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The problem of spectra formation in hydrodynamic approach to A + A
collisions is considered within the Boltzmann equations. It is shown analyt-
ically and illustrated by numerical calculations that the particle momentum
spectra can be presented in the Cooper–Frye form despite freeze-out is not
sharp and has the finite temporal width. The latter is equal to the inverse
of the particle collision rate at points (tσ(r, p), r) of the maximal emission
at a fixed momentum p. The set of these points forms the hypersurfaces
tσ(r, p) which strongly depend on the values of p and typically do not en-
close completely the initially dense matter. This is an important difference
from the standard Cooper–Frye prescription (CFp), with a common freeze-
out hypersurface for all p, that affects significantly the predicted spectra.
Also, the well known problem of CFp as for negative contributions to the
spectra from non-space-like parts of the freeze-out hypersurface is naturally
eliminated in this improved prescription.

PACS numbers: 25.75.–q, 24.10.Nz

1. Introduction

The Landau hydrodynamic approach [1] for multi-hadron production in
hadronic/nuclear collisions appeared as a method that is alternative to the
S-matrix one: the latter transforms the asymptotic hadronic states from
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t = −∞ to t = +∞ while the former deals with the space-time evolution
of thermal matter, produced in the collisions. The evolution is described by
using the local energy–momentum conservation laws and thermodynamic
equation of state of the matter. Unlike the S-matrix formalism, the initial
state in hydrodynamic approach is associated with some concrete finite time
after collision when created particles reach the locally equilibrated state and
so, the initial state can be described by the minimal set of parameters. As
well, because system formed is quite small, the picture of continuous medium
is destroyed also at likely small finite time. Since the system expands fast,
the latter is not constant in configuration space but depends on the position
r of the fluid elements: tσ(r). The set of these points (tσ(r), r) in the
Minkowski space forms, therefore, the hypersurface σ corresponding to the
outer boundary of the applicability of hydrodynamics. The sudden freeze-
out implies that the spectra are formed just on this hypersurface where,
formally, an ideal fluid transforms into an ideal gas. The particle momentum
spectra then can be expressed by the well-known Cooper–Frye formula [2]:

p0n(p) = p0 d3N

d3p
≈

∫

σ

dσµpµfl.eq.(x, p) . (1)

The freeze-out hypersurface is typically associated with an isotherm.
According to Landau [1] T ≈ mπ ≈ 140 MeV. In current analysis of A + A
collisions the corresponding temperature is in the region T = 90–150 MeV
and is fixed, typically, from the best fit of the spectra.

Any isotherm contains usually non-space-like parts, which lead to un-
physical negative contributions to spectra for the particles with momenta
directed inward the system, pµdσµ < 0. There is no common phenomeno-
logical prescription, based on Heaviside step functions θ(pµdσµ), which al-
lows one to eliminate the negative contributions to the momentum spectra
when pµdσµ < 0. The prescription, proposed in [3], eliminates the negative
contributions in the way which preserves the number of particles in the fluid
element crossing the freeze-out hypersurface. Therefore it takes into account
that at the final stage the system is the only holder of emitted particles. An-
other prescription [4] ignores the particle number conservation considering
decaying hadronic system rather as a star — practically unlimited reservoir
of emitted photons/particles. The both prescriptions have a problem with
momentum-energy conservation laws at freeze-out.

But the most serious problem is the obvious conflict of the CFp with
simple observation: to provide sudden transformation of the liquid to ideal
gas one needs to switch suddenly cross-sections between particles from very
big values to very small ones [5] that cannot happen in reality. The rea-
son of particle liberation is another: it is the gradual change of the ratio
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between the rate of system expansion and the rate of collisions, so that
particles should be emitted continuously. The phenomenological model of
continuous emission was proposed in Ref. [6]; another approach is the so-
called hybrid models [7], where kinetic evolution is matched with hydro one
at the hypersurface of hadronization. The shortcomings of these models are
described in detail in [8]. But the feeling that the Landau/Cooper–Frye
sudden freeze-out does not describe the real process of continuous particle
emission is predominant now.

Nevertheless, in Ref. [9] it was advanced an idea of duality in hydro-
kinetic approach to A + A collisions: though the process of particle liber-
ation, described by the emission function, is non-equilibrium and gradual,
the observable spectra can yet be expressed by means of the Cooper–Frye
prescription based on locally equilibrium distribution function. The con-
clusive step towards an analytical and numerical realization of this idea is
done in Ref. [8] where hydro-kinetic approach is developed: it overcomes all
above mentioned problems by considering the continuous dynamical freeze-
out that is consistent with Boltzmann equations and conservation laws. In
what follows we stick to the mainstream of arguments developed in this
paper.

