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Femtoscopic measurements at a variety of facilities have established
a clear dependence of spatial scales with event multiplicity and particle
transverse mass (mT) in heavy ion collisions from

√
sNN ∼ 2–200 GeV.

The mT-dependence is thought to arise from collective, explosive flow of
the system, as probed by independent measurements, while the multiplic-
ity dependence reflects the increased spatial extent of the final state with
decreasing impact parameter. Qualitatively similar dependences have been
reported from high energy hadron and lepton collisions, where the concep-
tual validity of an impact parameter or collective flow are less clear. We
focus on results from elementary particle collisions, identify trends seen in
the experimental data and compare them to those from heavy ion collisions.

PACS numbers: 25.75.Gz

1. Introduction

The enhancement of the probability of having two bosons close in phase-
space is a consequence of Bose–Einstein symmetrization. In astronomy, this
effect was first observed by Hanbury Brown and Twiss [1] who measured
the angular size of stars using photon intensity interference. For particle
physicists, it all started about 50 years ago when Goldhaber et al. observed
significant positive correlations between identical pions due to the Bose–
Einstein effect [2]. It was almost two more decades before the availability
of data with sufficient statistics and quality allowed pion interferometry to
reliably extract spatial scales on the order of the interaction region, ∼ 1 fm.
Later, with new facilities being built, the femtoscopic studies were extended
to probe the sizes of the particle emitting sources as a function of the initial
system size and the energy of the collisions as well as a function of kinematic
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variables like the rapidity and the transverse momentum of the particle pair.
The interferometry method has been applied not just to pions but also to
heavier particles. In principle, a systematic comparison of femtoscopic re-
sults from the elementary particle collisions (e.g. p+p, p+p̄, e++e−) through
light nuclei (e.g. O + O) and up to heavy ion collisions (e.g. Au + Au) gives
an opportunity to understand the physics of these collisions probed by two-
particle interferometry. In practice, such a comparison has been hampered
by two problems. Firstly, there have traditionally been a multitude of pa-
rameterizations of the Bose–Einstein effect, especially within the particle
physics community. This, coupled with different analysis techniques, defini-
tions of multiplicity, and acceptances, makes comparison of results between
different experiments difficult. Secondly, communication between the high
energy and heavy ion communities has unfortunately been rather limited;
workshops such as this one should help rectify this situation.

This article is not a complete review of femtoscopic results from high
energy collisions. Instead, we have collected a large fraction of the world
dataset of such results and compare them in a common systematics. We
focus on aspects of femtoscopy in elementary particle collisions that are im-
portant when comparing to heavy ion collisions. We also discuss some issues
with results from e+ + e− collisions that complicate their interpretation.

The paper is organized as follows. In Sec. 2 we present different pa-
rameterizations of one- and three-dimensional correlation functions used to
obtain results presented in this paper. A short summary of the most impor-
tant observables in femtoscopic studies in heavy ion collisions is presented
in Sec. 3. In Sec. 4 we attempt to present a consistent picture of the femto-
scopic observables in the elementary particle collisions. In Sec. 5 we bring up
a problem with mass dependence of HBT radii seen in e+ +e− collisions and
comment on the Heisenberg uncertainty principle as a possible origin of both
the mass ordering and the transverse mass dependence of Rz. Conclusions
and discussion are presented in Sec. 6.

2. Definitions and parameterizations of Bose–Einstein effect

The correlation function is defined as

C(p1, p2) =
P (p1, p2)

P (p1)P (p2)
, (1)

where P (p1, p2) is the probability of observing two particles with momenta
p1 and p2, while P (p1) and P (p2) denote single-particle probabilities.

Experimentally, the correlation function is defined as

C(Q) =
A(Q)

B(Q)
, (2)
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where Q is a difference between momenta of two particles. A(Q) represents
a distribution of the pairs from the same event and B(Q) is the background,
or reference, distribution that is supposed to include all physics effects as
A(Q) except for femtoscopic correlations (quantum statistics, final state in-
teractions including Coulomb and strong interaction, where applicable) be-
tween the pair being studied.

Femtoscopic correlations in ~Q-space may be expressed (e.g. [3]) as a con-
volution of the pair spatial separation distribution with the two-particle
wavefunction which includes quantum (anti-)symmetrization and final state

interactions effects. At large | ~Q|, these effects vanish, and femtoscopic cor-
relation functions must assume a constant value independent of the direc-
tion of ~Q. However, several experiments of collisions with low multiplicity
(e.g. [4–8]) report correlation functions with large-| ~Q| structure which must
be non-femtoscopic in origin. They may arise, for example, from jets or
energy-momentum conservation.

