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The Neutron star properties are calculated with the various interactions
such as charge dependent Reid potential (Reid93) as well as Reid68 and
AV18 interactions within the lowest order constrained variational method
(LOCV). It is shown that at low densities, neutron star masses exhibit
a minimum (≃ 0.1M⊙) and a maximum mass between 1.4M⊙ and 1.9M⊙

which is strongly dependent on the equation of state.
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1. Introduction

The nuclear matter equation of state (EOS) is a necessary tool in the
understanding of astrophysical studies as well as in the description of heavy
ion collisions [1]. The mass of neutron stars depends mainly on the EOS of
neutron matter up to densities ρ = 5ρ0, where ρ0 = 0.16 fm−3 the satura-
tion density of symmetric nuclear matter. Direct measurement of the neu-
tron star mass can be done by observation of the X-ray and X-ray busters,
but their accuracy is rather poor and the masses of the neutron stars have
been determined with high accuracy using the binary radio pulsars. The
EOS plays an importance role in theoretical calculation of the maximum
mass of neutron stars, therefore having a good equation of state derived
from an accurate many-body calculation using various nucleon–nucleon in-
teractions is of particular importance in mass determination for the neutron
star. The method of lowest order constraint variational (LOCV) method
for calculating the EOS of nuclear and neutron matter has been reviewed
in several papers [2]. There are several reasons for choosing the LOCV
method. This method is a fully microscopic self-consistent technique with
state dependent correlation functions and dose not has any free parameters
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except those included in the interactions. The LOCV considers constraint
in the form of normalization condition to keep the higher order terms as
small as possible. Finally, the functional minimization procedure by solving
the Euler–Lagrange equation makes method as a pure variational method
and save quite enough computational time. In this article the properties
of a pure neutron star are calculated by using the EOS which comes from
LOCV method by employing various interactions such as Reid68, a new
Reid93 potential, which is charge dependent and has been fitted very accu-
rately to the partial wave phase shift up to J = 9 and AV18 potentials. The
results are comparable with other many-body models.

2. Brief description of LOCV method

We consider a trial many-body wave function of the form [2]:

ψ = Fϕ , (1)

where ϕ is a Slater determinant of plane waves of N independent nucleons
(ideal Fermi gas wave function) and F is a N -body correlation operator that
can be given by the product of the two-body correlation operators (Jastrow
form),

F = S
∏

i<j

f(ij) . (2)

S is asymmetric operator and f(ij) is Jastrow two-body correlation functions
and written as:

f(ij) =
∑

α,p

f (p)
α (ij)O(p)

α (ij) , (3)

where α = {J,L, S, T,MT }, and operators O
(p)
α are operators corresponding

to potential operators. Typically the non-relativistic many-body Hamilto-
nian is expressed as:

H =

N
∑

i=1

p̂2
i

2m
+

∑

i<j

v(ij) , (4)

where v(ij) is the two-nucleon interaction which can be written as:

v(ij) =
∑

p

v(p)
α (12)O(p)

α (12) , (5)

v
(p)
α (12) is the potential in each channel. Now, using the above trial wave

function, we construct a cluster expansion for the expectation value of our
Hamiltonian. Our lowest order constrained variational (LOCV) prescription
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has been the terminating of the cluster expansion to a constraint designed
to ensure the rapid convergence of the cluster expansion. Therefore, we keep
only the first two terms in the cluster expansion of the energy functional:

E =
1

A

〈ψ|H|ψ〉

〈ψ|ψ〉
= E1 + E2 + · · · , (6)

E1 is one-body kinetic energy and E2 is two-body clusters energy. Now
we can minimize the two-body energy, with respect to the variations in the
correlation functions but subject to the normalization constraint:

1

N

∑

〈ij|h2(12) − f2(12)|ij〉a = 0 , (7)

where the function h(x) is the modified Pauli function:

h(x) =

[

1 −
9

ν

(

J1(x)

x

)]−1/2

, (8)

where ν is degeneracy (4 for symmetric nuclear matter and 2 for pure neutron
matter). Minimizing the two-body cluster energy under normalization con-
straint, we obtain a set of Euler–Lagrange equations. The above constraint
introduces a Lagrange multiplier through which all of correlation functions
are coupled. By solving these equations, we can calculate correlation func-
tions and consequently the two-body energy E2.

3. Results

The EOS of neutron matter has been calculated for the density range up
to 0.5 fm−3. The results with the Reid93 (up to J < 9 channels) and Reid68
and AV18 potentials show that the Reid93 interaction has a stiffer equation
of state. In this calculation we assume that only the pure neutron matter
contribute in the neutron star structure. Using the EOS of neutron star
matter that comes from LOCV calculation, we can calculate the neutron
star mass and radius as a function of central mass density, ρc, by numeri-
cal integrating the general relativistic equation of hydrostatic equilibrium,
Tolman–Oppenheimer–Volkoff (TOV) equation [1]:

dP

dr
= −

G

r2

[

ρg(r) +
P (r)

c2

]

m(r) + 4πr3 P (r)
c2

1 − 2Gm(r)
rc2

, (9)

where ρg = ρ[E(ρ)+mc2] and m(r) =
∫ r
0 4πr′2ρg(r

′)dr′. By selecting a cen-
tral mass density under the boundary conditions P (0) = Pc,m(0) = 0, we
integrate the TOV equation outwards to a radius r = R at which P vanishes.
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This yields the neutron star radius R and mass M = m(R). The calculated
neutron star gravitational mass (in solar mass M⊙ units) as a function of
central mass density with Reid68, Reid93 (j < 9) and AV18 potentials is
presented at left panel of Fig. 1. In right panel of this figure we have plot-
ted gravitational mass versus radius. The result of APR [3] calculation is
presented for comparison. Our results show that at low densities neutron
star masses exhibit a minimum (≃ 0.1M⊙) which is nearly independent of
EOS and a maximum mass between 1.4M⊙ and 1.9M⊙ which is strongly
dependent on the equation of state. It is seen that the given maximum
mass for Reid equation of state shows a good consistency with the accurate
observations of radio pulsars [3].
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Fig. 1. Left: neutron star mass (in solar mass) versus central mass density. Right:

neutron star mass–radius relation.
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