2. Kinetics of freeze-out in Boltzmann approach

Let us start from Boltzmann equation. It has the general form:

pµ

p0

∂fi(x, p)

∂xµ
= Gi(x, p) − Li(x, p) . (2)

The expressions Gi(x, p) and Li(x, p) = Ri(x, p)fi(x, p) are so-called
(G)ain and (L)oss terms for the particle of species i. Typically, Ri is a rate
of collisions of i-th particle. Below we will omit index i, the corresponding
expression can be related then, e.g., to pions.

The probability Pt→t′(x, p) for a particle to reach the point x′ = (t′, r′)
starting from the point x = (t, r) without collisions is

Pt→t′(x, p) = exp



−
t′

∫

t

dtR(xt, p)



 , (3)

where

xt =

(

t, r +
p

p0
(t − t)

)

.
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In terms of this probability, the Boltzmann equation can be rewritten in the
following integral form

f(t, r, p) = f

(

t0, r − p

p0
(t − t0), p

)

Pt0→t

(

t0, r − p

p0
(t − t0), p

)

+

t
∫

t0

G

(

τ, r − p

p0
(t − τ), p

)

Pτ→t

(

τ, r − p

p0
(t − τ), p

)

dτ .(4)

Let us integrate the distribution (4) over the space variables to represent
the particle momentum density at large enough time, t → ∞, when particles
in the system stop to interact. To simplify notation let us introduce the
escape probability for the particle with momentum p in the point x = (t, r)
to leave system without collisions: P(t, r, p) ≡ Pt→(τ→∞)(t, r, p). Then the
result can be presented in the general form found in Ref. [5]:

n(t → ∞, p) ≡ n(p) =

∫

d3rf(t0, r, p)P(t0, r, p)

+

∫

d3r

∞
∫

t0

dt′G(t′, r, p)P(t′, r, p) . (5)

The first term in Eq. (5) describes the contribution to the momentum
spectrum from particles that are emitted from the very initial time, while the
second one describes the continuous emission with emission density S(x, p) =
G(t, r, p)P(t, r, p) from 4D volume delimited by the initial and final (where
particles stop to interact) 3D hypersurfaces.

In what follows we will use the (generalized) relaxation time approxi-
mation proposed in [5], which is the basis of the hydro-kinetic approach,
described in detail in [8]. Namely, it was argued [5] that there is such a local
equilibrium distribution function fl.eq.(T (x), uν(x), µ(x)) that, in the region
of not very small densities where term G ∼ S gives noticeable contribution
to particle spectra, the function f is approximately equal to that one which
would be obtained if all functions in r.h.s. of Eq. (4) are catculated by
means of that function fl.eq.. The function fl.eq. is determined from the local
energy-momentum conservation laws based on the non-equilibrium function
f in the way specified in [8]. Then, in accordance with this approach we use

R(x, p) ≈ Rl.eq.(x, p), G ≈ Rl.eq.(x, p)fl.eq.(x, p) . (6)

The “relaxation time” τrel = 1/Rl.eq. grows with time in this method.
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3. Saddle point approximation for momentum spectra

Let us generalize now the Landau/Cooper–Frye prescription (CFp) of
sudden freeze-out. For this aim we apply the saddle point method to cal-
culate the integral in the expression for spectra (5) with account of (6). To
simplify notation we neglect the contribution to the spectra from hadrons
which are already free at the initial thermalization time t0 ∼ 1 fm/c and
thus omit the first term in (4).

To provide straightforward calculations leading to the Cooper–Frye form
let us shift the spacial variables, r

′ = r+ p

p0
(t0−t′), in (5) aiming to eliminate

the variable t′ in the argument of the function R which is the integrand in
P(t′, r, p). Then

n(p) ≈
∫

d3r′
∞
∫

t0

dt′fl.eq.

(

t′, r′ +
p

p0
(t′ − t0), p

)

Q(t′, r′, p) , (7)

where

Q(t′, r′, p) = R

(

t′, r′ +
p

p0
(t′ − t0), p

)

× exp







−
∞
∫

t′

R

(

s, r′ +
p

p0
(s − t0), p

)

ds







. (8)

Note that

Q(t′, r′, p) =
d

dt′
P (t′, r′, p) , (9)

where P (t′, r′, p) is connected with the escape probability P:

P (t′, r′, p) = P
(

t′, r′ +
p

p0
(t′ − t0), p

)

. (10)

Therefore
∞

∫

t0

dt′Q(t′, r′, p) = 1 − P(t0, r
′, p) ≈ 1 . (11)

