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We present what we call a new theory of nuclear stability enabled by
the combination of the realistic nuclear mean-field and the group theory
approaches. It allows us to simplify searches for the strong quantum shell
effects at nuclear shapes that result from spectral properties deduced from
group theory and geometrical symmetries rather than through ‘brute force
numerical search’. Illustrations are presented and discussed.

PACS numbers: 21.60.–n, 21.10.–k

1. Introduction

In this article we formulate and illustrate general criteria connecting
geometrical symmetries of nuclei and the implied nuclear stability. The
approach is based on the group-theory analysis of geometrical symmetries
of the mean-field nuclear Hamiltonian. The formulation includes previous
discussions of nuclear stability using the DD

2h and DD
∞

-symmetries of the
triaxial harmonic oscillator1 introduced by the Copenhagen group as partic-

∗ Presented at the Zakopane Conference on Nuclear Physics, September 1–7, 2008,
Zakopane, Poland.

1 We refer to axial (DD
∞

-symmetric) and tri-axial (DD
2h-symmetric) harmonic oscillator

potentials with the frequency ratios ωx : ωy : ωz = k : m : n as criterion for
maximizing the gaps and level degeneracies, k, m and n being small integer numbers.
Group-theory generated criteria are discussed below in a more general context.
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ular cases, and extends the discussion of Ref. [1]. By formulating the general
group-theoretical approach, we hope to address the research areas of stable
(in the nuclear scale), usually excited nuclear configurations that remain so
far undiscovered or poorly explored.

In the following we keep our considerations general by adopting only two
very well accepted and so far among the two most successful strategies:

• We assume validity of the nuclear mean-field theory, combined with:

• The use of the group and group representation theories.

Such a strategy implies directly the possibility of using realistic approaches,
e.g., nuclear Hartree–Fock or Hartree–Fock–Bogliubov theories, as well as
phenomenological realisations of such theories that include the relativistic
approaches based on the nuclear mean-field concept. As a consequence, the
comparison with experiments become possible from the very beginning; it
will remain one of our primary goal here.

2. Nuclear mean-field and the principles of the new theory

of nuclear stability

As it is well known, saturation properties of the nuclear forces imply
that the depth of the nuclear mean-field potential, V0, is nearly constant,
i.e., approximately independent of the nuclear mass. It then follows, that the
average level spacing, 〈d〉 ≈ V0/Nb, where Nb denotes the number of bound
levels {en; n = 1, 2, . . . Nb} in the mean-field potential well. So defined av-
erage level spacing gives merely an orientation about the order of magnitude,
since the density of levels increases when the level-energy en gets farther and
farther away from the bottom of the potential well, V0 ≈ −60 MeV. This
trend is quantitatively illustrated in Fig. 1 based on the traditional spherical
harmonic oscillator. Indeed, on the first excited level at ~ωo at most two
particles can be placed, while at the 6th harmonic oscillator shell already
112 particles can participate in the excited spectrum; Nb increases super-
linearly with the nuclear mass. The huge degeneracies seen in the oscillator
spectrum are partially an artifact of the so-called accidental degeneracy of
various ℓ-levels within a given main shell, cf. Fig. 1.

In more realistic situations corresponding, e.g., to phenomenological fi-
nite deformed Woods–Saxon and/or Yukawa-folded potentials, the acciden-
tal ℓ-degeneracies do not appear anymore, but still the leading factor in a
search for particularly stable nucleonic configurations is equivalent to the
search for the largest possible gaps in the single particle spectra.

General symmetry arguments are based on the well known properties of
the group-symmetric Hamiltonians that can be formulated as follows. Let
G ≡ {g1, g2, . . . gf} be a symmetry group of the mean-field Hamiltonian
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Fig. 1. Single-particle spectrum of the spherical harmonic oscillator. Extreme de-

generacies are caused partially by the spherical symmetry [SO(3)-group] but also

by the fact that the H.O.-Hamiltonian is invariant under the larger, SU(3)-group,

causing ‘accidental’ ℓ-orbital degeneracy within a given (main) shell N .

H, which implies that ∀ gk ∈ G we have [H, gk] = 0. Let G have r irre-
ducible representations with dimensions d1, d2 . . . dr. Then the eigen-values
of the Hamiltonian will split into as many families as there were irreducible
representations, while within each family all the levels will form degener-
ate sub-sets (multiplets) with degeneracies equal to the dimensions of the
irreducible representations, Ref. [2]. The above general property has sev-
eral consequences for the mean-field Hamiltonians of Fermions and below
we formulate some relevant comments.

