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A relativistic nuclear energy density functional is developed, guided by
two important features that establish connections with chiral dynamics and
the symmetry breaking pattern of low-energy QCD: (i) strong scalar and
vector fields related to in-medium changes of QCD vacuum condensates;
(ii) the long- and intermediate-range interactions generated by one- and
two-pion exchange, derived from in-medium chiral perturbation theory,
with explicit inclusion of ∆(1232) excitations. Applications are presented
for the description of ground-state properties.
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One of the most complete and accurate description of structure phenom-
ena in finite nuclei is currently provided by self-consistent non-relativistic
and relativistic mean-field approaches. They represent an approximate im-
plementation of Kohn–Sham density functional theory (DFT) [1]. The DFT
provides a description of the nuclear many-body problem in terms of an
energy density functional E[ρ]. A major goal of nuclear structure theory is
to build an energy density functional which is universal, in the sense that
the same functional is used for all nuclei with the same set of parameters.
This framework should then provide a reliable microscopic description of in-
finite nuclear and neutron matter, ground-state properties of bound nuclei,
rotational spectra and low-energy vibrations.

In order to formulate a microscopic nuclear energy density functional,
one must be able to systematically calculate the exchange-correlation part
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of the energy functional, Exc[ρ], starting from the relevant active degrees
of freedom at low energy. In principle, the exact Exc includes all kind of
many-body effects; the usefulness of DFT crucially depends on our ability to
construct accurate approximations to the exact exchange-correlation energy.
The natural microscopic framework is chiral effective field theory [2]. It is
based on the separation of scales between long-range pion–nucleon dynamics,
described explicitly, and short-distance interactions not resolved in detail at
low energies.

Our approach to the nuclear energy density functional, emphasizing links
with low-energy QCD and its symmetry breaking pattern, has been intro-
duced in Refs. [3,4] and it is based on the two following sources of interaction:

1. Short-range dynamics

The nuclear ground state is characterized by strong scalar US and vector
UV mean fields which have their origin in the in-medium changes of the scalar
quark condensate (the chiral condensate) and of the quark density. They
can be calculated by QCD sum rules techniques [5] to obtain, at leading
order,
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where σN = 〈N |mq q̄q|N〉 is the nucleon sigma term (≃ 50 MeV), mπ the
pion mass (138 MeV), MN the nucleon mass (939 MeV), mu,d the quark
masses (≃ 5 MeV), fπ the pion decay constant (92.4 MeV) and ρ and ρS are
the baryon and the scalar density, respectively. The resulting US and UV

are individually of the order of 300–400 MeV in magnitude. Their ratio
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is close to −1. As a result, in the single-nucleon Dirac equation there is an
almost complete cancellation in the central potential (∼ UV + US), giving a
negligible contribution to the binding of the system, but, at the same time,
a large contribution to the spin-orbit potential
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2. Medium- and long-range correlations induced

by pion-exchange dynamics

Nuclear binding and saturation arise primarily from chiral (pionic) fluc-
tuations in combination with Pauli blocking effects and three-nucleon (3N)
interactions, superimposed on the condensate background fields and calcu-
lated according to the rules of in-medium chiral perturbation theory (ChPT).
The starting point is the description of nuclear matter based on the chi-
ral effective Lagrangian with pions and nucleons with the inclusion of ex-
plicit ∆(1232) degrees of freedom [6]. The relevant small scales are the
Fermi momentum kF, the pion mass mπ and the ∆ − N mass difference
∆ ≡ M∆ −MN ≃ 2.1mπ, all of which are well separated from the charac-
teristic scale of spontaneous chiral symmetry breaking, 4πfπ ≃ 1.16 GeV.
The calculations have been performed to three-loop order in the energy den-
sity. They incorporate the one-pion exchange Fock term, iterated one-pion
exchange and irreducible two-pion exchange, including one or two interme-
diate ∆’s. The resulting nuclear matter equation of state is given as an
expansion in powers of the Fermi momentum kF. The expansion coefficients
are functions of kF/mπ and ∆/mπ, the dimensionless ratios of the relevant
small scales. Divergent momentum space loop integrals are regularized by
introducing subtraction constants in the spectral representations of these
terms (the only free parameters a chiral approach). They encode short-
distance dynamics not resolved in detail at the characteristic momentum
scale kF ≪ 4πfπ. The finite parts of the energy density, written in closed
form as functions of kF/mπ and ∆/mπ, represent long and intermediate
range (chiral) dynamics with input fixed entirely in the πN sector.

3. A mean field approach for finite nuclei

The relativistic density functional describing the ground-state energy of
the system can be written as a sum of four distinct terms:
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where |φ0〉 denotes the nuclear ground state. Here Efree is the energy of the
free (relativistic) nucleons including their rest mass. EH is a Hartree-type
contribution representing strong scalar and vector mean fields, later to be
connected with the leading terms of the corresponding nucleon self-energies
deduced from in-medium QCD sum rules. Furthermore, Eπ is the part of
the energy generated by chiral πN∆-dynamics, including a derivative (sur-
face) term, with all pieces explicitly derived in Ref. [6]. The couplings are
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Fig. 1. The deviations (in percent) of the calculated binding energies from the

experimental values of Nd, Sm, Gd, Dy, Er, Yb, Hf, Os, and Pt isotopes. We used

the Gogny interaction in the pairing channel.

decomposed into density independent parts G
(0)
i which arise from strong

isoscalar-scalar and vector background fields, and density dependent parts

G
(π)
i (ρ̂) generated (regularized) by one- and two-pion exchange dynamics. It

is assumed that only pionic processes contribute to the isovector channels.

D
(π)
S is a surface term and can be estimated within the chiral approach [6].

There are 7 free parameters (G
(0)
S ,G

(0)
V , two isoscalar and two isovector con-

tact terms in the contact couplings G
(π)
i (ρ̂) and the surface term D

(π)
S ) that

have to be adjusted in order to reproduce ground-state properties of closed
shell nuclei. To demonstrate that chiral effective field theory provides a con-
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sistent microscopic framework for finite nuclei description, we show in Fig. 1
a large set of calculations for isotope chains of deformed nuclei. Good agree-
ment is found over the entire region of deformed nuclei. The maximum
deviation of the calculated binding energies from data is below 0.5% for all
isotopes.
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