The saddle point tσ(r, p) is defined by the standard conditions:

dQ(t′, r′, p)

dt′

∣

∣

∣

∣

t′=t′
σ

= 0 ,

d2Q(t′, r′, p)

dt′2

∣

∣

∣

∣

t′=t′σ

< 0 . (12)
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Then one can get from (9), (10) the condition of the maximum of emission:

−pµ∂µR(t′, r, p)

R(t′σ, r, p)

∣

∣

∣

∣

t′=t′σ ,r=r′+
p

p0
(t′σ−t0)

= p0R

(

t′σ, r′ +
p

p0
(t′σ − t0), p

)

. (13)

If one neglects terms p
∗∂r∗R in l.h.s. and supposes that in the rest frame

(marked be asterisk) of the fluid element with four-velocity u(x) the collision

rate, R∗(x, p) = p0R(x,p)
pµuµ

, does not depend on particle momentum: R∗(x) ≈
〈v∗σ〉(x)n∗(x) (here n(x) is particle density, σ is the particle cross-section,
v is the relative velocity, 〈...〉 means the average over all momenta), then
the conditions (13) are equivalent to the requirement that at the temporal
point of maximum of the emission function the rate of collisions is equal to
the rate of system expansion [8]. This is the heuristic freeze-out criterion
for sudden freeze-out [10]. However, as we will demonstrate, the neglect of
momentum dependence leads to quite significant errors.

To pass to the Cooper–Frye representation we use the variables which
include the saddle point:

r = r
′ +

p

p0
(t′σ(r′, p) − t0) . (14)

Then the expression for the spectrum takes the form:

n(p) ≈
∫

d3r

∣

∣

∣

∣

1 − p

p0

∂tσ
∂r

∣

∣

∣

∣

∞
∫

t0

dt′S(t′, r, p) , (15)

where the emission density in saddle point representation is (tσ ≡ (tσ(r, p))

S(t′, r, p) = fl.eq.

(

t′, r +
p

p0
(t′ − tσ), p

)

×R(tσ, r, p)P(tσ , r, p) exp

(

− (t′ − tσ)2

2D2(tσ, r, p)

)

. (16)

According to Eq. (3) P(tσ , r, p) = e−1, since the freeze-out zone is the region
of the last collision for the particle. Then the normalization condition for
Q (Q is presented by the bottom line in (16)) allows one to determine the
temporal width of the emission at the point (tσ(r, p), r, p):

D(tσ, r, p) =
e√
2π

1

R(tσ, r, p)
≈ τrel(tσ, r, p) . (17)

Therefore if the temporal homogeneity length λ(t, r, p) of the distribution
function fl.eq. near the 4-point (tσ(r, p), r) is much larger than the width
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of the emission zone, λ(tσ, r, p) ≫ τrel(tσ, r, p), then one can approximate
fl.eq.(t

′, r+ p

p0
(t′−tσ), p) by fl.eq.(tσ, r, p) in Eq. (15) and perform integration

over t′ accounting for normalizing condition (11). As a result we get from
(15) and (16) the momentum spectrum in a form similar to the Cooper–Frye
one (1):

p0n(p) = p0 d3N

d3p
≈

∫

σ(p)

dσµpµfl.eq.(x, p) . (18)

It is worthy to note that the representation of the spectrum through emis-
sion function (5) is the result of the integration of the total non-equilibrium
distribution function f(x, p), Eqs. (4), (6), over the asymptotical hypersur-
face in time, while the approximate representation of the spectrum, Eq. (18),
uses only the local equilibrium part fl.eq. of the total function f(x, p) at the
set of points of maximal emission — at hypersurface (tσ(r, p), r).

4. Generalized Cooper–Frye prescription

Now let us summarize the conditions when the Landau/Cooper–Frye
form for sudden freeze-out can be used. They are the following:

(i) For each momentum p, there is a region of r where the emission func-
tion as well as the function Q, Eq. (8), have a clear maximum. The
temporal width of the emission D, defined by Eq. (16), which is found
to be equal to the relaxation time (inverse of collision rate), should be
smaller than the corresponding temporal homogeneity length of the
distribution function: λ(tσ, r, p) ≫ D(tσ, r, p) ≃ τrel(tσ, r, p).

(ii) The contribution to the spectrum from the residual region of r, where
the saddle point method (Gaussian approximation (16) and/or con-
dition τrel ≪ λ) is violated, does not affect essentially the particle
momentum density.