Especially in e+ + e− experiments, there has been tremendous effort to
remove these effects using different techniques to form the reference distri-
bution, B(q) in Eq. (2) (e.g. [9]). For identical particle interferometry, these
include using like-sign pion distributions or Monte Carlo simulations to gen-
erate the reference. We do not review them all here, simply noting that each
technique has its advantages, but none completely removes non-femtoscopic
structures. At the end, the correlation function is fit with a functional form
which includes (or neglects) the non-femtoscopic structure. A plethora of
forms has been used over the years in high-energy particle measurements.
We discuss some here.

Usually, one assumes that the measured correlation function approx-
imately factors into a femtoscopic (CF (~q)) and a non-femtoscopic (ζ (~q))
part

C (~q) = CF (~q) · ζ (~q) . (3)

2.1. Femtoscopic forms

Here, we list some fitting forms used in the high energy literature. If
non-femtoscopic effects are ignored (ζ = 1), then these are the forms used
to fit the measured correlation function.

The one-dimensional HBT radius can be obtained by fitting the corre-
lation function (Eq. (2)) with an analytical parameterization. The most
commonly used one, that assumes the Gaussian source distribution, is de-
fined as

CF(Qinv) = 1 + λe−Q2

inv
R2

inv , (4)

where Qinv ≡
√

(~p1 − ~p2)2 − (E1 − E2)2.
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Another parameterization, also assuming a Gaussian shape of the source
distribution, but this with time Q is measured in the lab frame, is

CF(q, q0) = 1 + λe−q2R2

G
−q2

0
τ2

, (5)

where q = |p1 − p2|, q0 = E1 −E2, RG, τ and λ are the source size, lifetime
and chaoticity parameter.

Kopylov and Podgoretsky [10] introduced an alternative parameteriza-
tion

CF(qT, q0) = 1 + λ

[

2J1 (qTRB)

qTRB

]2
(

1 + q2
0τ

2
)

−1
, (6)

where qT is the transverse component of ~q = ~p1 − ~p2 with respect to ~p =
~p1+ ~p2, q0 = E1−E2, RB and τ are the size and decay constants of a spherical
emitting source, and J1 is the first order Bessel function.

Simple numerical studies show that RG from Eq. (5) is approximately
twice smaller than RB obtained from Eq. (6) (e.g. [11, 12]).

With enough statistics, a femtoscopic analysis may be performed in
2- or 3-dimensions. Then, the correlation function is often expressed in
the Bertsch–Pratt decomposition [13, 14]

CF(qo, qs, ql) = 1 + λe−q2
oR2

o−q2
s R2

s−q2

l
R2

l , (7)

where, ~Q = (qo, qs, ql) is defined in the longitudinally co-moving frame,
ql is the component parallel to the beam axis or trust axis (in e+ + e−),
qo is measured in transverse plane and points into the direction of outgoing
pair and qs is perpendicular to other two components. Analogously, the sizes
of the source along these three directions are denoted as Ro, Rs and Rl.

A similar form is used for two-dimensional correlation functions:

CF(qT, ql) = 1 + λe−q2

T
R2

T
−q2

l
R2

l , (8)

where, qT =
√

q2
o + q2

s .
Other groups have used double-Gaussian [15, 16] and exponential [17]

fitting functions. A scan of the literature reveals even more. We do not wish
to tabulate all the myriad forms used in high energy physics, but simply
point out that this lack of a consistent analysis is rather a plague, greatly
impeding any effort to make sense of the program as a whole.

2.2. Non-femtoscopic forms

Many experiments ignore any non-femtoscopic contributions to the mea-
sured correlation function, setting ζ = 1 (cf. Eq. (3)) and simply fitting
it with one of the forms above. Of those that account for the long-range
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structure, most simply choose a functional form that seems to describe the
correlation at large Qinv, q or qT, depending on the coordinate system used
in the analysis, assume that it extrapolates smoothly into the femtoscopic
region, and fit. These ad hoc forms have no real foundation in physics, but
are simply guesses.

The most popular form, used e.g. in [18–22], is

ζ (Qinv) = 1 + ǫQinv + δ Q2
inv , (9)

where ǫ and δ are free parameters. In same cases, this form was modified
by setting δ = 0 [23–27] or ǫ = 0 [25].

