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CORRELATIONS OF ENERGY RATIOS
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It is shown that the Mallmann’s energy correlations, introduced a long
time ago for the ground state bands of the even–even nuclei are, in fact,
universal. Various bands in all collective nuclei (even–even, odd–even, and
odd–odd) obey the same systematics. This unique, universal behaviour in-
dicates the same spin dependence of the energy of the levels in all bands
in all collective nuclei. Based on a second-order anharmonic vibrator de-
scription, parameter-free recurrence relations between energy ratios are de-
duced. These relations can be used to predict levels of higher spins in
various bands.

PACS numbers: 21.10.–k, 21.10.Re

1. Introduction

Search for systematics in collective bands is as old as nuclear structure
and it was the phenomenological driving force in establishing the best nu-
clear collective models. Fifty years ago, Mallmann pointed out [1] that cor-
relations between the ratios of energies of the members of the ground state
bands (g.s.b.) in even–even nuclei define some universal curves. We will
show in this paper that these types of systematics are universal in the
sense that they are obeyed by all collective bands in even–even, odd-mass
and odd–odd nuclei (before back/up-bending). We consider all collective
[R(4/2) = E(4+)/E(2+) > 2.00] even–even nuclei with Z >20 and odd-mass
and odd–odd nuclei (with a collective even–even core) with Z = 33−80 [2].
This type of correlations can be explained by the description of the band
states as maximum phonon aligned states of an anharmonic vibrator [3].
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Using a third degree polynomial in spin for the energies, recurrence rela-
tions for various members of the band are obtained which can be used to
predict energy of levels with higher spin.

2. Mallmann-type correlations

Mallmann showed [1] that the data for the R(6/2) = E(6+)/E(2+) and
R(8/2) = E(8+)/E(2+) energy ratios for the g.s.b. of even–even nuclei
represented as functions of R(4/2) = E(4+)/E(2+) lie on two universal
curves, respectively. Fig. 1 (left) shows the updated empirical Mallmann-
type correlations for g.s.b. in all collective nuclei (R(4/2) = E(4+)/E(2+) >
2.00) with Z > 20 [2]. Mallmann interpreted the correlations for some range
of R(4/2) (> 3.27, i.e., for axially symmetric rotor) as a consequence of
the rotational formula for axially symmetric nuclei perturbed by rotation-
vibration interaction E(J) = AJ(J + 1) + B[J(J + 1)]2. In this case the
correlations are given by the straight lines R(6/2) = 27/8R(4/2) − 11 and
R(8/2) = 594/35R(4/2) − 312/7. It is worth noting that the two straight
lines are independent of the coefficients A and B. In fact it can be easily
shown that a linear relation between the energy ratios automatically results
from any two-parameter energy–spin relation.

As it can be easily seen, these formulas completely fail to reproduce the
empirical situation for R(4/2) < 3.2 and the excitation energy in yrast bands
has another spin dependence. Das et al. [3] developed a description of the
g.s.b. of all collective nuclei, based on the picture of anharmonic vibrations,
as fully aligned phonons. It was shown [4,5] that the Anharmonic Vibrator
(AHV) relations:

E(J) = nE(2+
1 ) +

n(n − 1)

2
ε4 , (1)

where n is the number of phonons, fit very well all the energies in the ground-
state band of all even–even nuclei, i.e. those states with maximum alignment
of the angular momentum J = 2n. The parameter ε4 is the anharmonicity
for 2-phonon state with J = 4+ and is almost the same for all transitional
nuclei [4]. The expression (1) is equivalent with the two-parameter formula
proposed on purely empirical grounds by Ejiri [6], E(J) = aJ + bJ(J + 1)
(a, b are parameters) and, in fact, is a second degree polynomial in J :

E(J) = αJ + βJ2 . (2)

In this case the Mallmann-type relations are:

R(J/2) =
n(n − 1)