The groups of interest here are: the continuous spherical symmetry group
SO(3) and groups representing axial symmetries CD

∞
andDD

∞
as well as finite,

discrete point-groups very well known from molecular physics. By definition,
the latter ones leave at least one point of the considered object invariant. In
the case of Fermion systems these groups must have slightly modified struc-
ture as compared to the ‘traditional’ molecular prototype point-groups in
that they assure the fundamental transformation property for the Fermions:
R(2π)ψ = −ψ, where R(2π) is an arbitrary-axis rotation about the angle of
2π. Such modified groups are called ‘double’, cf. Ref. [3]; they are denoted
with the superscript D, as, e.g., TD

d for the tetrahedral group, see below.

It can be demonstrated that the irreducible representations of all the dou-
ble point groups describing symmetries of non-spherical systems are equal
either to 2 or to 4 [compared with (2j + 1) for spherical symmetry]. There
are only 3 symmetry point groups that can be applied to deformed nuclei
and which generate 4-fold degeneracies of the nuclear mean-field, viz., tetra-
hedral TD

d , octahedral OD
h , and icosahedral2 Y D

h point groups. Thus there is

2 Tetrahedron is the simplest Platonic polyhedron with four equilateral triangular faces,
octahedron has eight such faces, and icosahedron 20. It has been shown, see Refs. [5–
8], that the symmetries generated by the first two polyhedra may lead to very strong
shell structures in nuclear physics applications; the latter was not investigated but
is believed to be ‘too close’ to the spherical symmetry to provide genuinely new
structures in the nuclear context.
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only a very small number of symmetries that provide the four-fold degenerate

multiplets, the analogues of the (2j + 1)-degenerate multiplets of spherical
symmetry — all other double point groups implying only the Kramers (dou-
ble — or — spin-up/spin-down) degeneracies for non-spherical nuclei. This
is also why tetrahedral and octahedral symmetries have been examined as
the first candidates of the possible nuclear exotic symmetries.

Let us consider mean-field Hamiltonian H and its group of symmetry
G having r irreducible representations. Single-particle levels belonging to a
given representation never cross3 according to the very well-known Landau–

Zener non-crossing rule. Realistic calculations demonstrate that the single-
particle levels have a tendency to fill-in the available energy window defined
by the potential depth V0 (cf. the schematic illustration in Fig. 2). These
levels are said to ‘repel each other’, the ‘repulsion’ leading occasionally to
very large gaps in the spectra. Superposition, illustrated schematically on

a
p

G

Irrep.1 Irrep.2 Irrep.3 Irrep.4 Irrep.5 Irrep.6 All Irreps.

Fig. 2. Consider a symmetry point-group with six irreducible representations (this

is actually the case of the octahedral group). The single-particle levels are split

into six families, see text, to each of which the Landau–Zener non-crossing rule

applies.

the right-hand side of Fig. 2, of the levels belonging to all the irreducible
representations often produces a final result with very large gaps ‘surviving’
in the spectra and thus leading to an increased nuclear stability. This is
the central argument of our formulation (qualitative at this point) of the
principles of the new theory of nuclear stability. Interested reader may
consult Ref. [9], Figs. 3–4, for the illustration of large gaps corresponding to
tetrahedral symmetry in the rare-earth and actinide nuclei, see also examples
below.

3 The discussed property is not a theorem (exceptions may occur) and this is why it is
referred to as Landau–Zener rule. However, accidental symmetries that may lead to
such crossings are extremly rare in realistic situations of interest here. The interested
reader may consult Ref. [4] and references therein.
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Let us stop for a few technical observations at this point. As it is
well known from mathematics, some groups possess pairs of complex one-
dimensional irreducible representations that are complex conjugates. Such
pairs can be equivalently expressed in terms of the real two-dimensional
irreducible representations — one of the mechanisms behind the Kramers’
spin-up/spin-down degeneracies whose mathematical foundation comes from
the Wigner theorem. Such a mechanism must necessarily be present in the
spectra of time-independent spinor Hamiltonians — the case of interest here.
For example, group CD

6h (cf. Table I, which has N = 12 one-dimensional
complex-conjugate irreducible representations appears, from the degeneracy
point of view, as a group equivalent to the one with N/2 = 6 real 2D rep-
resentations thus leading to six families of double degenerate levels. This
property is marked in Table I with the bar symbol over the Type label.

