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The decoupling and freeze-out of energetic nuclear collisions is anal-
ysed in terms of transparent semi-classical decoupling formulae. They pro-
vide a smooth transition and generalise frequently employed instantaneous
freeze-out procedures. Simple relations between the damping width and
the duration of the decoupling process are presented and the implications
on various physical phenomena arising from the expansion and decay dy-
namics of the highly compressed hadronic matter generated in high energy
nuclear collisions are discussed.

PACS numbers: 25.75.–q, 24.10.Nz, 24.10.Eq

1. Introduction

Dynamically expanding systems may pass various stages, where differ-
ent dynamical concepts or description levels are appropriate. For nuclear
collisions a possibly formed quark–gluon plasma (QGP) converts to a dense
hadronic medium. Subsequently the chemical components (i.e. the abun-
dances of the different hadrons) decouple and finally the system kinetically
freezes out releasing the particles that reach the detectors.

All such transitions share that they need quite some time, be it in or-
der to cope with strong rearrangements of the matter, in part accompanied
with a significant change in entropy density and corresponding release of la-
tent heat (e.g. for the QGP → hadron matter transition), or simply that the
processes happen probabilistically. Some of these transitions can adequately
be formulated in terms of micro- or macroscopic transport equations, other
ones such as e.g. phase transitions or composite-particle formation involve
changes of degrees of freedom, which are complicated in microscopic terms
and mostly not yet well formulated. Therefore in many cases recipes are ap-
plied, mostly of instantaneous nature. These concern coalescence pictures,
which combine nucleons to composite nuclei at freeze-out [1] or coalesce
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quarks to hadrons in the deconfinement–confinement transition [2]. Also
the general freeze-out is mostly treated as a sudden transition happening
at a suitably chosen three dimensional freeze-out hyper-surface in space-
time [3]. In many cases such prescriptions violate general principles as de-
tailed balance, unitarity, conservation laws or entropy requirements [4, 5].
In particular the instantaneous freeze-out picture is widely used to analyse
nuclear collision data in terms of thermal models. The achieved fits in tem-
perature, chemical potentials and parametrised flow effects to the observed
particle abundances and kinetic spectra, are then frequently used as mea-
sured data that are taken as clues on the physics of the collision dynamics,
cf. Andronic and Broniowski on this workshop or Refs. [6, 7].

In this contribution I will present some simple analytical considerations
which illustrate the space-time dynamics of transition processes in didac-
tic terms at the example of the freeze-out. The results are well in line
with recent progress reported by Sinyukov and Pratt at this meeting, see
also [10–13]. Earlier attempts towards a continuous freeze-out description
as derived by the Brazilian group [14, 15] and later efforts [16–18] directly
focused on a global decoupling scheme for fluid-dynamic approaches. Here
we investigate these processes micro-dynamically similar to the conceptual
progress and clarifications given in [10, 11] on the basis of classical kinetics.

2. Decoupling formulae

The decoupling properties of an observed particle are given by its inter-
action with the particles in the source. The latter is encoded in the corre-
sponding current–current correlation function or polarisation function Π. It
provides the following local decoupling rate in four phase space [19, 20]

dN(x, p)

d4pdtd3x
=

1

(2π)4
Πgain(x, p)A(x, p)
︸ ︷︷ ︸

Cgain(x,p)

Pescape(x, p) (1)

in the context of the gradient expanded Kadanoff–Baym equations [21, 22].
Here the first two factors (gain rate encoded in Πgain times local spectral
function A) determine the gain part of the local collision term Cgain(x, p) [22].
The last factor Pescape(x, p) captures the probability that particles, created
or scattered at space-time point x into a momentum p, can escape to in-
finity without further being absorbed by the loss part of the collision term.
This formulation thus restricts the emission zone to the layer of the last
interaction. Semi-classically in the small damping width limit one obtains

Pescape(x, p) = e−χ(x,p), where χ(x, p) =

∞∫

(x,~p)

Γ (x′, p′)dt′ (2)
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with Γ (x′, p′) = −ImΠR(x′, p′)/p′0. The time integration defining the optical
depth χ runs along the classical escape path starting at (x, ~p), the latter
determined by the real part of the retarded polarisation function ΠR [19,20].
The above rate causes drains in particle number and energy and a recoil
momentum from the source which in a fluid dynamical description lead to

∂µ

(
jµ
α,fluid(x)

T µν
fluid(x)

)

= −

∑

a

∫

d4p

(
eaα

pν

)
dNa(x, p)

d4xd4p
, (3)

resulting from the dissipative part of the underlying transport equations
(here a labels the different particles and α a conserved current). For small
spectral width all spectral strength A(x, p) will be guided towards the de-
tector with on-shell momentum ~pA providing the following detector yield

dNa(pA)

d3pA
=

∫
d4xd4p

(2π)4
Πgain

a Aa Pescape

(
∂~pA

∂~p

)
−1

δ3(~p − ~p(x, ~pA)) . (4)

Here ~pA(x, ~p) and ~p(x, ~pA) denote the corresponding mapping of the local
momentum ~p to the detector momentum and its inverse, respectively. The
corresponding Jacobi determinant accounts for the focusing or defocusing of
the classical paths due to deflections.

