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Understanding the development of configuration mixing, coherence, col-
lectivity, and deformation in nuclei is one of the crucial challenges in nuclear
structure physics, and one which has become all the more important with
the advent of next generation facilities for the study of exotic nuclei. We
will discuss recent work on phase/shape transitional behavior in nuclei, and
the role of changes in sub-shell structure in mediating such transitional re-
gions. We will also discuss a newly found, much deeper, link between
nuclear structure and nuclear binding energies.
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1. Introduction

One of the great challenges of modern nuclear structure physics is under-
standing the evolution of structure, in particular, the development of collec-
tivity, phase transitional behavior, and deformation — both phenomenolog-
ically and in terms of the underlying microscopy. This effort has expanded
tremendously in recent years with the advent of new generations of facilities
for the production and study of exotic nuclei, and of instruments (ranging
from separators and spectrometers to select nuclei of interest, to advanced
gamma ray detectors to study decay transitions, to trapping and storage
ring techniques for mass measurements).
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In this work we tackle two issues, the nature of shape-changing regions,
especially the role of changes in sub-shell structure, and the effects of collec-
tivity and configuration mixing on nuclear binding energies. In the latter,
we will show a deeper and far more sensitive relation between masses and
collectivity than has heretofore been exploited. This work is based largely on
Refs. [1,2] and has been strongly influenced by the earlier work of Refs. [3–9].

2. Shape transitional regions and changes in sub-shell structure

Nuclei very near closed shells can be described in terms of simple shell
model configurations. As both valence protons and neutrons are added,
configuration mixing develops (we will see another aspect of this in the next
section), collectivity emerges, and nuclei evolve to well deformed shapes.
Since this process is dominated by interactions among the valence nucleons,
it is not surprising that it can develop rather quickly with N and Z: a given
change in N or Z represents a far larger change in valence nucleon number.
However, the rapidity of nuclear shape transitions remains startling and
more rapid than the simple counting above would indicate. This is shown in
Fig. 1 which shows changes in R4/2 = E(4+

1
)/E(2+

1
) (called ∆R4/2(Z,N)).

Regions of rapid change are highlighted. One sees that, in several mass

Fig. 1. Plot of |∆R4/2| across the nuclear chart, highlighting especially the regions,

slightly beyond shell closures, where R4/2 changes very rapidly.
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regions, a few proton and neutron numbers distant from magic numbers,
there are extremely rapid changes, leading from R4/2 values typical of near
vibrational nuclei, ∼ 2.3, to values characteristic of developing rotational
spectra with R4/2 > 3.0, within a space of just two neutrons.

These results suggest that other mechanisms are at work beyond the
simple addition of a couple of nucleons with their interactions. It is well
known [3–5, 8] that changes in sub-shells are a key ingredient. It is the
purpose of this section to discuss a simple approach to identifying cases
where changes in sub-shell structure strongly mediate the development of
collectivity and deformation. We will show a technique that reveals such
changes by inspection, that identifies the nucleon type which experiences
the sub-shell change, and identifies the sub-shell at issue. This is, moreover,
a method that relies on only the simplest data, and therefore should be
useful in new regions of nuclei far from stability.

The idea is illustrated in Fig. 2 which shows R4/2 values for the well-
studied A∼150 region. The figure demonstrates both the point just referred
to (see below) but also highlights more generally the value of looking at the
same data from different perspectives. The left panel shows R4/2 against
neutron number for several Z values. One sees, overall, a clear onset of
deformation as R4/2 increases with N from ∼2 to ∼3.33. It is hard to easily
see much more than this at a quick glance. Closer inspection, though, does
show a “crossing” pattern where R4/2 values for 60Nd to 66Dy rise from below
(for N < 90) to above (for N > 90) those for 56Ba and 54Xe.

Fig. 2. R4/2 values for the rare-earth region plotted against neutron number on the

left, and against proton number in the middle and right panels. The right panel

is identical to the middle panel except for the removal of the transitional N = 90

nuclei in order to highlight the bubble pattern without these intermediate nuclei.

Figure based on Ref. [1].

In the middle panel we show exactly the same data, but now plotted
against Z for several isotonic sequences. The results are, simply put, dra-
matic. A clear, and sudden, change from concave to convex curves occurs
across N = 90. This forms a “bubble” pattern. The concave curves show
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R4/2 values around 2.4 or less. These are typical of spherical nuclei with
anharmonic vibrational excitation modes. The convex curves lie at or above
R4/2 ∼ 2.8 and peak near R4/2 ∼ 3.33, typical of well-deformed nuclei. Note
the key point that the difference in these curves is greatest near Z = 64 where
the respective curves show minima and maxima. It is well known that R4/2

is the smallest near magic numbers and maximizes in well-deformed nuclei.
Thus, there is no escaping the conclusion that Z = 64 acts here as a magic
number (albeit without as large a gap as is typical, for example, in the
“classic” magic numbers such as 50, 82, and 126) for N < 90, and that it
disappears (in which case Z = 64 is near mid-shell in the Z = 50–82 major
shell) for N > 90. This is the kind of extraordinarily rapid shape change re-
ferred to above. Note that the variable (N or Z) for which a bubble pattern
appears is the type of nucleon which experiences the sub-shell change.