An alternative one-parameter form was introduced in [7]

ζ (Qinv) =
(

1 + δ Q2
inv

)

−1
. (10)

For simplicity, we expressed above forms as a function of Qinv only, however,
one can easily replace Qinv with e.g. q or qT.

While expressing it analytically here would require additional explana-
tion, yet another ad hoc form was introduced by STAR [28] to describe the
three-dimensional structure of the correlation function with two additional
parameters.

Finally, a formulation has recently been proposed [29] which is not ad hoc,
but provides a full three-dimensional analytic form for ζ, assuming that the
non-femtoscopic correlations arise from energy and momentum conservation.
Recording the formula here would require extensive explanation, so we refer
the reader to [29] for details. In this approach, the extra “parameters” are
physical quantities like the total multiplicity, average energy, and so forth.

There are still other ad hoc forms not listed here. The reader should be
impressed (or depressed) by the potential combinatorics of combining the
ζ terms from this section with the CF’s from Sec. 2.1.

3. Two scalings in femtoscopic results in heavy ion collisions

A systematic overview of femtoscopic studies in relativistic heavy ion col-
lisions reveals a broad variety of interesting trends reflecting the underlying
system dynamics [3]. Here, we mention two of the most important, shown
in Fig. 1.

3.1. Transverse mass dependence

The negative correlation between the femtoscopic sizes and the trans-
verse mass of the particles is usually attributed to collective flow of a bulk
system [31]. In such a scenario, approximately “universal” mT dependence
of femtoscopic radii applies not only to pions but to all particle types. This
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Fig. 1. Left: mT dependence of Rinv for different particles. Figure taken from [28].

Right: Femtoscopic radii dependence on the number of charged particle. Figure

taken from [30].

is in fact observed experimentally and results have been presented in the
left panel of Fig. 1, in which one-dimensional radii from pion [32], charged
kaon [32], neutral kaon [33], proton and anti-proton [34], and proton–Λ [35]
correlations are plotted. Characteristic signals of collective flow [36] are also
observed in correlations between particles with very different masses.

3.2. Multiplicity scaling

The right panel of Fig. 1 presents AGS/SPS/RHIC systematics of HBT
radii dependence on (dNch/dη)1/3 (Nch — number of charged particles) for
different colliding systems at different energies of the collisions. The main
motivation for studying such a relation is its connection to the final state
geometry through the particle density at freeze-out. As seen, all radii ex-
hibit a scaling with (dNch/dη)1/3. It is especially interesting that the radius
parameters Rside and Rlong follow the same trend for different collisions over
a wide range of energies and given value of 〈kT〉. It is a clear signature
that the multiplicity is a scaling variable that drives these geometrical ra-
dius parameters. Since Rout mixes space and time information it is not clear
whether one expects its simple scaling with the final state geometry [3].
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4. World systematics from elementary particle collisions

The Bose–Einstein effect has been studied in elementary particle colli-
sions for decades by various experiments. We made attempt to collect ex-
perimental papers on two-particle correlations in small systems in Table I.

TABLE I

Collection of published experimental studies of two-particle correlations in small
systems.

System
√

s [GeV] Facility Experiment Refs.

p + p 1.9 LEAR CPLEAR [37,38]
1.9 CERN ABBCCLVW [39]
7.2 AGS E766 [8]
17 SPS NA49 [40]
26 SPS NA23 [7]

27.4 SPS NA27 [25]
31-62 ISR AFS [15,41, 42]
44,62 ISR ABCDHW [43]
200 SPS NA5 [44]
200 RHIC STAR [45]

p + p̄ 53 ISR AFS [46]
200 SPS NA5 [44]

200-900 SPS UA1 [47]
1800 Tevatron E735 [12]

h + p 5.6 CERN ABBCCLVW [39]
21.7 SPS EHS/NA22 [5, 48]

e+ + e− 3-7,29 SLAC Mark-II [49]
10 CESR CLEO [4]
29 SLAC TPC [50]

29-37 DESY-PETRA TASSO [51,52]
58 TRISTAN AMY [53]
91 LEP OPAL [6,18, 20, 21, 24, 54]
91 LEP L3 [24]
91 LEP DELPHI [26, 27, 55–58]
91 LEP ALEPH [22,59–61]

e+p 300 HERA ZEUS [62,63]
300 HERA H1 [17]

µp 23 CERN EMC-NA9 [64]

α + α 126 ISR AFS [15,41, 42, 46]

µN 30 Tevatron E665 [65]

νN >10 BBNC [66]
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Here, we will focus on results from elementary particle collisions by look-
ing at the multiplicity and transverse mass dependence of femtoscopic sizes
measured in these collisions and we will compare them to those from heavy
ion collisions (discussed in Sec. 3).

