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We report preliminary data on proton–lambda correlations at small rel-
ative momentum q in the e3He(4He)→e′pΛX reaction atE0 =4.7(4.46) GeV
using the CLAS detector at Jefferson Lab. The enhancement of the cor-
relation function at small q was found to be in qualitative agreement with
theoretical expectations. The size of emission region about 1.5 fm was es-
timated using Lednický–Lyuboshitz analytical model. The experimental
correlation function is compatible with the P -matrix fit of the hyperon–
nucleon data. Small relative momentum proton–lambda correlations both
for He target and for electroproduction reaction were studied for the first
time.

PACS numbers: 25.75.Gz

1. Introduction

It was shown by Wang and Pratt [1] that the pΛ finals state interaction
(FSI) leads to an enhancement in the pΛ correlation function at low rela-
tive momentum which allows one to infer the size of the emitting source.
The inferred lambda-source parameters may provide new valuable informa-
tion, because lambdas are strangeness-carrying baryons. In some cases pΛ
correlations might be more sensitive to the source size than pp correlations
because of the absence of the repulsive Coulomb FSI in the pΛ system.
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In [2] we already reported data on two-proton correlations at small
relative momentum q studied in eA(3He, 4He, 12C, 56Fe) → e′ppX re-
actions. Here we report data on pΛ correlations at small relative mo-
menta in e3He(4He) → e′pΛX reaction for the incident electron energy of
4.7(4.46) GeV. The measured pΛ correlation function is affected by the resid-
ual correlation from pΣ0, ΛΛ correlations [3] and the pp correlation in the
misidentified pΛ background. Both these distortion effects play significant
role for high-energy heavy-ion collisions at RHIC [4] and LHC. In the CLAS
experiment, the ΛΛ and pΣ0 pair production is suppressed with respect to
the pΛ pair production due to the strong kinematical restrictions. This cir-
cumstance provides the possibility to extract and evaluate the pp-correlation
effect on the misidentified pΛ background. This is an important methodical
aspect for high-energy heavy-ion femtoscopy.

2. Data sample and reaction identification

The measurements were performed with the CEBAF Large Acceptance
Spectrometer (CLAS) [5] in Hall B at the Thomas Jefferson National Accel-
erator Facility. The run conditions are described in detail in [6]. Only events
with at least two detected protons within momentum interval 0.3–2.0 GeV/c
and at least one negative pion within momentum interval 0.1–0.7 GeV/c were
accepted. Misidentifying of electrons, negative pions or protons was negligi-
ble. Λ’s were identified by the decay into pπ−. The pairs of tracks hitting
a single scintillator were excluded from our analysis because they have am-
biguous time-of-flight values. To reduce target wall events from eHe ones
we tuned up the vertex cut using the empty target run. The contribution of
target wall in the selected events was less than 1.5%.

The invariant-mass distribution of proton–pion pairs for combined statis-
tics of both reactions e3He→ e′ppπ−X and e4He→ e′ppπ−X is shown in
Fig. 1 (left). There are two types of contributions shown in this figure. The
first one (lambda contribution) — when both a proton and a pion are from
lambda decay. The second one (direct contribution) — when one (a proton
or a pion) or both (a proton and a pion) are direct particles. The pairs
from Λ decay generate a Λ peak which is clearly seen at the correct position
in Fig. 1 (left). The background pairs demonstrate a smooth phase-space
dependence. To reduce the background contribution we apply the cuts on
the transferred energy: (ν − νmin) > 0.8 GeV and on the missing mass:
M2

mis > 2.1 GeV2. Here, νmin is the minimum value of the transferred en-
ergy according to strangeness conservation in the strong interactions and
Mmis is the missing mass for reaction under study. The upper histogram in
Fig. 1 (left) corresponds to all pπ− pairs (without cuts). The medium his-
togram in Fig. 1 (left) corresponds to pπ− pairs after both cuts on the trans-
ferred energy and on the missing mass were applied. The difference between
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the two histograms is shown by the lower histogram in Fig. 1 (left). After
applying the cuts, the lambda-contribution-to-direct-contribution ratio for
combined statistics of both reactions e3He→ e′ppπ−X and e4He→ e′ppπ−X
is increased from 0.74 to 0.99, while only 9% of Λ’s are lost. The whole statis-
tics (3He +4 He) in the invariant-mass interval 1.1135 < Mpπ− < 1.1175 GeV
is: 6376 of pπ− pairs from Λ decay, 6427 of direct pπ− pairs, i.e. 12803 pairs
in total.