TABLE I

Symmetry pointgroups whose numbers of irreducible representations are larger
than those of the reference: the well-known DD

2h
triaxial nuclear symmetry defined

in terms of the quadrupole deformations (β, γ). The third column defines the
conventional ‘type’ of symmetry — a label used in the text; the fourth column
gives the numbers of irreducible representations belonging to each group.

No. Group Type No. Irr. Dimensions

1 OD

h
A 6 4 × 2D and 2 × 4D

2 TD

d
A 3 2 × 2D and 1 × 4D

3 CD

6h
B 12 12 × 1D (6 × 2D)

4 DD

6h
B 6 6 × 2D

5 CD

4h
C 8 8 × 1D (4 × 2D)

6 DD

4h
C 4 4 × 2D

7 DD

3h
D 3 3 × 2D

8 CD
6v

D 3 3 × 2D

9 DD
6 D 3 3 × 2D

10 CD
6 D 6 6 × 1D (3 × 2D)

11 SD
6 D 6 6 × 1D (3 × 2D)

12 CD

3h
D 6 6 × 1D (3 × 2D)

13 CD

3i
D 6 6 × 1D (3 × 2D)

14 DD

2h
X 2 2 × 2D (reference)
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The properties of irreducible representations underlying the criteria of
nuclear stability are listed in Table I. The names of the symmetry groups
are given in the second column; the third column gives a label called ‘Type’.
Groups of the Type A have either one or two four-dimensional irreducible
representations, Type B have 6-, Type C have 4-, and finally Type D have
3 two-dimensional irreducible representations. Groups denoted as Type B,
C, and D have N two-dimensional real representations (N = 6, 4, and 3
as in the case for the groups B, C, and D, respectively) equivalent to 2N
complex, one-dimensional ones. According to our global criteria presented
above, each of the groups listed in the Table has potentially more capacity
of generating gaps larger than the ones known from the properties of triaxial
nuclei, i.e. ‘by the usual’ DD

2h symmetry group here considered as reference.

Let us emphasize that what we refer to as symmetry criteria for large

gaps and thus increased nuclear stability are merely strategical guidelines for
advanced realistic calculations — such calculations are illustrated below.

3. Tetrahedral symmetry and competition between symmetries

The most often studied shapes of deformed nuclei correspond to axial
symmetry, either with the dominating α20 and α40 quadrupole and hexade-
capole deformations, respectively, or with an extra α30 pear-shape compo-
nent referred to as octupole4. We will be able to present merely a few selected
examples of the exotic-shape symmetries; we will focus on the competition
between the ‘traditional’ and new symmetries.

To begin, let us first emphasize a big difference between the spherical
symmetry and related magic numbers and the exotic symmetries together
with their implied magic numbers: while the former corresponds to the one
and only, well defined (viz. spherical) shape, the latter generate in general
an infinity of shapes5. Performing systematic mean-field calculations, one
can obtain a series of magic numbers that characterize each exotic sym-
metry with a series of associated characteristic deformations. Calculated
tetrahedral magic numbers are 30, 40, 56, 64, 70, 90, 112, 136.

Below we selected a combination of three tetrahedral neutron magic
numbers, i.e., N = 40, 56, and 70 with the proton magic number Z = 40
(zirconium). Comparison shows6 that the axial-symmetric pear-shape type

4 In the present context we have four distinct octupole shape possibilities related to
the surfaces represented by Y30, (Y3,+1 −Y3,−1), (Y3,+2 +Y3,−2), and (Y3,+3 −Y3,−3).

5 There is no spherical shape ‘more spherical than the other one’ — but some nuclei
may have larger tetrahedral deformation as compared to the neighbours.

6 We use here the macroscopic–microscopic method with the Yukawa-folded realisation
as the ‘macro’- and the universal-compact Woods–Saxon parameterisation version for
the ‘micro’-terms, cf. Ref. [8] and references therein.
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Fig. 3. Total energy surfaces with the axial-octupole deformation (left) and

tetrahedral-symmetric deformation (right) plotted versus quadrupole deformation.

octupole minima are in a competition with the tetrahedral symmetry min-
ima, as illustrated in Fig. 3. We note that the tetrahedral symmetry wins
the competition in all the three considered cases.

