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The formalism and assumptions behind the correlation femtoscopy are
briefly reviewed. The femtoscopy techniques, with the emphasis on corre-
lations of nonidentical particles, are discussed.
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1. Introduction

The momentum correlations of two or more particles at small relative mo-
menta in their center-of-mass (c.m.) system are widely used to study space-
time characteristics of the production processes on a level of fm = 10−15 m,
so serving as a correlation femtoscopy tool (see reviews [1–7]). In fact, the
femtoscopic correlations due to the Coulomb final state interaction (FSI)
between the emitted electron or positron and the residual nucleus in beta-
decay are known for more than 70 years (see [8] for a discussion of the
similarity and difference of femtoscopic correlations in beta-decay and mul-
tiparticle production). The femtoscopic correlations due to the quantum
statistics (QS) of produced identical particles were observed almost 50 years
ago as an enhanced production of pairs of identical pions with small open-
ing angles (GGLP effect). The basics of the modern correlation femtoscopy
were settled by Kopylov and Podgoretsky in early seventieth of the last cen-
tury. Besides the space-time characteristics of particle production, the fem-
toscopic correlations yield also a valuable information on low-energy strong
interaction between specific particles which can hardly be achieved by other
means [6].

In the following, I will concentrate on femtoscopy techniques applied to
the analysis of unlike particle correlations in relativistic heavy ion collisions.
One can inspect recent reviews [4-7] for a number of other important topics.
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2. Formalism

The ideal two-particle correlation function R(p1, p2) is defined as a ratio
of the measured two-particle distribution to the reference one which would
be observed in the absence of the effects of QS and FSI. In practice, the
reference distribution is usually constructed by mixing the particles from
different events with similar topology, normalizing the correlation function to
unity at sufficiently large relative velocities. This procedure is well justified
for high-energy collisions involving nuclei since they are characterized by
sufficiently large multiplicity of produced particles and, in the absence of QS
and FSI, the particle correlations at small relative velocities are negligibly
influenced by kinematic constraints and production dynamics.

Usually, it is assumed that the correlation of two particles emitted with
a small relative velocity is influenced by the effects of their mutual QS and
FSI only and that the momentum dependence of the one-particle emission
probabilities is inessential when varying the particle four-momenta p1 and p2

by the amount characteristic for the correlation due to QS and FSI (smooth-

ness assumption). As for the former assumption, besides the rare events
with a large phase-space density fluctuations, it may not be justified also in
low energy heavy ion reactions when the particles are produced in a strong
Coulomb field of residual nuclei; to deal with this field a quantum adiabatic
(factorization) approach can be used [9]. The latter assumption, requiring
the components of the mean space-time distance between particle emitters
much larger than those of the space-time extent of the emitters, is well
justified for heavy ion collisions.

The correlation function is then given by a square of the properly sym-
metrized Bethe–Salpeter amplitude in the continuous spectrum of the two-

particle states, Ψ
S(+)
p1p2

(x1, x2), averaged over the four-coordinates xi ={ti, ri}
of the emitters and over the total spin S of the two-particle system [10,11].
On the assumption of the quasi-free propagation of the low-mass two-particle
system, one can separate the free c.m. system motion in the unimportant
phase factor. As a result, this amplitude practically reduces to the one,

ψ
S(+)
eq (∆x), depending only on the relative four-coordinate ∆x ≡ x1 − x2 =

{t, r} and the generalized relative momentum q̃ = q − P (qP )/P 2, where
P = p1 + p2, q = p1 − p2 and qP = m1

2 − m2
2; in the two-particle c.m.

system, P = 0, q̃ = {0, 2k∗} and ∆x = {t∗, r∗}.
At equal emission times of the two particles in their c.m. system (t∗ ≡

t∗1 − t∗2 = 0), the reduced non-symmetrized Bethe–Salpeter amplitude coin-

cides with a stationary solution ψ
S(+)

