-body inter-
actions have been used.

It is a fact that in all shell model calculations carried out so far, no
evidence of explicit 3-body effective interaction was found. This is interesting
and perhaps significant. It may be that these interactions are either rather
weak or independent of the state considered, or both. Also two-body matrix
elements between states of 1d3/2 protons and 1f7/2 neutrons are affected by
possible 3-body interactions with nucleons in the core. Similarly, interactions
of a valence nucleon with two core nucleons could contribute to single nucleon
energies which are taken from experiment. Even if those contributions are
relatively weak, the large number of core nucleons may lead to significant
contributions. In the present way of determination of matrix elements from
experiment it is impossible to distinguish such contributions from those of
genuine two-body interactions.

Most nuclear spectra are complex and mixing of several configurations is
necessary. Still, there are several simple cases, like the one described above.
Each such case yields information only about a limited set of matrix elements
but it has been possible to extract from them some general properties of the
effective interaction. These are:

The T = 1 part of the effective interaction, between identical nucleons,
is strong and attractive in J = 0 states. In other states it is rather
weak and repulsive on the average.

The T = 0 part, included in the proton–neutron effective interaction,
is strong and attractive on the average.
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An important conclusion from these properties is that the central po-
tential well of the shell model is created by the proton–neutron effective
interaction. It determines its depth as well as its shape, thereby it deter-
mines positions and spacings of single nucleon orbits. A direct consequence
is that positions of single proton orbits depend on the occupation numbers
of neutrons and vice versa.

This realization led us 48 years ago to look at isotones with neutron
number 7 and predict that the ground state of 11Be should be 1/2+ rather
than the expected 1/2− state whose excitation energy was also predicted [6].
The shell model space which we used was rather limited but the shell model
calculation was exact. More elaborate calculations can be made but none
could be simpler.

We started from levels of 13C, the 1p1/2 ground state and the 1/2+ ex-
cited state at about 3 MeV taken to be the 2s1/2 single neutron state (Fig. 2).

To reach J = 1/2 states of 11Be, two 1p3/2 protons coupled to J = 0 should

Fig. 2. Single neutron levels in 13C.

be removed. The interaction of the latter with a 1p1/2 neutron is naturally
expected to be stronger than their interaction with a 2s1/2 neutron. Infor-

mation about these interactions may be provided by levels of 12B obtained
from 13C by removing one 1p3/2 proton. Its lowest measured levels have

spins 1+, 2+ and 1−, 2−, taken to be due to the 1p3/2 proton hole coupled
to the 1p1/2 and 2s1/2 neutrons (Fig. 3). Actually only the centers-of-mass
of these levels are required. The interaction energy of a pair of j-protons
coupled to J = 0 with a j′-neutron is equal to twice the average interaction
of a j-proton with a j′-neutron. The average interaction energy (it has now
a fancier name — the monopole interaction) is defined by

V
(

jj′
)

= Σ(2J + 1)
〈

jj′J |V |jj′J
〉

/Σ(2J + 1) .
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Fig. 3. States of proton 1p3/2 hole-neutrons in 1p1/2 and 2s1/2 orbits in 12B.

Comparing the spacing in 13C with the spacing of centers-of-mass in 12B
we can directly find out the effect of removing two 1p3/2 protons from 13C

to obtain 11Be. A graphic solution of the exact shell model calculation
described above is presented in Fig. 4. This is not a simple extrapolation,
it yields an exact solution of the shell model calculation using the simple
jj-coupling configurations mentioned above [6].

Fig. 4. Prediction of the 1/2+ ground state of 11Be.

The 11Be case clearly demonstrated that the proton–neutron interaction
may interchange the position of orbits in different major shells. An obvious
point about which we did not make any fuss, is that for 4 protons the
number of 8 neutrons is no longer a magic number. The 2s orbit from the
next major shell becomes lower than the 1p1/2 orbit. It is often questioned
whether models which are useful for stable nuclei can be used for unstable
ones. Here, the p1/2 neutron is only slightly bound and yet, its energy was

predicted from the more stable 12B and 13C.
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A similar behavior was observed experimentally for the neutron magic
number 20. As explained above, in 36S and higher mass nuclei mentioned
there, the neutron s, d shell is fairly closed and N =20 is magic. With N =20
and removing protons, down to 33Al and 32Na, the s, d neutrons lose more
interaction energy than the 1f7/2 neutrons. Hence, the single neutron 1f7/2

orbit becomes sufficiently close to s, d orbits so that neutron configurations
are mixtures of neutrons in f and s, d orbits. The resulting spectra become
complicated and much more collective than in heavier N = 20 isotones. This
situation is referred to as the disappearance of the N = 20 magic number as
is the case with the N = 8 magic number in 11Be and neighboring nuclei.