4.1. Multiplicity dependence

Fig. 2 shows a collection of results from a number of experiments study-
ing p + p, p + p̄, e+ + e− and even α–α collisions plotted versus the number
of charged particles per unit of pseudorapidity. Rinv (cf. Eq. (4)) is plot-
ted on upper panel and RG(cf. Eq. (5)) on the lower panel of this figure.
Since RB ≈ 2RG we were able to plot both radii together by dividing RB

(cf.Eq. (6)) radii by a factor of 2. All radii shown are from collisions with√
s>40GeV and increase with multiplicity. For collisions with

√
s<40GeV,

the multiplicity systematics are less clear, since some experiments report
a clear relationship and some do not, as shown in detail in Fig. 3.
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Fig. 2. The multiplicity dependence of the pion HBT radii. Compilation of results

from various experiments. Only data from collisions at
√

s > 40 GeV are shown.

While the multiplicity dependences from different experiments seen in Fig. 2
are qualitatively similar, we do not see the quantitatively universal depen-
dence observed in heavy ion collisions (cf. right side of Fig. 1). This may
indicate that, in fact, there is no such universal scaling in particle collisions.
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However, even if there were a universal multiplicity dependence of femto-
scopic scales, there are at least three other reasons for which such a scaling
would not appear in Fig. 2.

Firstly, as discussed in Sec. 2, the various experiments use different fitting
functions to extract radius parameters. Even when extracting the seemingly
straightforward parameter Rinv with the form given by Eq. (4), different pa-
rameterizations of the non-femtoscopic term ζ were used to fit the measured
correlation function; cf. Eq. (3).

Secondly, as discussed below, the femtoscopic scales depend not only on
multiplicity, but also kinematic quantities such as transverse momentum pT.
The various experiments had significantly different acceptances, for which
it is hard to account after the fact; this will lead to systematic differences
between one experiment’s results and another’s. For example, the Tevatron
experiment E735 [12] was more biased towards high-pT particles than the
other experiments. Thus, one expects E735’s radii to be systematically lower
(for fixed multiplicity) than the others; this is precisely what is seen in Fig. 2.

Thirdly, these experiments often use quite different definitions of “mul-
tiplicity” in their publications, making apples-to-apples comparisons more
difficult. As best we could, we tried to compare results as a function of
dNch/dη. For example, sometimes, the number of all particles per unit rapid-
ity is reported; in such case we assumed that charged particles are two-third
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of the total multiplicity. Some experiments provide the number of charged
particles in some range of pseudorapidity (not always centered at η = 0).
In such cases we assumed a flat η distribution, and scaled. Additionally,
we may expect some unknown bias between experiments in the method of
extracting the number of (charged) particles, since these multiplicities were
often “raw” numbers, not corrected for efficiency.

In general, one would like to assign systematic errors from all of these
effects, to see whether the data are indeed consistent with a “universal”
multiplicity dependence. However, beyond what is described above, we were
unable to do this from the information published by the collaborations, so
settle for a study of trends. We note that these complicating issues are
not problems for the heavy ion data, in which the communication between
different experiments is good, and apples-to-apples comparisons are seen as
a high priority.

4.2. The transverse mass/momentum dependence

In heavy ion collisions, the observed decrease of the HBT radii with
increasing transverse mass has been associated with flow, as mentioned in
Sec. 3. Whether or not it arises from the same physics, a similar mT scaling
is observed in small systems, as seen in Fig. 4. Recalling the discussion from
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Sec. 4.1, we recall that these results come from different experiments, and
that high energy particle measurements are hard to compare quantitatively.
In particular, the average number of particles per unit of pseudorapidity is
different in each experiment and as discussed above, the magnitude of the
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HBT radii depends on this value. Additionally, as also discussed previously,
somewhat different functional forms were used to extract the radii. However,
despite these difficulties it is clear that pion HBT radii in elementary particle
collisions show similar dependence on the transverse momentum as seen in
heavy ion collisions, though it is not clear whether they have the same origin.

5. Some aspects of femtoscopy in elementary particle collisions

In this section, we will discuss two issues with femtoscopic results from
elementary particle collisions. The first one is related to experimental data
and the second one to the interpretation of these data.