The case of 96Zr deserves particular attention, since it is usually referred
to as a ‘good spherical shell-model nucleus’. The illustration in Fig. 3 im-
plies, however, that the spherical shape for this nucleus is certainly unstable
by at least 3 MeV (!) — and there is no other minimum, e.g., quadrupole-
deformed, in this nucleus. Calculations presented here suggest therefore
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Fig. 4. Competition between the pear-shape octupole (horizontal axis) and tetra-

hedral or triaxial-octupole (vertical axis); tetrahedral minimum lies lower by about

1.5 MeV. The landscapes for the other two tetrahedral-magic zirconium nuclei are

very similar.

that 96Zr is tetrahedral deformed in its ground state. Moreover, experiment
shows one of the strongest B(E3) values ever measured — in this particular
nucleus.

Is it possible to combine these two apparently contradicting situations
into a one coherent scenario? We believe that there exists such a possibility.
First of all, 96Zr, like every even–even nucleus, has Iπ = 0+ in the ground
state and must appear to the outside world as a spherical object. The lowest-
lying particle–hole excited states will lead to the j2- or (j1, j2)-configurations
coupled with the remaining even–even (A−2) nuclear ‘core’, the latter again
with a 0+ configuration leading to the structures of the type (j1⊗j2⊗0+)Jπ .
Such structures will provide spin sequences that resemble irregular energy vs.

spin sequences observed in many nearly spherical nuclei with a few excited
particles. The same will necessarily happen in the low-lying excitations of
96Zr manifesting the spherical7 structure — independent of the underlying

7 It is perhaps worth alerting the reader at this point that the word ‘spherical shape’
is, strictly speaking, largely abused. First of all, only the ground states of doubly
magic (traditional sense) nuclei can be considered really spherical. In reality, each
particle–hole excitation generates a polarisation that is accompanied by a comparable
polarisation of the remaining nuclear bulk. Secondly, any few-particle–hole configura-
tion of the structure (j1 ⊗ j2 ⊗ . . . 0+) will hide the actual geometry of the remaining
0+ core, thus rendering it invisible from the spectra.
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actual geometrical shape8 of this nucleus. Within mean-field interpretation
it is the 0+ configuration that carries the tetrahedral symmetry information
and consequently remains disguised as long as there is no extra evidence,
e.g., in the form of a collective tetrahedral rotational band. Here, however,
comes another fascinating challenge related to this type of (new) physics:
within the exact tetrahedral symmetry the rotational bands do not generate
intra-band E2 transitions, thus rendering the detection of the structure in
question certainly more difficult, although definitely not impossible. We
believe that 96Zr represents an important challenge — in fact encouraged
by experiment: the B(E3) = 57(4) W.u. — one of the largest seen so
far, cf. Ref. [10]; the possibility of an existence of tetrahedral effects in
the Zirconium region has attracted already attention of theorists using the
Generator Coordinate Method together with Hartree–Fock and projections
techniques, cf. Ref. [11].

4. Electromagnetic transitions: possible probe

of symmetry competition

Examining the electromagnetic properties of nuclei with the tetrahedral
symmetry is considered to be one of the most promising tools for possible
unambiguous confirmation of the presence of such nuclei in nature. However,
exact tetrahedral symmetry implies vanishing of the quadrupole moments
within the tetrahedral bands and therefore vanishing of the intra-band E2
transitions. On the other hand, there exist reasons for a partial breaking of
such a symmetry:

a. the zero-point quadrupole and octupole oscillations;

b. the Coriolis (rotational) alignment of angular momenta;

c. shape evolution (closing the tetrahedral gaps) with increasing spin;

d. the presence of valence nucleons on top of the tetrahedral magic gaps.

Here we would like to address in particular the problem of the zero-point
motion, one of the most evident and long-time known quantum mechanisms
that is not so often receiving the attention that it deserves. In the mass
A ∼ 150 nuclei we obtain an estimate of the dynamical (the most probable)
deformation by using the stiffness coefficients extracted from our microscopic

8 The arguments here are similar to the one of N. Bohr who remarked that even though
there may be majority of even–even nuclei that are deformed in their ground-states,
as long as they are not excited they must manifest the spherical symmetry. Here it
is the non-excited (A − 2) core that plays a similar role.
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total energy calculations and a phenomenological estimate of the mass pa-
rameters; the resulting most-probable deformation varies typically between
0.04 and 0.09 or so. As the next step we use the deformations of this order
of magnitude to obtain the microscopic transition multipole moments Qmicro

λµ

for the quadrupole and octupole motions and next the reduced transition
probabilities B(E2) and B(E1). This is done by using the Slater determi-
nants constructed out of the single-particle wave functions calculated using
the phenomenological deformed Woods–Saxon Hamiltonian.