2
R(4/2) − n(n − 2) . (3)
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In particular R(6/2) = 3R(4/2) − 3, R(8/2) = 6R(4/2) − 8, R(10/2) =
10R(4/2) − 15, and R(12/2) = 15R(4/2) − 24. As can be seen in Fig. 1
(left) the relations (3) reproduce the empirical situation rather well but
start to deviate for higher spins, as seen in Fig. 1 (right). Although the
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Fig. 1. Correlations of the energy ratios for all even–even collective nuclei with

Z > 20 [2]. Dotted lines correspond to the rotational formula E(J) = aJ(J + 1) +

b[j(J + 1)]2, and the dashed lines are the AHV predictions corresponding to the

phonon formula E(J) = αJ + βJ2 [R(J/2) = (J(J − 2))/8R(4/2)− (J(J − 4))/4].

general trend of the data is reproduced, there are systematic deviations
which increase with spin. This was somehow expected since it was shown [5]
that, in order to reproduce the energy of the high spin members of the
ground state bands with AHV type formulas, it is necessary to introduce
higher order anharmonicities. The next (second) order AHV expression

E(J) = nE(2+
1 ) +

n(n − 1)

2
ε4 +

n(n − 1)(n − 2)

6
ε6 (4)

describes quite well the experimental gsb’s of all collective even–even nuclei,
including the good rotor ones (R(4/2) > 3.15), which is a surprising, empiri-
cal finding. This formula, in fact, is equivalent to the third order polynomial
in J :

E(J) = αJ + βJ2 + γJ3 . (5)

It was shown [7–10] that the AHV type relations work also very well for the
band members in odd-mass and odd–odd nuclei. Fig. 2 shows the Mallmann
type correlations for all bands j, j + 2, j + 4, ... in odd-mass nuclei and
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in odd–odd nuclei, respectively. All nuclei with a collective even–even core
(R(4/2)>2.00) are included. The energy ratios are defined as R(j+2n/j+2)=
E(j+2n)/E(j+2) where E(j + 2n) is the energy of the n-th state in the
band relative to the bandhead energy E(j). The energy ratio correlations
are identical to those for even–even nuclei, the data points following the
spline curves obtained from the correlations in the even–even nuclei.
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Fig. 2. Correlations of the energy ratios for all odd-mass and odd–odd nuclei (with

collective even–even core) with Z = 33–80 [2]. The dashed lines correspond to

Eq. (3), while the solid line is a spline interpolation to the corresponding even–

even nuclei correlations.

In Fig. 3 we show separately Mallmann-type plots for the superdeformed
(SD) bands. The experimental data from this figure are from Ref. [11]: 234
bands for which at least 7 transitions are known. It is seen that in this
case the experimental data closely follow the straight lines (3) predicted by
the AHV formula (1), which means a J dependence of the type (2). In-
deed, the SD bands are good rotational bands, with very regularly spaced
gamma transition energies, therefore they are equivalent to the good rota-
tional bands (R(4/2) ≈ 3.33 in even–even nuclei) with normal deformation,
for which the experimental energy ratio correlations approach the prediction
of Eq. (3) — see Fig. 1. In this particular case, formula (1) applies very well,
with an ε4 value related to the (constant) value of the moment of inertia.
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Fig. 3. Correlations of energy ratios for 234 superdeformed bands from Ref. [11].

The dashed lines correspond to the prediction (3) of the AHV formula (1).

3. Recurrence relations

Eq. (4) gives a good description of all the bands in even–even, odd-mass
and odd–odd nuclei [8,9], and, by using it, the Mallmann-type energy ratios
within a band can be written as

R(j + 2n/j + 2) = n +
n(n − 1)

2

ε4

E(j + 2)
+

n(n − 1)(n − 2)

6

ε6

E(j + 2)
. (6)

This relation can be applied to different states (n) in the band, and, by
eliminating the parameters ε4/E(j +2) and ε6/E(j +2), one gets recurrence
relations which express the energy ratio of a state as a function of other two
lower ratios in the band [12]. For example:

R(j+2n/j+2) = n+
n

n − 3
R(j+2n−2/j+2)−

n(n − 1)

