STRUCTURE OF HEAVY Fe NUCLEI AT THE POINT OF TRANSITION AT $N\sim 37^*$

H. Mach^{a,b,c}, A-M. Baluyut^d, E. Ruchowska^e, U. Köster^{f,g} L.M. Fraile^{c,g}, R. Boutami^h, H. Bradley^{a,i}, N. Braun^j C. Fransen^j, J. Jolie^j, J. Nyberg^a, V. Ugryumov^k

^aDepartment of Physics and Astronomy, Uppsala University PO Box 535, 75121 Uppsala, Sweden

^bInstitute for Structure and Nuclear Astrophysics, University of Notre Dame Notre Dame, IN 46616, USA

^cFacultad de Físicas, Universidad Complutense, 28040 Madrid, Spain
^dDepartment of Physics, University of Notre Dame, Notre Dame, IN 46616, USA
^eThe Andrzej Sołtan Institute for Nuclear Studies, P05-400 Świerk, Poland
^fInstitut Laue-Langevin, B.P. 156, 38042 Grenoble Cedex, France
^gISOLDE, PH Department, CERN, 1211 Geneva 23, Switzerland
^hInstituto de Estructura de la Materia, CSIC, 28006 Madrid, Spain
ⁱSchool of Physics, University of Sydney, New South Wales 2006, Australia
^jInstitut für Kernphysik, Universität zu Köln, 50937 Köln, Germany
^kNuclear Physics Institute, AS CR, CZ 25068, Rez, Czech Republic

(Received November 7, 2008)

We have studied energy levels in 63 Fe populated in the β -decay of 63 Mn. A new (preliminary) level scheme of 63 Fe includes 10 excited states connected by 21 γ -rays. The first excited states at 357 and 451 keV have the level half-lives of 110 ps and 780 ps, respectively. Three states, at 357, 451, and 1132 keV, are strongly β -fed with log $ft \sim 5$, while there is only a very week β -feeding, if any at all, to the ground state. The new results imply that 63 Fe departs from a simple shell model structure observed for heavier N=37 isotones of 65 Ni and 67 Zn.

PACS numbers: 23.20.Lv, 21.10.Tg, 23.20.-g, 27.50.+e

1. Introduction

Limited experimental information exists on the heavy neutron-rich Fe and Co nuclei located just below the shell closure at Z = 28. For nuclei in the heavy Cu–Ge region there seems to be a shell effect at N = 40 evident

^{*} Presented at the Zakopane Conference on Nuclear Physics, September 1–7, 2008, Zakopane, Poland.

H. MACH ET AL.

from the systematics of the energies of the first excited 2^+ states and the related B(E2) values. On the other hand, for nuclei below Ni, like heavy Fe, there is a sudden increase in the collectivity above N = 37, as observed from the lowering of the energies of the 2^+ states in the even-even Fe and Cr nuclei. The increase in collectivity is caused by occupation by neutrons of the $1g_{9/2}$ orbit as demonstrated in the calculations by Caurier *et al.*, [1]. We have applied the ultra-fast timing method [2–4] to systematically study transition rates in the neutron-rich Fe nuclei. In this presentation, we discuss new results on 63 Fe located at N = 37, thus exactly at the point of transition from spherical to collective structures.

2. Experimental details

Measurements were performed at the ISOLDE facility at CERN. Levels in ⁶³Fe were populated in the β -decay of ⁶³Mn. The Mn nuclei were obtained as fission products from the bombardment of a natural uranium target by 1.4 GeV protons. They were selectively ionized using the Resonant Laser Ion Source, extracted and separated using the High Resolution Separator providing almost pure ⁶³Mn beam. Details of the experimental procedures and results will be given in [5]. The detector setup was the same as used in the study by White *et al.*, [6]. It included five detectors arranged in a close geometry around the point of a continuous beam deposition. A thin plastic scintillator served as a fast-response β detector providing the START signal for subnanosecond lifetime measurements, while two fast-response γ scintillators: one BaF₂ of the Studsvik design and one cylindrical 2.5×2.5 cm LaBr₃ crystal, provided the STOP signals. The setup included also two Ge detectors of 100% relative efficiency.

Double coincidence $\beta\gamma(t)$ events and triple coincidence $\beta\gamma\gamma(t)$ events were collected using different combinations of γ detectors. These data sets were sorted off line and provided information on the γ -ray energies, intensities and $\gamma\gamma$ coincidences which helped to identify γ lines and build the level scheme of ⁶³Fe. Double and triple coincidences involving the fast-response detectors allowed for a determination of the level lifetimes.