−k
∗ (r∗) of the scattering problem having

at large distances r∗ the asymptotic form of a superposition of the plane
and outgoing spherical waves (the minus sign of the vector k∗ corresponds
to the reverse in time direction of the emission process).
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Note that, to simplify the calculations, the reduced Bethe–Salpeter am-

plitude is usually substituted by the equal-time amplitude ψ
S(+)
−k

∗ (r∗). For
non-interacting particles, the reduced non-symmetrized Bethe–Salpeter am-
plitude coincides with the plane wave eiq̃x/2 ≡ e−ik∗

r
∗

which is independent
of the relative time in the two-particle c.m. system and so, coincides with
the corresponding equal-time amplitude. On the contrary, the amplitude of
two interacting particles contains an explicit dependence on t∗ — the in-
teraction effect vanishes at |t∗| → ∞. However, it can be shown [10] that
the effect of non-equal times can be neglected on condition |t∗| ≪ m(t∗)r∗2,
where m(t∗ > 0) = m2 and m(t∗ < 0) = m1. This condition is usually
satisfied for heavy particles like kaons or nucleons. But even for pions, the
t∗ = 0 approximation merely leads to a slight overestimation (typically less
than a few percent) of the strong FSI effect and, it does not influence the
leading zero-distance (r∗ ≪ |a|) effect of the Coulomb FSI [10, 11].

In the equal time approximation, the correlation function

R(p1, p2)
.
=

∑

S

ρ̃S

〈∣∣∣ψS(+)
−k

∗ (r∗)
∣∣∣
2
〉

S

; (1)

for identical particles, the amplitude in Eq. (1) enters in a symmetrized form:

ψ
S(+)
−k

∗ (r∗) →
[
ψ

S(+)
−k

∗ (r∗) + (−1)Sψ
S(+)
k
∗ (r∗)

]
/
√

2 . (2)

The averaging in Eq. (1) is done over the four-coordinates x1, x2 of the
emitters according to the two-particle emission function GS(x1, p1;x2, p2) at
a given total spin S of the two particles, ρ̃S is the corresponding population
probability,

∑
S ρ̃S = 1. For unpolarized particles with spins s1 and s2 the

probability ρ̃S = (2S + 1)/[(2s1 + 1)(2s2 + 1)]. Generally, the correlation
function is sensitive to particle polarization. For example, if two spin-1/2
particles are initially emitted with polarizations P1 and P2 then [10] ρ̃0 =
(1 − P1 · P2)/4, ρ̃1 = (3 + P1 · P2)/4.

3. Femtoscopy techniques

3.1. Identical particles

For identical pions or kaons, the effect of the strong FSI is usually small
and the effect of the Coulomb FSI can be in first approximation simply cor-
rected for (see [12] and references therein). The corrected correlation effect
is then determined by the QS symmetrization only, i.e. the Bethe–Salpeter
amplitudes have to be substituted by properly symmetrized combinations of
the plane waves. As a result, R(p1, p2) = 1 + 〈cos(q∆x)〉.
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Assuming, for example, that for a (generally momentum dependent) frac-
tion λ of the pairs the particles are emitted by independent one-particle
emitters that are at rest and differ only by the four-coordinates of their cen-
ters characterized by the Gaussian space-time dispersions r20, τ

2
0 , while for

the remaining fraction (1 − λ), related to very long-lived emitters (η, K0
s ,

Λ, . . . ), the relative distances r∗ between the emission points in the pair c.m.
system are extremely large, the correlation function

R(p1, p2) = 1 + λ exp
(
−r02q2 − τ0

2q20
)
. (3)

We see that a characteristic feature of the correlation function of identical
spin-0 particles is the presence of an interference maximum at small |q|,
changing to a horizontal plateau at sufficiently large |q|, large compared with
the inverse characteristic space-time distance between the particle emission
points.