None of these structural ideas are new, and the role of sub-shell changes
has been thoroughly discussed [3–5, 8]. What is new is the presentation of
these pairs of “crossing” and “bubble” plots as a simple and visually com-
pelling technique to spot the mediation of shape transition regions by sub-
shell changes in the underlying sequence of single particle levels.

The right panel shows another aspect of shape transitional regions that
focuses on the fact that nuclei contain integer numbers of nucleons, and
hence structure changes discretely with N and Z. In a region of rapid change,
therefore, it can happen that structure “jumps” over the transitional (critical)
point, or, in other cases, such as the A ∼ 150 region, one set of nuclei — those
with N = 90 — land almost exactly at the critical point. Indeed, it is this
which has led to recent descriptions of nuclei in first order phase transitional
regions by so-called critical point symmetries [10, 11] such as, X(5), and
the realization [12] that nuclei such as 152Sm reflect the predictions of such
descriptions.

In the right panel, we have therefore removed the N = 90 points to see
more clearly the structure of this region devoid of the set of transitional
isotones. The bubble appears even more clearly.

These results, therefore, provide a simple and virtually immediate
method to identify sub-shell mediation of transitional regions. Of course,
the underlying mechanism is that the disappearance of a sub-shell immedi-
ately increases the effective number of valence nucleons and their interac-
tions [3–5].

While R4/2 is a relatively easy-to-measure observable, at the extremes
of nuclear accessibility, often one only observes the mass, lifetime, and the
first excited state. Therefore, it is fortunate that E(2+

1
) provides an equally

useful indicator. Since E(2+

1
) decreases as deformation sets in, oppositely to

the growth of R4/2, it is more useful to use 1/E(2+

1
) instead. This is shown

in Fig. 3. We show the A ∼ 150 region on the top for easy comparison with
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Fig. 3. Similar to Fig. 2, except for 1/E(2+
1 ), and for four different mass regions.

Figure based on Ref. [1].

Fig. 2. The same analysis and conclusions result as for R4/2 except that these
data are easier to obtain. Fig. 3 shows three other regions as well: A ∼ 100,
120, and 190. The data for A ∼ 100 and 150 show the well-known changes
in proton shell gaps at Z = 40 and 64. The A ∼ 120 and 190 regions are
somewhat muted but still show clear crossing and bubble patterns. However,
note that they are now in the neutron sector, at N ∼ 64 and ∼ 108. We see
again then that the nucleon type whose plot shows a bubble pattern is the
type that experiences the sub-shell change.
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3. Binding energies and structure

The development of advanced Penning traps and storage rings to measure
nuclear masses is one of the most important experimental developments in
the study of nuclear physics [13]. Too frequently in the past the communities
involved in mass measurements and those pursuing nuclear structure studies
per se, have had somewhat of a disconnect. Phrased alternately, with a few
exceptions, direct links between masses and structure has not been a prime
focus. Of course, masses are of great interest globally in defining very general
mass formulas. They are also of interest locally through a variety of focused
mass formulas that link nearby nuclei and test for such aspects of structure
as isospin. Two dramatic and direct links of masses and structure are evident
in Fig. 4 which shows two-neutron separation energies, S2n, against neutron
number for a portion of the nuclear chart. There are three very obvious
features, the sudden drop after magic numbers reflecting the lower binding
of the next major shell, the local increase near Z = 62 and N = 90, reflecting
the discontinuity associated with a first order phase transition, which leads to
increased binding relative to the general systematics, and, of most interest
to us here, the sequences of nearly parallel, nearly linear, S2n values for
successive chains of isotopes. Indeed, these latter are often approximated by
a functional form A + BN . However, closer inspection shows that there are
deviations in linearity, as seen, for example, in the Er isotopes. The linear
behavior itself can be derived [14] from the leading terms in the Weizsäcker
mass relation [15]. The deviations from linearity point to different physics
not included in that approach, specifically extra binding from configuration

Fig. 4. Two neutron separation energies for a region of heavy nuclei showing the

effects of shell closures, of quantum phase transitions, and curvatures reflecting

contributions to binding from collective effects.
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mixing and collectivity that depresses the ground state. There is no a priori

reason that such effects should be linear, as indeed, is shown by the bulge
(almost a bubble) at N ∼ 90 in Fig. 4.

It is our purpose here to indicate one surprising result in calculations of
the collective component of the S2n values. That is, we write

S2n(Z,N) = S0
2n + S2n(collective) , (1)

where S2n (collective) is the part of S2n (Z,N) that comes from the binding
associated with the correlations in the collective Hamiltonian, and S0

2n is the
remainder.