2(n − 3)
R(j+4/j+2) (7)

gives the Mallmann ratio for the n-th state in the band as a function of those
of the (n − 1)-th and 2-nd excited state in the band. Similarly,

R(j+2n/j + 2) =
n

n − 2

×

[

2

n − 3
+ R(j + 2n − 2/j + 2) −

n − 1

n − 3
R(j + 2n − 4/j + 2)

]

(8)
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gives the Mallmann ratio for the state n in the band, as a function of those
of the states (n − 1) and (n − 2). Such type of relations, giving the energy
ratio for the n-th state as functions of energy ratios of any two states with
spins lower than j + 2n can be established. We note that these recurrence
relations can also be obtained from the empirical energy recurrence relations
of Buck et al. [13], which were shown to be satisfied by a general solution
for the band energies as a function of spin similar to that given by Eq. (5).
Fig. 4 shows how relation (8) works for our collection of bands by comparing
the calculated ratios using the data for lower spins with the empirical ones.
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Fig. 4. Comparison of the experimental R(j+2n/j+2) ratios with those calculated

using formula (8). The continuous lines show the equality of the two quantities.
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One can see from the distributions of the ratio R(j +2n/j +2)exp/R(j +
2n/j + 2)calc (which is 1.0 for perfect agreement), showed in Fig. 5, that
for the overwhelming majority of the cases the deviation between the ex-
perimental and calculated values is below 1%. In a small number of cases
(compared to the total number), mostly in transitional nuclei (R(4/2) < 2.5
in the even–even nuclei) one can observe larger deviations. An inspection
of, e.g., the even–even nuclei shows that most of these cases correspond to
nuclei with numbers of nucleons differing by 2 from a magic number (Zn,
Cd, Te, Hg), or shape coexistence regions (Ge, Se, Kr), therefore g.s.b. with
non-collective effects or perturbations. A more strict collectivity criterion
would eliminate these cases. Among all possible recurrence relations for the
ratio of the n-th state, relation (8) is the most accurate, since the high-
est states “known” in the band, (n − 1) and (n − 2), collect the maximum
information on the anharmonicity of the band.
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Fig. 5. Similar with Fig. 4, but showing the distributions of the ratio between

the experimental and the calculated [formula (8)] energy ratios (this ratio is 1.0

for perfect agreement). In each case, the numbers indicate: the total number of
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Fig. 6 shows a detailed comparison of the experimental energy ratios for
the SD bands data shown in Fig. 3, with those calculated with formula (8).
One can observe an excellent agreement between the two quantities, similar
with that obtained for the good rotational bands (R4/2 ≥ 3.30) with normal
deformation (Figs. 4, 5). The eight n = 4 cases where the two quantities
differ by more than 1% are actually expected, because they correspond to
bands perturbed in the region of the lowest states, as it could be immediately
seen from the irregularities in the plot of the dynamical moment of inertia
[11]. For example, one of these cases corresponds to a highly deformed band
in 133Nd, which presents a strong mixing of the lowest levels with those of
another band [14]. The other (smaller) deviations can be also related to
band perturbations [11].
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Fig. 6. Comparison of the experimental R(j+2n/j+2) ratios with those calculated

using formula (8), for the collection of SD bands (Fig. 3).

The fact that relation (8) works very well for all nuclei, from vibrational
to rotational, implies that relation (4), from which it is deduced, represents
a universal evolution of the excitation energies with the relative spin of the
band states. The parameter-free recurrence relations that can be deduced
from Eq. (4) can be used to predict higher spin members, based on the
energy of lower spin members of the band.
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4. Conclusions

The correlations between energy ratios within bands have a universal
character: various bands in all collective nuclei (even–even, odd–even, and
odd–odd), and even the superdeformed bands, display a similar behavior.
The energies of the band members follow very well the spin dependence
E(J) = αJ + βJ2 + γJ3, which is the same with that predicted by the
AHV model. At the same time, based on this spin dependence of the energy
of the states, recurrence relations between energy ratios can be obtained.
These relations can be used to predict with high accuracy (if there is no
perturbation of the band) the energy of higher members of the band.
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