The on-shell constraint q0P0 = qP makes the q-dependence of the corre-
lation function essentially three-dimensional (particularly, in pair c.m. sys-
tem, q∆x = −2k∗r∗) and thus makes impossible the unique Fourier recon-
struction of the space-time characteristics of the emission process. However,
within realistic models, the directional and velocity dependence of the cor-
relation function can be used to determine both the duration of the emission
and the form of the emission region [1], as well as — to reveal the details of
the production dynamics (such as collective flows; see, e.g., reviews [4–7]).
For this, the correlation functions can be analyzed in terms of the out (x),
side (y) and longitudinal (z) components of the relative momentum vector
q = {qx, qy, qz} [13, 14]; the out and side denote the transverse components
of the vector q, the out direction is parallel to the transverse component of
the pair three-momentum. The corresponding correlation widths are usually
parameterized in terms of the Gaussian correlation (femtoscopy or interfer-
ometry) radii ri, e.g., for spin-0 bosons

R(p1, p2) = 1 + λ exp
(
−r2xq2x − r2yq

2
y − r2zq

2
z − 2r2xzqxqz

)
, (4)

and the radii dependence on pair rapidity and transverse momentum is stud-
ied. The correlation strength parameter λ can differ from unity due to the
contribution of very long-lived emitters, particle misidentification and coher-
ence effects. Equation (4) assumes azimuthal symmetry of the production
process. Generally, e.g., in case of the correlation analysis with respect to
the reaction plane, all three cross terms qiqj contribute.

It is well known that particle correlations at high energies usually mea-
sure only a small part of the space-time emission volume, being only slightly
sensitive to its increase related to the fast longitudinal motion of parti-
cle emitters. In fact, due to limited emitter decay momenta of few hun-
dred MeV/c, the correlated particles with nearby velocities are emitted by
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almost comoving emitters and so — at nearby space-time points. The dy-
namical examples are resonances, colour strings or hydrodynamic expansion.
To substantially eliminate the effect of the longitudinal motion, the correla-
tions can be analyzed in terms of the invariant variable Q = 2k∗ ≡ (−q̃2)1/2

and the components of the three-momentum difference in the pair c.m. sys-
tem (q∗ ≡ Q = 2k∗) or in the longitudinally comoving system (LCMS) [15].
In LCMS, each pair is emitted transverse to the reaction axis so that the
generalized relative three-momentum q̃ coincides with q∗, except for the
out-component q̃x = γtq

∗
x, where γt is the LCMS Lorentz factor of the pair.

3.2. Nonidentical particles

The FSI effect allows one to access the space-time characteristics of par-
ticle production also with the help of correlations of non-identical particles.
One should be however careful when analyzing these correlations in terms
of simple models like those assuming the Gaussian space-time parametriza-
tion of the source. While the QS and strong FSI effects are influenced by
large r∗-separations mainly through the correlation strength parameter λ,
the shape of the Coulomb FSI is sensitive to the distances as large as the
pair Bohr radius (hundreds of fm for the pairs containing pions).

This problem can be at least partially overcome with the help of imag-
ing techniques [16] or transport simulations. The former require the a pri-
ori knowledge of the correlation strength (purity) parameter and yield the
r∗-distribution inverting the measured correlation function using the inte-
gral Eq. (1) with the kernel given by the wave function squared. The latter
account for the dynamical evolution of the emission process and provide the
phase space information required to calculate the QS and FSI effects on the
correlation function.

Thus, the transport RQMD v.2.3 code was used in a preliminary analy-
sis of the NA49 π+π−, π+p and π−p correlation data from central Pb + Pb
158 AGeV collisions [6]. The model correlation functions RRQMD(Q; sr)
have been calculated weighting the simulated pairs by squares of the corre-
sponding wave functions. The scale parameter sr, multiplying the simulated
space-time coordinates of the emitters, was introduced in the model correla-
tion function to account for a possible mismatch of the r∗-distribution. For
this, a set of correlation functions RRQMD(Q; si

r) was calculated at three
chosen values si

r of the scale parameter and the quadratic interpolation was
used to calculate RRQMD(Q; sr) for arbitrary value of sr (see [11] for some
more details). The NA49 correlation functions were then fitted by

