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Here I discuss some implicit assumptions of modern hydrodynamic
models and argue that their accuracy cannot be better then 10–15%. Then
I formulate the correct conservation laws for the fluid emitting particles
from an arbitrary freeze-out (FO) hypersurface (HS) and show that the de-
rived momentum distribution function of emitted particles does not contain
negative contributions which appear in the famous Cooper–Frey formula.
Further I analyze the typical pitfalls of some hydro models trying to alter-
natively resolve the FO problem.

PACS numbers: 24.10.Nz, 25.75.–q

1. Introduction

Relativistic hydrodynamics is one of the most powerful theoretical tools
to study the dynamics of phase transitions in nucleus nucleus collisions at
high energies. During last 20 years it was successfully used to model the
phase transition between the quark gluon plasma (QGP) and hadronic mat-
ter [1, 2]. So far, only within hydro approach and hydro inspired models
it was possible to find the three major signals of the deconfinement transi-
tion seen at SPS energies, i.e. the Kink [3], the Strangeness Horn [4] and
the Step [5]. Nevertheless, from its birth the hydro modeling of relativis-
tic heavy ion collisions suffers from a few severe difficulties which I discuss
in this work along with the self-consistent formulation of relativistic hydro
equations.
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2. Explicit and implicit hydro assumptions

Relativistic hydrodynamics is a set of partial differential equations which
describe the local energy-momentum and charge conservation [6]

∂µT
µν
f (x, t) = 0 , T

µν
f (x, t) = (εf + pf) u

µ
f uν

f − pfg
µν , (1)

∂µN
µ
f (x, t) = 0 , Nν

f (x, t) = nfu
ν
f . (2)

Here the components of the energy-momentum tensor T
µν
f of the perfect

fluid and its (baryonic) charge 4-current N
µ
f are given in terms of energy

density εf , pressure pf , charge density nf and 4-velocity of the fluid uν
f . This

is a simple indication that hydrodynamic description directly probes the
equation of state of the matter under investigation.

As usual to complete the system (1) and (2) it is necessary to provide

(A) the initial conditions at some hypersurface and

(B) equation of state (EOS).

The tremendous complexity of (A) and (B) transformed each of them
into a specialized direction of research of relativistic heavy ion community.
However, there are several specific features of relativistic hydrodynamics
which have to be mentioned. In contrast to nonrelativistic hydrodynamics
which is an exact science, the relativistic one, while applied to collisions of
hadrons or/and heavy nuclei, faces a few problems from the very beginning.
Since the system created during the collision process is small and short living
there were always the questions whether the hydro description is good and
accurate, and whether the created system thermalizes sufficiently fast in
order that hydro description can be used.

Clearly, these two questions cannot be answered within the framework
of hydrodynamics. One has to study these problems in a wider frame, and
there was some progress achieved on this way. However, there are several
implicit assumptions which are difficult to verify for the heavy ion collisions
(HIC). Thus, we implicitly assume that the EOS of infinite system may
successfully describe the phase transformations in a finite system created
in collisions. The exact solutions of several statistical models both with a
phase transition [7] and without it [8] found for finite volumes teach us that
in this case the analog of mixed phase consist of several metastable states
which may transform into each other. Clearly, such a process cannot be
described by the usual hydro which is dealing with the stable states.

Furthermore, usually it is implicitly assumed that the matter created
during the HIC is homogeneous. However, the realistic statistical models
of strongly interacting matter [9, 10] tell us that at and above the cross-
over this matter consists of QGP bags with the mean volume of several
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cubic fm. Moreover, the model of QGP bags with surface tension [9] predicts
an existence of very complicated shapes of such bags above the cross-over
due to negative surface tension. Note that the existence of QGP bags of such
a volume is supported by the model of QGP droplets [11] which successfully
resolved the HBT puzzles at RHIC.