In rather light nuclei, like those in which valence nuclei occupy the 1p
shell, it is possible to see how well ab initio calculations, like the NCSM,
reproduce measured energies. In such nuclei, the many-body calculations are
simpler, although still very complicated. Results of such calculations for A =
14 nuclei were presented and compared with experimental data [7]. In that
paper, the 39 authors present measurements of Gamow–Teller transitions
from the 14N ground state, with J = 1, T = 0 to levels in 14C and 14O.
These are compared with NCSM calculations. There are some agreements
and some disagreements and the authors present the latter as a challenge
to the shell model. It is, however, a challenge to NCSM since in the simple
shell model there are certainly no gross discrepancies with experiment.

The results reported in Ref. [7] are presented in Fig. 5. The most impor-
tant discrepancy is the appearance, at rather low excitation, of a 0+ state
(another 0+ state a bit higher was not reached by those experiments) and
three rather than one 2+ states. The fact that the Gamow–Teller strength
is shared by the three 2+ states is not surprising. They are rather close and
most probably mixed. Still, the summed strength is less than the expected
one. This, however, is a common feature of the shell model and will not

Fig. 5. NCSM calculations for A = 14 nuclei compared with experiment.
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be further discussed. It is interesting to see that the calculation predicts
a rather large transition strength to the ground state of 14C. This Gamow–
Teller strength has been measured many years ago by the highly quenched
14C beta decay. It is barely seen in the 14C levels and not at all in the 14O
levels in Fig. 5. This quenching makes the well known 14C dating possible.
In the simple shell model, such quenching within the p-shell was shown to
be possible if tensor forces are included [8].

To find the interpretation of those extra levels in the simple shell model,
it is necessary to look at the predicted positions of p-shell levels. Many
years ago, Cohen and Kurath determined the effective interactions in the
p-shell from some measured energies and used them to calculate positions
of other levels [9]. Their results for 14C are shown in Fig. 6 where also
the NCSM results are indicated. It is significant that the NCSM ab initio

calculations are in fair agreement with the Cohen–Kurath ones. Thus, in
the simple shell model, the extra levels are intruders, due to excitation of
p-neutrons into the higher s, d-shell. This should not be a big surprise since
a more drastic intrusion was seen in 11Be. This assignment can be justified
in a more quantitative fashion.

Fig. 6. 14C levels compared with Cohen–Kurath and NCSM calculations.

In Fig. 2 it is seen that the neutron 2s1/2 orbit lies at 3.09 MeV above
the 1p1/2 orbit. The 1d5/2 orbit lies rather close to it, at 3.85 MeV. Two

neutrons in these orbits can couple to yield two 0+ states (s2

1/2
and d2

5/2

configurations) and two 2+ states (s1/2d5/2 and d2

5/2
configurations). The

single neutron energies can be obtained from the 13C spectrum in Fig. 2.
Before taking into account mutual interactions, the s2

1/2
state should lie
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2×3.09 = 6.18 MeV about the 14C ground state, rather close to the measured
value of 6.59 MeV. The s1/2d5/2 states should lie at 3.09 + 3.85 = 6.94 MeV

and the single neutron contribution to d2

5/2
excitation energies is equal to

2 × 3.85 = 7.7 MeV. These energies are in the right energy domain but to
calculate the exact positions of these levels it is necessary to take into account
the mutual interactions. To do this, it is necessary to know the values of
diagonal and non-diagonal matrix elements between these states as well as
the non-diagonal matrix elements of them with p-shell states. There were
some attempts to determine these matrix elements from experimental data.
Here, it is sufficient to look at the analogous situation in 16C.

In 15C the neutron p-shell is closed and the single valence neutron should
be in the s, d-shell. Indeed, the ground state has spin 1/2+, due to a 2s1/2