If these conditions are satisfied, then the momentum spectra can be pre-
sented in the Cooper–Frye form despite the fact that actually it is not sudden

freeze-out and the decoupling region has a finite temporal width τrel(tσ, r, p).
The analytical results as for the temporal width of the spectra agree re-

markably with the numerical calculations of pion emission function within
hydro-kinetic model (HKM) [8]. For example, near the point of maximum,
τ = 16.5 fm/c, r = 0, pT = 0.2 GeV, the “experimental” temporal width
DHKM obtained by numerical solution of the complete hydro-kinetic equa-
tions is DHKM ≈ 4.95 fm (see Fig. 1, top). Our theoretical estimate is
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Fig. 1. The pion emission function for different pT in hydro-kinetic model (HKM)

[8]. The isotherms of 80 MeV (top) and 135 MeV (bottom) are superimposed.

D = e√
2πR

≈ 5.00 fm, since the rate of collisions in this phase-space point is

R(τσ(r, p) = 16.5 fm/c, r = 0, pT = 0.2 GeV, pL = 0) ≈ 0.217 c/fm.

It is worthy to emphasize that such a generalized Cooper–Frye represen-
tation is related to freeze-out hypersurfaces that depend on the momentum

p and typically do not enclose the initially dense matter. In Fig. 1, one
can see the structure of the emission domains for different pT in HKM [8]
for initially (at τ = 1 fm/c) Gaussian energy density profile with ǫmax=
6 GeV/fm3. The maximal emission regions for different pT are crossed by
isotherms with different temperatures: 80 MeV for low momenta and 135
MeV for high ones. This is completely reflected in the concave structure of
the transverse momentum spectrum as one can see in Fig. 2.

If a part of the hypersurface tσ(r, p) is non-space-like and corresponds
to the maximum of the emission of particles with momentum p, directed
outward the system, the same part of the hypersurface cannot correspond
to the maximal emission for particles with momentum directed inward the
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Fig. 2. Transverse momentum spectrum of π− in HKM, compared with the sudden

freeze-out ones at temperatures of 80 and 160 MeV with arbitrary normalizations.

system. It is clear that the emission function at these points is close to
zero for such particles. Even formally, in the Gaussian approximation (16)
for Q, validated in the region of its maximal value, the integral

∫ ∞
tσ

dsR(s, r+
p

p0 (s−tσ(r, p), p) ≫ 1, if particle world line crosses almost the whole system.

The latter results in Q → 0 and, therefore, completely destroys the saddle-
point approximation (12) for Q and then the Cooper–Frye form (18) for
spectra. Recall that if a particle crosses some non-space-like part of the
hypersurface σ moving inward the system, this corresponds to the condition
pµdσµ < 0 [3]. Hence the value pµdσµ(p) in the generalized Cooper–Frye
formula (18) should be always positive: pµdσµ(p) > 0 across the hypersurface
where fairly sharp maximum of emission of particles with momentum p is
situated; and so requirement pµdσµ(p) > 0 is a necessary condition for
tσ(r, p) to be a true hypersurface of the maximal emission. It means that
hypersurfaces of maximal emission for a given momentum p may be open
in the space-time, not enclosing the high-density matter at the initial time
t0, and different for different p. All this is illustrated in Fig. 3, where the
structure of particle emission domain is shown for two groups of particles.
In the first one, the momentum is directed as the radius vector to the point
of particle localization (they move outward the system), in the second one
— in opposite direction (they move inward). The points of maximum for
different pT, where Cooper–Frye form can be applied, do not overlap. The
calculations have been done in HKM [8].

Therefore, there are no negative contributions to the particle momentum
density from non-space-like sectors of the freeze-out hypersurface, that is a
well known shortcoming of the Cooper–Frye prescription [3,4]; the negative
contributions could appear only as a result of utilization of improper freeze-
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Fig. 3. The emission function in HKM for particles with momentum directed along

the radius vector at the emission points (left) and for those ones in the opposite

direction to the radius vector (right).

out hypersurface that roughly ignores its momentum dependence and so is
common for all p. If, anyhow, such a common hypersurface will be used,
e.g. as the hypersurface of the maximal particle number emission (integrated
over p), there is no possibility to justify the approximate expression for
momentum spectra similar to Eq. (18).

5. Conclusions

Our analysis and numerical calculations show that the widely used phe-
nomenological Landau/Cooper–Frye prescription for calculation of pion (or
other particle) spectrum is too rough if the freeze-out hypersurface is con-
sidered as common for all momenta of pions. The Cooper–Frye formula,
however, could be applied in generalized form accounting for direct momen-
tum dependence of the freeze-out hypersurface σ(p); the latter corresponds
to the maximum of emission function S(tσ(r, p), r, p) at fixed momentum
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p in an appropriate region of r. If such a hypersurface σ(p) is found, the
condition of applicability of the Cooper–Frye formula for given p is that the
width of the maximum, which in the simple cases — e.g., for one component
system or at domination of elastic scatterings — is just the relaxation time
(inverse of collision rate), should be smaller than the corresponding temporal
homogeneity length of the distribution function.
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