After all selections, the transferred energy ν is between 1.5 and 4.5 GeV
with the mean value of 3.03 GeV. The Q2 is between 0.6 and 5 (GeV/c)2

with the mean value of 1.4 (GeV/c)2.
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Fig. 1. Left: The pπ−-pair invariant-mass distribution for e3He(4He) → e′ppπ−X

reaction. Right: The measured pΛ correlation function versus momentum differ-

ence between proton and Λ in pΛ-pair reference frame. The curve shows a fitted

correction due to the long-range correlation.

3. Correlation function

The measured correlation function RpΛ(q) = Nr(q)
Nm(q) has been defined

as the ratio of the measured distribution (Nr(q)) of the three-momentum
difference of the two particles to the reference one (Nm(q)) obtained by
mixing particles from different events of a given class, normalized to unity
at sufficiently large relative momenta [7]. Here, q = |q|, q = (pp − pΛ) is
momentum difference between proton and Λ in pΛ-pair reference frame; all
proton–pion pairs within the Λ invariant-mass region are considered as Λ’s
with the three-momentum pΛ = (pp + pπ).

The measured pΛ correlation function is shown in Fig. 1 (right). All
experimental cuts are applied. The correlation function shows a pronounced
enhancement in the region of small relative momenta q. The smooth increase
of the correlation function at q ≥ 0.2 GeV/c has been observed also for
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proton–proton correlation function in the reaction eHe→ e′ p p X reported
in our previous paper [2]. This increase (so-called long-range correlations
(LRC)) arises mainly due to the neglected momentum conservation in the for
mixed events. Empirically, LRC can be parametrized by R ∝ exp(b cosψ),
where ψ is the angle between the two particles and b is a constant [8].
Practically, LRC is usually fitted by a factor (1+const.× q2) [2]. The LRC
corrected proton–lambda correlation function is shown in Fig. 2 (left).
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Fig. 2. Left: The measured pΛ correlation function versus q. The dashed line

corresponds to the close-track efficiency correction for the measured pΛ correlation

function. Right: Comparison of p–pπ correlation functions, which are measured by

three different methods.

Since the Λ → pπ− decay momentum (0.101 GeV/c) is relatively small,
one has to take into account the close-track efficiency for proton pairs [9]
when the pπ-pair mass is close to MΛ. We apply close-track-efficiency cor-
rection for pair of protons in the same manner as in [2]. The close-track
efficiency for measured correlation function is shown by the dashed line on
Fig. 2 (left).

The pΛ correlation function is calculated according to the formula
RpΛ,ppπ = η · RpΛ + (1 − η) · Rppπ, where η ≃ 0.5 is the ratio of Λ pairs
to pπ− pairs when Mpπ ∼ MΛ. RpΛ,ppπ is the measured correlation func-
tion, which is a combination of both pΛ and ppπ correlation functions.

To measure the p–pπ correlation itself (from direct contribution) we
used three different experimental methods (see Fig. 2 (right)). First (•),
we have calculated the p–pπ− correlation function requiring Mpπ− out of
the Λ peak region (1.1055 GeV< Mpπ− < 1.1135 GeV and 1.1175 GeV<
Mpπ− < 1.1255 GeV). Second (2), we have calculated the p–pπ+ correla-
tion function requiring Mpπ+ out of the Λ peak region using the same mass
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intervals as for the p–pπ− correlation function. And the third (△), we have
calculated the p–pπ+ correlation function requiring Mpπ+ in the Λ peak re-
gion (1.1135 GeV< Mpπ+ < 1.1175 GeV). We can conclude that all the three
methods are in agreement within statistical errors. It should be noted that
Rppπ 6= 1 and consistent with the pp-correlation function measured in [2]
smeared out by adding a pion momentum. The statistical errors in Rppπ are
two times smaller than those in the measured RpΛ,ppπ.

Fig. 3 (left) shows the derived proton–lambda correlation function RpΛ(q)
corrected for the close-track efficiency, “long-range” correlations(LRC), and
direct p–pπ contribution. Statistical and systematic errors have been added
in quadrature.
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Fig. 3. Left: The derived proton–Λ correlation function RpΛ. Solid curve corre-

sponds to the source size parameter r0 = 0.85 fm. Right: The derived proton–Λ

correlation function versus the invariant mass of proton and lambda. The curve

represents the description of the experimental data by the P -matrix approach.