Also the assumption that the heavy QGP bags (resonances) are sta-
ble compared to the typical life-time of the matter created in the HIC is,
perhaps, too strong. The recent results obtained within the finite width
model [12] show that in a vacuum the mean width of a resonance of mass

M behaves as Γ (M) ≈ 600
[

M
M0

]1/2

MeV (with M0 ≈ 2 GeV), whereas in

a media it grows with the temperature. At the moment it is unclear how the
finite width of QGP bags and other implicit assumptions affect the accuracy
of hydrodynamic simulations, but from the discussion above it is clear that
their a priori accuracy cannot be better than 10–15% [13,14]. In fact, from
the hydro estimates of the HBT radii at RHIC one concludes that, depend-
ing on the model, the real accuracy could be between 30% to 50%. Clearly,
the same is true for the hydro-cascade [13, 14] and hydro-kinetic [15] ap-
proaches. Thus, at present there are no strong reasons to believe that these
approaches are qualitatively better than the usual hydrodynamics.

3. Boundary conditions

In addition to the assumptions discussed above, to complete relativistic
hydrodynamics it is necessary to know the boundary conditions which must
be consistent with the conservation laws (1) and (2). The latter is known
as the freeze-out problem, and it has two basic aspects [6]: (C1) the hydro
equations should be terminated at the FOHS Σfr(x, t) beyond which the
hydro description is not valid; (C2) at the FOHS Σfr(x, t) all interacting
particles should be converted into the free-streaming particles which go into
detector without collisions.

The complications come from the fact that the FOHS cannot be found
a priori without solving the hydro equations (1) and (2). This is a conse-
quence of relativistic causality on the time-like (t.l.) parts of the FOHS1.

Therefore, the freeze-out criterion is usually formulated as an additional
equation (constraint) F (x, t∗) = 0 with the solution t = t∗(x) which has to
be inserted into the conservation laws and solved simultaneously with them.

There were many unsuccessful attempts to resolve this problem (for their
incomplete list see [16]) by a priori imposing the form of the FOHS, but all

1 In this work I analyze the two dimensional hydro to which the four dimensional one

can be always reduced. Then the t.l. HS is defined by the positive element square

ds
2

= dt
2
− dx

2
> 0, whereas the space-like HS is defined by ds

2
< 0.
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of them led to severe difficulties — either to negative number of particles
or break up of conservation laws. The major difficulty is that the hydro
equations should be terminated in such a way, that their solution remains
unmodified by this very fact. In addition, this problem cannot be postponed
to later times because at the boundary with vacuum the particles start to
evaporate from the very beginning of hydro expansion, and this fact should
be accounted by equations as well.

The hydrodynamic solution of the FO problem was found in [16] and
developed further in [17]. This problem was solved after a realization of a
fact that at the t.l. parts of the FOHS there is a fundamental difference
between the particles of fluid and the particles emitted from its surface: the
EOS of the fluid can be anything, but it implies a zero value of the mean
free path, whereas, according to Landau [6], the emitted particles cannot
interact at all because they have an infinite mean free path. Therefore,
it was necessary to extend the conservation laws (1) and (2) from a fluid
alone to a system consisting of a fluid and the particles of gas emitted (gas
of free particle) from the FOHS. The resulting energy-momentum tensor
and baryonic current (for a single particle species) of the system can be,
respectively, cast as

T
µν
tot(x, t) = Θ

∗

f T
µν
f (x, t) + Θ

∗

g T µν
g (x, t) , (3)

N
µ
tot(x, t) = Θ

∗

f N
µ
f (x, t) + Θ

∗

g Nµ
g (x, t) , (4)

where at the FOHS the energy-momentum tensor of the gas T
µν
g and its

baryonic current N
µ
g are given in terms of the cut-off distribution function

[16] of particles that have the 4-momentum pµ

φg = φeq (x, t∗, p) Θ (pρdσρ) , (5)

T µν
g (x, t∗) =

∫

d3p

p0

pµpν φeq (x, t∗, p)Θ (pρdσρ) , (6)

Nµ
g (x, t∗) =

∫

d3p

p0

pµ φeq (x, t∗, p)Θ (pρdσρ) . (7)

Here φeq (x, t∗, p) denotes the equilibrium distribution function of particles
and dσρ are the components of the external normal 4-vector to the FOHS
Σfr(x, t∗) [16, 17].