neutron and above it, at 0.74 MeV, there is a spin 5/2+ state due to a 1d5/2

neutron. The order of these two states is the same as in 13C and their
spacing is almost equal to 0.76 MeV, the spacing in 13C. The lowest levels
in 16C are expected to be due to two neutrons in these orbits and their
relative positions should be equal to those in 14C if their interactions with
p-shell states is not taken into account. This observation was made long
ago by Fortune [10] whose experimental level scheme is shown in Fig. 7. In
addition to level spacings, the lowest excited 0+ state is calculated to lie at
6.38 MeV, very close to the experimental 6.59 MeV. The slight difference
may become even smaller if the interaction of this state with the 14C ground
state will be taken into account. The agreement between the spectra of 14C
and 16C in Fig. 7 is impressive indeed.
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In addition to the energies of the extra levels considered above, there
is another indication that these are intruder states. It is related to the
wave functions of these states in the simple shell model. It is obtained by
considering the Coulomb energy differences between them and rather pure
p-shell states. Looking at the 14C level scheme in Fig. 6, several negative
parity levels can be seen between 6 and 8 MeV. No negative parity states can
arise from an even number of p-nucleons. In the simple shell model these
levels are obtained by raising one 1p1/2 neutron into the s, d shell. Indeed,

these levels have spins 0−, 1−, 2− and 3− which are due to coupling of the
ground state of 13C with one 2s1/2 and one 1d5/2 nucleon respectively.

In Fig. 8, positions of these levels above the 14C ground state are com-
pared with positions of corresponding T = 1 levels above the 0+, T = 1
state of 14N which lies 2.31 MeV above its 1+, T = 0 ground state. The
Coulomb energy differences of these negative energy states are considerably
smaller than that of the p-shell ground state. The larger change is seen for
states with a 2s1/2 nucleon which is due to its wave function having a larger
spatial extension. A 2s1/2 proton has no centrifugal barrier to keep it closer
to the core protons. Such reduced Coulomb energy differences can be seen
in positions of the first excited 0+ state and following three 2+ states in 14C
and 14O in Fig. 5. The 2+ states are admixtures of a p-shell state and the
two s, d-shell states discussed above. It is interesting to note that the 1+

state which is a pure p-shell state, has practically the same Coulomb energy
shift as the ground state, even though it lies more than 11 MeV above it.

Fig. 8. Coulomb energy differences of some nuclear states.
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Thus, it seems that NCSM reproduces reasonably well (spacings of)
states due to p-shell nucleons. The calculated positions of intruder states,
however, seem to be much higher than the experimental ones. The A = 14
nuclei are thus, a challenge not to this (simple) shell model but to the NCSM
calculations. Why does NCSM miss intruder states? In schematic models,
where a shell model potential well is determined by charge distributions of
nuclei, large gaps emerge between major shells. As a result, intruder states
turn out to be rather high and certainly not ground states as in 11Be. In
the simple shell model, energies of single nucleon orbits are taken from ex-
periment and intruder states are calculated to be where they are. Still, in
no core calculations, as suggested by their name, no a priori potential well
is assumed so what is the reason?

In NCSM calculations, harmonic oscillator wave functions are used just
as basis functions. The hω of the wave functions adopted in the calcula-
tions reported in Ref. [7] is about 14 MeV. Hence, the difference in kinetic

energy of these basis states is half of hω which is about 7 MeV. This is
a rather large energy difference which is apparently difficult to reduce by
the mutual interactions. It is true that oscillator functions form a complete
set and a complete calculation will yield correct results independent of the
value of hω. Computational complexities, however, prevent for the time be-
ing, reaching a satisfactory solution. The results reported in Ref. [7] were
obtained by using oscillator functions only up to 6hω.

Ab initio calculations of nuclear states and energies are of great impor-
tance provided the input, the bare interaction is sufficiently correct and the
approximations made are satisfactory. Then accurate energies of nuclear
states will be obtained, also of nuclei which are inaccessible experimentally.
More important would be the knowledge of the real nuclear wave functions.
This will enable accurate calculation of various moments and transitions,
electromagnetic and weak ones, including double beta decay. This will elim-
inate the need to resort to effective charges, effective magnetic moments etc.

As we saw, there are still many difficulties to overcome.

Some example of the simplicity of the shell model were presented above.
From the early days it was clear that shell model wave functions could not
be the exact real ones. States of individual nucleons do not include short
range correlations which are due to the strong interactions observed in scat-
tering of free nucleons. The bare interaction is fully taken into account in
ab initio calculations. It leads to strong admixtures of basis states involving
excitations to several higher major shells. The higher the shells involved,
the better the approximation obtained. This raises the important question
whether the shell model will emerge from these calculation as a good ap-
proximation. The shell model has been so simple, useful and elegant to such
an extent that it would be illogical to abandon it. A simple example above
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showed that single nucleon wave functions have some reality in nuclei. Re-
liable many-body theory of the nucleus could and should explain why the
shell model works so well, which interactions lead to it and where it be-
comes useless. The question still remains whether simplicity (shell model)
will emerge from complexity (many-body theory).
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