R(Q) = N [λRRQMD(Q; sr) + (1 − λ)] (5)

with two additional parameters, the normalization N and the correlation
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strength (purity) λ. The results of the example fit of π+π− correlation
function shown in Fig. 1 demonstrate a good theoretical description of the
extremely precise correlation data (even the errors of the lowest-Q points
are on a per mill level), as well as the sensitivity to the scale parameter and
strong FSI. The fitted values of the λ-parameter are in reasonable agreement
with the expected contamination of ∼ 15% from strange particle decays and
particle misidentification. The fitted values of the scale parameter show
that the RQMD transport model overestimates the r∗-separations of the
pion and proton emitters by 10–20% thus indicating an underestimation of
the collective flow in this model.

Q  GeV/c
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 2.33e-05 ±norm     =     1 
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Fig. 1. The preliminary result of the fit [6] of π+π− correlation function from 3M

events of central Pb + Pb 158 AGeV collisions collected by NA49 Collaboration

at SPS CERN. The lower panel shows the same correlation function with enlarged

vertical scale. The histograms RQMD, RQMD (scale = 1) and RQMD no SI

correspond (in decreasing order at Q < 70 MeV/c) to the RQMD prediction fitted

according to (5), RQMD with the fixed scale parameter sr = 1 and RQMD with

the switched off strong FSI, respectively.
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The shape of the correlation function is less influenced by r∗-tails in the
case of two-particle systems with the absent Coulomb FSI, e.g. in the case
of pΛ system. In fact, the fits of pΛ correlations in heavy ion collisions
using the Gaussian parametrization of the r∗-separation yield the Gaussian
correlation radii of 3–4 fm [6] in agreement with the radii obtained from pp
correlations in the same experiments.

3.3. Correlation asymmetries

The correlation function of non-identical particles, compared with the
identical ones, contains a principally new piece of information on the rel-
ative space-time asymmetries in particle emission [17]. Since this infor-
mation enters in the two-particle FSI amplitude through the terms odd in
k∗r∗ ≡ p∗

1(r
∗
1 − r∗

2), it can be accessed studying the correlation functions

R+i and R−i with positive and negative projection k∗i on a given direction î

or, — the ratio R+i/R−i. For example, î can be the direction of the pair ve-
locity or, any of the out (x), side (y), longitudinal (z) directions. In LCMS,
we have r∗i = ri, except for r∗x ≡ ∆x∗ = γt(∆x− vt∆t), where γt and vt are
the pair LCMS Lorentz factor and velocity. One may see that the asymme-
try in the out (x) direction depends on both space and time asymmetries
〈∆x〉 and 〈∆t〉. In case of a dominant Coulomb FSI, the intercept of the
correlation function ratio is directly related with the asymmetry 〈r∗i 〉 scaled
by the pair Bohr radius a:

R+i/R−i ≈ 1 + 2〈r∗i 〉/a . (6)

The difference between the correlation functions R+ and R− yields a ro-
bust estimate of the asymmetry 〈r∗i 〉 though, its statistical error is not min-
imized. The lowest possible statistical error is achieved by giving a weight
|k̂∗i | = | cosψi| to each pair contributing to R+ or R−. This corresponds

to least squares fitting or moment method (yielding 2〈r∗i 〉/a = 〈k̂∗i 〉/3) and
decreases the statistical error of the R+ versus R− method by a factor of
(4/3)1/2 (corresponding to a 33% gain in statistics) [18].

Besides the asymmetry information in the first order moments 〈k̂∗i 〉,
a useful information about the anisotropy of the r∗-separation of particle
emitters can be extracted also from the higher order moments. Thus, a sys-
tematic expansion of the correlation function in terms of Cartesian or spher-
ical harmonics and a study of the corresponding (2l + 1) real Q-depen-
dent angular-moment coefficients for each order l = 0, 1, . . . has been sug-
gested [19].