5.1. Is there a mass dependence of HBT radii in e+ + e− collisions?

As we showed in previous section, the pion HBT radii from small systems
are decreasing with increasing transverse momentum, similar with the trend
from heavy ion collisions. However, in heavy ion collisions, a scaling with
transverse mass is seen for several particle types, not only pions. Thus, in
this section, we would like to investigate whether there is mass dependence
of femtoscopic radii in elementary particle collisions. As there is insufficient
data available from hadron–hadron collisions we will focus on data from
e+ + e− collisions only. There have been claims (e.g. [68]) of the mass
ordering in these collisions, and these claims have been so often repeated
so as to become “common knowledge.” However, we argue that a survey of
e+ + e− publications reveals a much less clear picture. We found two main
reasons that complicate the systematic comparison of the data. The first is
the tendency of e+ + e− experiments to use very different fitting forms for
the correlation function, even within one collaboration. We have discussed
this extensively above in Sec. 2 and 4, so only mention it here. The second
complication comes from the fact that experiments used various techniques
to construct the reference distribution (B(q) from Eq. (2)).

Results from four e+ + e− experiments, ALEPH, DELPHI, OPAL and
L3, are presented on Fig. 5. The upper panels show the mass dependence of
HBT sizes measured using different techniques to construct the reference dis-
tribution from three experiments separately. The bottom panels present the
same data but this time grouped by the technique of creating background of
the correlation function. We make two interesting observations. Firstly, not
a single experiment used the same method to construct the reference distri-
bution for pion, kaon and proton correlation function. Instead, they used
different techniques for different particles, and when we consider systematic
errors that each technique introduces it is hard to make any quantitative
statement about the mass dependence of HBT radii. Secondly, when we
group the data by a given method of reference generation (lower panels of
Fig. 5), identifying clear trends becomes more difficult.
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We believe that the only fair statement that we can make about the
femtoscopic results from e+ + e− collisions is that the size of the source for
mesons is larger than that for baryons. As Alexander pointed out [69], this
alone is a big problem for the Lund string model.

5.2. Heisenberg uncertainty principle

The Heisenberg uncertainty principle was pointed by Alexander et al. [68]
as a possible origin of the mass dependence of the HBT radii in e+ + e−

collisions. Authors argue that the dependence of the one-dimensional radius
Rinv on the hadron mass obtained at LEP is consistent with the formula
derived from the Heisenberg uncertainty principle

Rinv(m) =
c
√

~∆t√
m

, (11)

where ∆t was chosen to be 10−24 s (0.3 fm).
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However, the good agreement between the experimental data and the
theoretical curve (Eq. (11)) presented by the authors [68] raises a concern
especially in the light of what we just discussed in the previous section. In
fact, when all results from e+ + e− experiments are plotted together as done
on Fig. 6, we see that that it is difficult to make any quantitative statement
about the mass ordering of HBT radii due to a significant systematic bias on
the radii coming from the different techniques to construct the background
of the correlation function and the spread of results coming from different
experiments.
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Fig. 6. Combined results from e++e− collisions. The same data as plotted on Fig. 5.

The one-dimensional radius provides limited information about the
source that is in fact a three-dimensional distribution. Thus, to verify
whether the Heisenberg uncertainty principle can really explain the mT

dependence of HBT radii one should look at three- (eventually two-) di-
mensional radii. The DELPHI experiment [55] report a decrease of three-
dimensional radii with mT; cf. Sec. 4. Alexander argues [70] that the
Heisenberg uncertainty principle can best be applied to the longitudinal
component of the radius rz (sometimes noted as RL) measured in LCMS
frame using similar procedure as it was done for Rinv [68]. The final formula
gives approximately the same dependence of the longitudinal femtoscopic
size on mT as in the one-dimensional case

RL(mT) ≈ c
√

~∆t√
mT

. (12)

A very good agreement between the experimental data and the theoretical
curve is observed. Two points, however, about this figure.
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Firstly, we believe that such a good agreement is partially a result of
a mistake that was made by Alexander. The author cites the following
paper [71] as the source of the DELPHI results. However, we found that
there is a discrepancy between the numbers presented in this paper and
those plotted by Alexander. The main (and probably the only) difference
seems to be in the last point for mT = 0.81 GeV where Alexander’s point
is significantly larger than DELPHI published value. The correct DELPHI
data from [71] has been plotted on the right panel of Fig. 7 represented
by red circles. For comparison, we plot the prediction from the Heisenberg
uncertainty relations (Eq. (12) for ∆t = 2.1× 10−24 s (0.63 fm) represented
by the solid black line. This is the same curve plotted on the left panel of
Fig. 7. We also performed a new fit to the correct DELPHI data (red circles)
and found that the best ∆t that described the results is 1.9×10−24s (0.57 fm)
(dash-dotted red line). This is not a serious mistake; however the agreement
between Eq. (12) and experimental data is not as good as Alexander showed
in his paper [70]. Thus, we think that this problem should be mentioned
here since the figure plotted on the left panel of Fig. 7 was copiously cited
in many other publications, including review articles (e.g. [9, 72]).
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Fig. 7. The mT dependence of the longitudinal component of the HBT source size