The important feature of equations (3)–(5) is the presence of several
Θ -functions. The Θ∗

g = Θ(F (x, t)) function of the gas and Θ∗

f = 1 − Θ∗

g

function of the fluid can be explicitly expressed in terms of the FO criterion
and can automatically ensure that the energy-momentum tensor of the gas
(liquid) is not vanishing only in the domain where the gas (liquid) exists. On
the other hand Θ (pµdσµ) function ensures that only the outgoing particles
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leave the fluid domain and go to the detector. Such a form of the distribution
function (5) not only resolves the negative particles paradox of the famous
Cooper–Frye formula [18] at the t.l. parts of the FOHS, but it allows one
to express the hydrodynamic quantities of the gas of free particles in terms
of the invariant momentum spectrum measured by detector. I would like to
stress that the cut-off distribution (5) was rigorously derived [16] within the
simple kinetic model, suggested in [19].

4. The self-consistent hydro equations

The analysis of Refs. [16,17] shows that the equations of motion for the
full system

∂µT
µν
tot(x, t) = 0 , ∂µN

µ
tot(x, t) = 0 (8)

are split into two subsystems

Θ
∗

f ∂µT
µν
f (x, t) = 0 , Θ

∗

f ∂µN
µ
f (x, t) = 0 , (9)

dσµT
µν
f (x, t∗) = dσµT µν

g (x, t∗) , dσµN
µ
f (x, t∗) = dσµNµ

g (x, t∗) , (10)

since equations for the gas of free particles, ∂µT
µν
g ≡ 0 and ∂µN

µ
g ≡ 0, are

identities due the fact that the trajectories of free particles are straight lines.
Here Eqs. (9) are the equations of motion of the fluid, whereas Eqs. (10)

are the boundary conditions for the fluid at the FOHS. On the other hand
(10) is a system of the nonlinear partial differential equations to find the
FOHS Σfr(x, t∗) for a given FO criterion. To find the FOHS Σfr(x, t∗) the
solution of the fluid equations (9) should be used as an input for (10).

There is a fundamental difference between the equations of motion (1)
of traditional hydrodynamics and the corresponding equations (9) of hydro-
dynamics with particle emission: if the FOHS is found, then, in contrast
to the usual hydrodynamics, the equations (9) automatically vanish in the
domain where the fluid is absent. In this way the equations (3)–(10) resolve
the FO problem in relativistic hydrodynamics.

In addition, as shown in [17] for a wide class of hadronic EOS these
equations resolve the usual paradox of relativistic hydrodynamics of finite
systems which is known as a recoil problem due to the emission of particles.
The latter means that a substantial emission of particles from the t.l. parts
of the FOHS is expected to inevitably modify the hydrodynamic solution
interior the fluid. However, this is not the case for a wide class of realistic
EOS of hadronic matter because at the t.l. parts of the FOHS there appears
a new kind of hydro discontinuity, the freeze-out shock [16]. The FO shock
is a generalization of the usual hydrodynamic shock waves [20, 21] which
for the nonrelativistic flows transforms into the usual hydrodynamic shock.
As shown in [17] the supersonic FO shock is not only thermodynamically
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stable, i.e. in such a shock the entropy increases, but also it propagates
interior the fluid faster than the information about the possible change of
hydrodynamic solution.

5. Concluding remarks

The hydrodynamic solution of the FO problem required an insertion of
the boundary conditions into the conservation laws for the fluid and emit-
ted particles. The subsequent transport simulations [22] showed that the
assumptions of thermal equilibrium at the FOHS and small width of the FO
front at the t.l. parts of the FOHS are quite reasonable, whereas the main
problem appears at the s.l. FOHS where the decay of shortly living reso-
nances may essentially modify the equilibrium distribution function. This
problem, however, requires more complicated hydro-kinetic models [15] or
even the kinetic approach with specific boundary conditions [23].

Further attempts of the Bergen group [24] to improve the suggested hydro
solution of the FO problem were based on the hand waiving arguments and,
hence, they did not lead to any new discovery. Note also that from time to
time the erroneous attempts to resolve the FO problem appear [25], but as
usual they are running into severe troubles. Thus, in [25] (and subsequent
works) the artificial δ-like drains in relativistic hydrodynamic equations were
inserted, which, besides other pitfalls, in principle cannot reproduce the
nonrelativistic hydro equations even for weak flows.
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