It appears that the out correlation asymmetries between pions, kaons
and protons observed in heavy ion collisions at CERN and BNL are in agree-
ment with practically charge independent meson production and, assuming
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m1 < m2, with a negative 〈∆x〉 = 〈x1−x2〉 and/or positive c〈∆t〉 = c〈t1−t2〉
on the level of several fm [6, 20]. In fact they are in quantitative agreement
with the RQMD transport model as well as with the hydro-motivated blast
wave parametrization, both predicting the dominance of the spatial part of
the asymmetries generated by large transverse flows.

In the thermal approach, the mean thermal velocity is smaller for heavier
particle and thus washes out the positive spatial shift due to the flow to
a lesser extent. As a result, 〈xπ〉 < 〈xK〉 < 〈xp〉. The observation of the
correlation asymmetries in agreement with the mass hierarchy of the shifts
in the out direction may thus be considered as one of the most direct signals
of a universal transversal collective flow [6].

4. Correlation measurement of strong interaction

One can also use the correlation measurements to improve knowledge
of the strong interaction for various two-particle systems. In the collisions
involving sufficiently heavy nuclei, the effective radius r0 of the emission
region can be considered much larger than the range of the strong interaction
potential. The FSI contribution is then independent of the actual potential
form [21]. At small Q = 2k∗ and a given total spin S, it is determined
by the s-wave scattering amplitude fS(k∗) [10]. In case of |fS| > r0, this
contribution is of the order of |fS/r0|2 and dominates over the effect of QS. In
the opposite case, the sensitivity of the correlation function to the scattering
amplitude is determined by the linear term fS/r0.

The possibility of the correlation measurement of the scattering ampli-
tudes has been demonstrated [6] in a preliminary analysis of the NA49 π+π−

correlation data within the RQMD transport model. For this, besides the
r∗-scale sr, the strong interaction scale sf has been introduced in the RQMD
correlation function R(Q; sr, sf ), rescaling the original s-wave π+π− scat-
tering amplitude: f(k∗) → sff(k∗); it approximately corresponds to the
rescaling of the original scattering length f0 = 0.23 fm. The fitted param-
eter sf = 0.6 ± 0.1 appears to be significantly lower than unity (see [11]
for the discussion of possible systematic errors). To a similar but somewhat
weaker rescaling (∼ 0.8) point also the recent experimental data on pionium
lifetime, Kl4 and K± → π±π0π0 decays as well as the two-loop calculation
in the chiral perturbation theory with a standard value of the quark con-
densate [11]. The correlation technique was also used to estimate the singlet
ΛΛ and pΛ̄ s-wave scattering length [6, 22].

5. Conclusions

A wealth of data on femtoscopic momentum correlations of various parti-
cle species (π±,K±,0, p±, Λ,Ξ) is available and will rapidly increase in future
experiments. Despite the integral femtoscopic correlations of nonidentical
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particles are usually essentially weaker than those of identical particles (with
the exception of some two-baryon systems), they already provided a valuable
complementary space-time information on the production characteristics in-
cluding non-Gaussian tails, sequence of particle emission and collective flows.
Thus the most direct evidence for a strong transverse flow in heavy ion col-
lisions at SPS and RHIC follows from the observed mass hierarchy of unlike
particle correlation asymmetries (simply related to the lower thermal veloc-
ities of heavier particles), in addition to the evidence obtained from spectra
and like pion correlations. Since the femtoscopic correlations are concen-
trated in the region of nearly equal particle three-velocities, the correspond-
ing tracks of nonidentical charged particles (contrary to the identical ones)
are well separated in the detector magnetic field and so there is no problem
with the two-track resolution. Though, in the case of very different masses
a large detector acceptance is required. Also, a good particle identification
and reasonable knowledge of particle fractions from long-lived emitters is
required to diminish the systematics in the fit of purity parameter. The
momentum correlations between specific particles also yield a valuable in-
formation on the strong interaction hardly accessible by other means, thus
opening a good perspective for such an analysis of future high statistics
correlation data from RHIC and LHC.
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