for pions; Left panel: Figure taken from [70]; Right panel: Red circles represent

DELPHI data taken from [71]. Blue triangles show data points from [55]. See text

for explanation of the curves.

The second point is about the DELPHI data themselves. While Alexan-
der refers to results presented in 1996 and published as proceedings in
1997 [71] it should be also mentioned that the same experiment published,
also as conference proceedings, newer results in 1999 and presented in
1998 [55] that are different than the previous ones (see blue triangles on
the right panel of Fig. 7). Presumably, the later DELPHI results represent
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an improvement over the earlier ones, so it seems reasonable to use these.
Until a final result is published in a refereed journal we have fitted newer
DELPHI data [55] using Eq. (12) and found that the best value of the ∆t
that described the experimental data is 4.8 × 10−24 (1.44 fm).

In heavy ion collisions, it is primarily the transverse HBT radii which
reflect collective flow. Thus, it is interesting to try to understand the mT-
dependence of femtoscopic parameters like RT, RO and RS. Any direct
connection between these radii and the uncertainty principle is unclear.

6. Discussion and conclusions

Claims that we understand the physics of ultrarelativistic heavy ion col-
lisions become much more compelling when a clear comparison of data from
A + A and p + p collisions are made and the differences explained. The
importance of such a comparison is obvious in studies of jet suppression
from azimuthal correlations [73] and leading particle distributions [74,75] at
large pT.

In this article, we presented a comprehensive review of the world sys-
tematics of the femtoscopic results from elementary particle collisions and
identified trends seen in the data.

The transverse mass dependence of the femtoscopic results from heavy
ion collisions at RHIC is an important evidence of flow [76]. Surprisingly,
a similar dependence is observed in small systems, as presented in Sec. 4.2. It
has been even shown that not only there is the mT dependence of HBT radii
in p+p collisions at RHIC but it is very similar to what is seen in d+Au and
Au + Au collisions suggesting that the only scaling between small and big
system is the size [45]. However, it is unclear whether the mT dependence
in small systems originates also from “flow”. Even though such explanation
has been provided by Csörgő and collaborators [77] the literature includes
rather alternative explanations. Among them is the Heisenberg uncertainty
principle suggested by Alexander et al. [68, 70]. However, as demonstrated
and discussed in Sec. 5, a more detailed study of the results from e+ + e−

collisions complicates the quantitative comparisons of the data and thus the
interpretation. Another physics process that could potentially generate the
space-momentum correlations in small systems was the string fragmentation.
However, as pointed out by Alexander [69], the mass dependence of the ex-
perimentally observed HBT radii (especially the difference between mesons
and baryons) is a big problem for the Lund string model. Long-lived reso-
nances (e.g. ω) may also generate a mT dependence of femtoscopic radii [78].
However, since the resonance “halo” length scale is fixed (e.g. cτ̇ω) and the
“core” scale varies by ≈ 6x between Au + Au and p+p, one expects a different
resonance-induced effect in the two systems. Preliminary studies [79] with
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the THERMINATOR [80] model confirm this expectation. The different effect
of resonances on the transverse mass dependence of the HBT radii on the
system size has been demonstrated by THERMINATOR event generator [79].
Finally, Białas et al. provided a model [81] that assumes a proportional-
ity between the four-momentum and the four-vector describing the particle
space-time position at freeze-out and showed that it can explain the data
from e+ + e− collisions.

Other interesting observations come from the multiplicity dependence of
femtoscopic radii in elementary particle collisions. Surprisingly the results
from various experiments show the increase of the femtoscopic sizes with the
number of charged particles similarly as it has been observed in heavy ions
collisions. These results should not be used as an evidence of flow but they
strongly suggest that the only difference between the size of the source in
small and big systems is the average multiplicity. Such observation in heavy
ion collisions suggests that the system is entropy dominated [82].
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