3. Results on ⁶³Fe

The results presented here are preliminary. The level scheme of 63 Fe identified in this study, see Fig. 1, includes 10 excited states and 21 γ transitions. The 357 keV line was previously observed in-beam [7] via multinucleon transfer reactions. Moreover, seven γ -rays from the decay of 63 Mn were reported by Gaudefroy [8]. Our data confirm the placement of six of them in the level scheme, including one previously placed tentatively.

Fig. 1. Preliminary level scheme of 63 Fe populated in the β -decay of 63 Mn. Arrows on the left hand side indicate levels strongly β fed with log $ft \sim 5$.

Our measurement was done with a saturated source where the total β intensities in the decaying isobars of Mn, Fe and Co were equal. This provided an opportunity to establish absolute γ -ray intensities based on the ratio of intensities of transitions in Fe to those from the known decay of ⁶³Fe to ⁶³Co and separately from the decay of ⁶³Co to ⁶³Ni (measured in [9] and summarized in [10]). However, the decay of ⁶³Fe has incorrect absolute intensities. The sum of γ -ray intensities in the decay of ⁶³Mn to ⁶³Fe exceeded by a large factor the maximum intensity of 100% if the intensities in Fe were normalized to those from the decay of ⁶³Fe. On the other hand, the sum came to be a little more than 100% (but consistent with 100% within the error limit) if we used the second decay for intensity normalization. We conclude that the previously reported [9, 10] absolute intensities for the β -decay of ⁶³Fe are incorrect. Our data imply existence of very weak (or none) ground state to ground state β -decays from Mn to Fe and from Fe to Co. Since the β -decays in this region are dominated by

H. MACH ET AL.

strong GT transitions between neutron $f_{5/2}$ and proton $f_{7/2}$ with log ft as low as 4.7, we suggest that the spin/parity of the ground state of 63 Fe is not $5/2^-$. Otherwise it would have a strong neutron $f_{5/2}$ component and at least a strong β branch in the decay of 63 Fe to the ground state of 63 Co.

The half-lives of the first two excited states at 357 and 451 keV are 110 ps and 780 ps, respectively, and imply a M1 character for the 93 and 357 keV transitions with typical B(M1) values of $0.4-2.0 \times 10^{-2}$ W.u.. Otherwise they would be exceedingly collective E2 transitions for a nucleus at the shell closure with the B(E2) values of 2000 W.u. and 60 W.u., respectively (we exclude here the possibility of an E1 type). In all odd-N nuclei in this region the lowest three lying states are due to the neutron $p_{1/2}$, $p_{3/2}$ and $f_{5/2}$ orbits and thus have spin/parities $1/2^-$, $3/2^-$ and $5/2^-$, respectively. If the ground state and the 357 and 451 keV levels are such states, then the M1 γ -ray sequence implies that the order of levels is either $1/2^-$, $3/2^-$ and $5/2^-$, or $5/2^-$, $3/2^-$ and $1/2^-$, respectively, with either $1/2^-$ or $5/2^-$ as the ground state of ⁶³Fe. However, the β feedings strongly favor the $1/2^-$ case. Consequently, in ⁶³Fe we likely have the $1/2^-$, $3/2^-$ and $5/2^-$ sequence of the lowest-lying states in contrast to the sequence $5/2^-$, $1/2^-$ and $3/2^$ determined in the heavier N = 37 isotones of Ni and Zn.

This study was supported in part by the NSF PHY04-57120, Swedish Research Council, BMBF grant 06KY205I, the EU within the 6-th framework Contract Number: 506065 (EURONS) and was part of Undergraduate Research (A-M.B.) at the Physics Department University of Notre Dame.

REFERENCES

- [1] E. Caurier, F. Nowacki, A. Poves, Eur. Phys. J. A15, 145 (2002).
- [2] H. Mach, R.L. Gill, M. Moszyński, Nucl. Instrum. Methods Phys. Res. A280, 49 (1989).
- [3] M. Moszyński, H. Mach, Nucl. Instrum. Methods Phys. Res. A277, 407 (1989).
- [4] H. Mach et al., Nucl. Phys. A523, 197 (1991).
- [5] A-M. Baluyut *et al.*, to be published.
- [6] E.R. White et al., Phys. Rev. C76, 057303 (2007).
- [7] S. Lunardi et al., Phys. Rev. C76, 034303 (2007).
- [8] L. Gaudefroy, Ph.D. Thesis, Université de Paris XI, 2005, IPNO-T-05-07.
- [9] E. Runte et al., Nucl. Phys. A441, 237 (1985).
- [10] B. Erjun, H. Junde, Nucl. Data Sheets 92, 147 (2001).