TABLE II

Calculated ratios of the reduced transition probabilities, B(E2) from 15− to 13−

within the ‘tetrahedral’ sequence in 156Gd (cf. Fig. 4 of Ref. [8]) compared to inter-
band transitions from Iπ = 15− of the tetrahedral to the 14+ of the ground-state
band in the same nucleus. The tetrahedral minimum has been ‘contaminated’ with
small quadrupole deformations simulating the presence of the zero-point motion:
α20 = 0.04 for three triaxialities represented by γt = 0◦ (small axial quadrupole
deformation) together with γt = 15◦ and γt = 30◦ shown for comparison.

B(E2)/B(E1) × (106fm2)

αgsb
30 γt = 0◦ γt = 15◦ γt = 30◦

0.08 0.84 0.53 2.61
0.12 0.37 0.36 2.18
0.15 6.19 1.48 3.20
0.18 6.28 4.74 4.70

As the last step we assume the band-mixing picture: the ground-state
band (gsb) for which we assume also the presence of the pear-shape octupole
zero-point motion and the tetrahedral negative parity band with odd spins,
Ref. [12], are mixed with amplitudes a2 ∼ 0.95 and b2 ∼ 0.05 expected from
the Coriolis mixing of the octupole degrees of freedom (recall that tetrahe-
dral deformation is equivalent to a ‘triaxial octupole deformation’ and thus
implies a strongK mixing) as well as from the mixing of single-particle states
of opposite parities. We assumed that the ground state has the calculated
static deformations α20 = 0.2 and α40 = 0.08; on top of this we test the effect
of increasing admixtures of the dynamical axial-octupole vibrations as listed
in the first column of Table 2, where the theoretical ratio B(E2)/B(E1)
is tabulated. Similarly we assume the dynamical quadrupole deformation
α20 ≈ 0.04 for the tetrahedral minimum and propose three hypotheses of
γ = 0◦, 15◦ and 30◦ to obtain a typical variation of our observable as a func-
tion of the most relevant dynamical deformation parameters. The results
are presented in Table II for the B(E2 : 15− → 13−)/B(E1 : 15− → 14+)
transitions. The corresponding results are expected to grow with spin, due
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to Coriolis polarisation an in principle we should have recalculated the mul-
tipole moments for the increasing spins using e.g. the cranking model. In
this preliminary calculation aiming at the order-of-magnitude estimates we
kept the multipole moments constant. The recent experimental results from
Ref. [12] give the values of 5.5× (106 fm2) and 4.5× (106 fm2) for spins 13−

and 15−, respectively, the results which are slightly higher than, but close
to our calculated values.

The calculated values, here obtained without taking into account the
pairing effect, vary from one deformation point to another but remain of
the right order of magnitude. Given the fact that we have used the tech-
nique of Slater determinants built out of the realistic microscopic mean-field
wave functions we may consider this result encouraging. It is expected that
taking into account the pairing should diminish the fluctuations while tak-
ing into account the quadrupole-moment polarisation as the result of Cori-
olis effect should contribute to increasing, on the average, the calculated
B(E2)/B(E1)-ratio with increasing spin.

5. Summary and conclusions

We have formulated the global criteria of nuclear stability based on the
assumption that the nuclear stability increases with the increase of the gaps
in the nucleonic single-particle spectra. According to the group theory ar-
guments, the geometrical symmetries whose point groups have a relatively
large number of irreducible represetations as well as those whose dimensions
are possibly high, or both of these properties simultaneously, are the best
candidates to generate strong shell effects. The strong shell effects alone are
not a sufficient condition to obtain stable minima in the total energy surfaces
but they a necessary condition. Realistic calculations whose results are used
for illustration confirm these general lines of thinking. We illustrated the re-
sults for the tetrahedral symmetry group (three irreducible representations
out of which one is four-dimensional).

Finally we present the first order-of-magnitude theoretical estimates for
the observable ratio B(E2)/B(E1); recent experiments confirm that one
should expect the result of the order of ∼ 5 × 106 fm2 for I > 11; a very
similar order of magnitude result has been obtained with our preliminary
calculations using the zero-point motion and the band-mixing concepts.
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through the IN2P3, France, through the exchange program between IN2P3,
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