In thermal equilibrium the source function becomes

Πgain
a (x, p) = −2 fth(x, p0) ImΠR

a (x, p) = fth(x, p0) 2p0 Γa(x, p) , (5)

where Γa(x, p) is the local damping width of particle a. This property leads
to quite some compensation effect, which is frame independent. Namely, for
large source extensions the integral over the Γ -dependent damping factors
in (4), which define the visibility probability Pt, equates to unity

∞∫

−∞

dt Γ (t) e−χ(t)

︸ ︷︷ ︸

= Pt(t)

= 1, where χ(t) =

∞∫

t

dt′Γ (t′), (6)

if integrated along any path leading from the opaque interior to the outside.
This compensation is independent on the structural details of Γ and on the
classical paths leading to the detector, along which the decoupled particles
are accumulated. When rates drop smoothly in time the visibility probability
Pt(t) achieves its maximum at

[
d

dt
Γ (t) + Γ 2(t)

]

tmax

= 0, where Pt(tmax) ≈ Γ (tmax)/e. (7)
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The corresponding decoupling duration ∆tdec approximately follows from
the normalisation of the visibility function Pt through a kind of decoupling
uncertainty relation Γ (tmax) ∆tdec ≈ e.

In the limit that Pt(t) can be replaced by a δ-function one recovers an
improved Cooper–Frye [3] formulae, where the freeze-out hypersurface is no
longer globally defined, but individually by the posed detector momentum
[10] through the features of Γ (x, p) at peak condition (7).

3. Analytic model considerations

In Ref. [19] various consequences of the continuous decoupling formal-
ism are discussed. As an illustration we consider the competition between
chemical and kinetic (thermal) freeze-out of slow particles escaping from
a spherically expanding uniform fireball. The emission is than essentially
from a time-like hypersurface. Both processes go with a different pace as a
function of density and/or temperature during the expansion, since inelastic
processes drop much faster than the elastic scattering processes, the latter
essentially determining the kinetic rates.

For example a fireball evolution with a freeze-out radius of Rdec ≈ 6 fm
and collective velocity Ṙdec = 0.5 fm/c leads to a decoupling peak at tmax =
12 fm/c for both types of freeze-out. The damping widths at decoupling peak
are as large as Γ chem

max = Γ kin
max = 0.5 c/fm ≈ 100 MeV providing the values

given in Table I. The typical duration of a decoupling process is thereby of
less importance. Rather the robust feature is the relative volume growth
during which the system decouples, which is mostly beyond half an order of
magnitude. During this time the thermodynamic properties of the system
can significantly change thereby influencing the spectrum of the observed
particles. Even more robust is the behaviour of the overall damping rate Γ
of the decoupling particle. Coming from a completely opaque zone where
the damping is strong, it decreases by about a factor ee ≈ 15 with values
between begin, peak and end of the freeze-out of notably Γi : Γmax : Γf =
390 : 100 : 26 MeV for the above nuclear collision scenario.

TABLE I

Typical decoupling durations and volume growths.

100 GeV Au + Au decoupl. time vol. growth

phase transition [4, 5]: 6–10 fm/c > 5
chemical freeze-out: > 5 fm/c > 4

kinetic freeze-out: > 8 fm/c > 6
CMB early universe [23]: Z = [1300− 800] (13/8)3 = 4.3
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Fig. 1. Decoupling probability Pt(t) as a function of time (left panel) and the

resulting temperature distributions (right panel) the latter for two simple EoS with

adiabatic index κ = 1.5 (full lines) and κ = 4/3 (dashed lines) for the schematic

chemical and thermal freeze-out scenarios discussed in the text [19].

Depending on the underlying EoS the thermodynamic properties of the
matter can therefore significantly change during the decoupling time window.
The resulting distributions in temperature PT(T ) = Pt(t)(dT (t)/dt)−1 as
shown in the right panel of Fig. 1 for two normally behaved example EoS
show a significant spread in the T distributions. Remarkable is further that
although both time distributions Pt peak at the same time (cf. left panel of
Fig. 1), the slower decrease in kinetic rates leads to a considerably downward
shifted and much broader T distribution for thermal freeze-out compared to
that in the chemical case.

4. Summary and perspectives

For any observed probe the structural properties of the source are en-
coded in the current–current correlation function defining the gain part of
the polarisation function Π (or self-energy). It knows about resonances
and other structural properties that influence the emitted particle. Only
penetrating probes, which suffer no distortion and absorption in the mat-
ter (P = 1), have an undisturbed view on the source. Strongly interacting
probes, though, have a significantly reduced view. In the opaque limit most
structural effects are wiped out and one is rather left to observe statistical
features, i.e. temperature effects, of the source. In particular kinematical
fingerprints from decays of resonances with lifetimes less than the decoupling
duration will become invisible in the kinetic spectra of the probe, deferring
to include such decay modes into statistical model descriptions.

The here discussed decoupling features are generic and apply to many
dynamically expanding systems. This includes the microwave background
radiation released during the early universe evolution. For applications to
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nuclear collisions the here diagnosed long decoupling and freeze-out times
are both a challenge but also a chance: a chance to map out the thermo-
dynamic properties of the expanding collision zone during the freeze-out of
various probes. An observation of a quite narrow distribution in tempera-
ture, for example, could point towards effects that significantly slow down
the temperature drop during expansion, and this way provide hints towards
the underlying equation of state or possible phase transition effects.

In summary I see a need to reanalyse nuclear collisions data in the light
of the results and discussions given here. Promising steps towards this goal
were presented at this meeting by Sinyukov and Pratt [11, 12]. In those
hybrid model calculations the entire decoupling stage is treated within ki-
netic transport. These model calculations do not only confirmed the here
advocated long freeze-out durations (above 10 fm/c). At the same time, con-
trary to earlier HBT interpretations that inferred extremely short decoupling
durations [24], these long durations emerged well conform with Rout/Rside

close to unity [13] as observed in the data at the CERN SPS and at RHIC,
this way providing a solution to the alleged HBT puzzle discussed on this
workshop, cf. also the corresponding HBT reviews of [25, 26].
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