The collective component can be calculated with any appropriate col-
lective model. We will use the IBA [16] because of its historic success, its
parameter efficiency and the broad range of collective structures it encom-
passes. S2n (collective) in the IBA is simply given by the differences in
binding energies of two successive even–even isotopes. We use the simple
Hamiltonian [17–19]

H = c

[

(1 − ζ)n̂d +
ζ

4NB
Q · Q

]

, (2)

where Q = s†d̃ + d†s + χ (d†d̃) and NB is the boson number.
The structure of any given nucleus is given solely by ζ and χ, where ζ

controls the competition between spherical and deformed structure and χ
controls the axiality. ζ varies from zero (spherical vibrator or U(5) limit)
to unity (for deformed nuclei, in which case χ = −

√
7/2 = −1.32 gives the

SU(3) symmetry and χ = 0 gives O(6)). Having chosen ζ and χ to fit the
relative excitation spectra and transition rates of a nucleus, the absolute
energy scale is fixed by normalizing the scale parameter c.

Numerous nuclei have been studied with this Hamiltonian, especially in
the rare earth region [6]. We will therefore not do any re-fitting but rather
use existing parameters selected to fit the level schemes and look at their
predictions for binding energies and S2n values. We choose the Er isotopes
to exemplify this. (We note that they are not “typical” but do show one of
the most dramatic examples of the point we will make.) In Ref. [6] it was
pointed out that, in Er with N = 100, there are two excited 0+ states, at
E = 1217 and 1422 keV, and that it is not a priori clear which one is the
collective one. (Of course, they could be mixed but that is not the issue
here). Therefore, two fits were done in Ref. [6], each of which fits one of
these two states. We used both sets of parameters here.

Our results are shown in Fig. 5, which gives the collective (IBA) contri-
bution to the binding energy. The results are startling. The trend is smooth
until N = 100 where it forks, giving different values for the two sets of pa-
rameters. (The parameter values are ζ = 0.82, χ = −0.36 and ζ = 0.96,
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χ = −0.25, with the factor c in Eq. 2 scaled to reproduce the actual 2+
1

energy. Note that ζ and χ are very close to each other, relative to their
full allowed ranges of 0 to 1 and −1.32 to 0, respectively). The key point
we make here is that, for N = 100, the difference between the two binding
energies is huge, over 4 MeV.

Fig. 5. Collective contributions to binding energies calculated for the Er isotopes

in the IBA (see text). Figure based on Ref. [2].

This result was totally unexpected: how can the process of fitting two 0+

states, differing in energy by only 200 keV, give ground state binding energies
differing by 4 MeV? We note in passing that this is not due to mixing of the
ground and excited 0+ states (the required mixing matrix elements would
have to be ∼ 10 MeV). Rather, it is due to the fact that different parameter
sets in the IBA space lead to different degrees of collective binding, which,
for some reason, not yet fully understood, is highly magnified. We have
investigated other cases and, while this is the largest effect we have found,
many other cases lead to differences in S2n values of 1–2 MeV. The effect is
largest near mid-shell for highly deformed nuclei.

Such differences in binding lead to corresponding differences in S2n values
far beyond the deviations from linearity seen in Fig. 4, including even the
phase transitional region. Clearly, Fig. 5 allows one, virtually by inspection,
to select which 0+ state gives predictions consistent with the data. It should
be clear from the smooth S2n systematics for Er in Fig. 4 and the large
effects in Fig. 5, that only the 1.42 MeV 0+ state gives consistent results.

The implications of this are hard to overestimate. These results show
a very strong link between masses and structure, that is, a dependence of
binding energies on structure in well-deformed nuclei that is far larger than
heretofore recognized. We note that Ref. [9] found a similar effect but for
transitional nuclei in which the two sets of IBA parameters differed very
significantly (they spanned half the symmetry triangle). Comparison of cal-
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culated and experimental binding energies even allowed us to suggest which
excited 0+ state between 1200 and 1500 keV in Er with N = 100 is the col-
lective one. Such an extreme sensitivity has not heretofore been recognized
or exploited and provides a new tool to understand collective structure in
nuclei based, again, on the simplest-to-obtain data. This suggests that one
should not henceforth carry out structure calculations without also asking
if such calculations reproduce the binding energy data. Conversely, subse-
quent mass measurements should always seek to determine possible effects
of the associated binding energies on understanding the structure and the
excitation spectrum.

4. Summary

We have investigated two aspects of collectivity and structural evolu-
tion. We showed a simple technique, based on easy-to-obtain data, even in
nuclei far from stability, that allows one to determine when shape transi-
tion regions are mediated by underlying sub-shell changes, and to identify
which sub-shell dissolution is at work. Secondly, we studied the collective
component of nuclear binding energies and found, using the IBA model,
a highly magnified sensitivity to structure such that, for example, calcula-
tions of binding energies can, in some cases, even help distinguish the nature
of particular excited states and help decide subtle aspects of the structure
of particular nuclei.
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