4. The source size

The two-particle correlation function R(p1,p2) at small k∗ values (k∗ is
the momentum of one particle in the two-particle c.m. system) is basically
given by the square of the wave function of the corresponding elastic transi-
tion ab→ ab averaged over the distance r∗ of the emitters in the two-particle
c.m. system and over the particle spin projections [10]:
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where F1(z) =
∫ z

0 dxe
x2

−z2

/z, F2(z) = (1 − e−z2

)/z, and ρS is the emission
probability of the two particles in a state with the total spin S; we assume
the emission of unpolarized particles, i.e., ρ0 = 1/4 and ρ1 = 3/4 for pairs
of spin-1/2 particles. The analytical expression in Eq. (1) corresponds to
the Gaussian r∗ distribution d3N/d3r∗ ∼ exp(−r∗2/4r20).

The nonsymmetrized wave function describing the elastic transition can
then be approximated by a superposition of the plane and spherical waves,

the latter being dominated by the s-wave, ψ
S(+)

−k
∗ (r∗)

.
= exp(−ik∗r∗) +

fS(k∗) exp(ik∗r∗)
r∗

. The s-wave scattering amplitude fS(k∗) = ηS exp(2iδS )−1
2ik∗

=

(1/KS − ik∗)−1, where 0 ≤ ηS ≤ 1 and δS are, respectively, the elas-
ticity coefficient and the phase shift; KS is a function of the kinetic en-
ergy, i.e., an even function of k∗. In the effective range approximation,
1/KS .

= 1/aS + 1
2d

Sk∗2, where aS and dS are respectively the s-wave scat-
tering length and effective radius at a given total spin S; in difference with
the traditional definition of the two-baryon scattering length, we follow here
the same sign convention as for meson–baryon or two-meson systems.

The KS function and the low-energy scattering parameters are real in
the case of only one open channel, as in the near threshold pΛ scattering.
For pΛ system, we use the values from [1]: a0 = 2.88 fm, a1 = 1.66 fm,
d0 = 2.92 fm, and d1 = 3.78 fm. The curve in Fig. 3 (left) corresponds to
rrms = 1.5 fm (r0 = 0.85 ± 0.25 fm). We neglect here the emission duration
which is effectively absorbed in the parameter rrms. Calculated curve is
in reasonable agreement with the data. Measured source size proved to
be consistent with the one for semi-inclusive two-proton electroproduction
reaction for 3He and 4He target at approximately the same initial energy [2].
Experimental systematic errors on rrms arise mainly from the uncertainty
in the direct p–pπ contribution (≈ 10% with respect to statistical errors),
Σ → Λγ contribution(≈ 20%) [12], close-track efficiency correction (≈ 5%),
the correction for long-range correlations (≈ 5%), and the correction for
momentum resolution (≈ 2%).

5. The P -matrix approach to the Λp FSI

Twenty years ago the data set on low-energy hyperon–nucleon (YN) in-
teraction available at that time was successfully described [13] within the
framework of the Jaffe–Low P -matrix [14]. The P -matrix establishes the
connection between the scattering data and the multiquark states. From
that point of view the coupled ΛN–ΣN channels with I = 1/2, JP = 0+

are particularly interesting. It has been known for a long time that a pole
exists near the

∑+ n threshold in the 3S1 hyperon–nucleon scattering am-
plitude [15, 16]. There has been a good deal of controversy concerning the
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position of this pole and its nature [16–18]. The P -matrix analysis performed
in [13] favors the identification of this structure with the SU(3) partner of
the deuteron. Such a pole may be called a

∑

N bound state and a Λp reso-
nance, or an unstable bound state according to the classification of [18]. The
genuine six-quark state [19] cannot be responsible for the structure near the
∑

N threshold, since the corresponding pole moves away from the physical
region when the coupling between the quark and hadronic channels is turned
on [13].

We applied the P -matrix analysis of the YN interaction to the new CLAS
data on Λp correlation near threshold. The P -matrix approach was refor-
mulated in the spirit of the Migdal–Watson FSI theory [20]. The energy
region, where the resulting equations can be applied, is not as wide as the
applicability region of the original P -matrix. We were not permitted to use
our approach up to the

∑

N threshold. However, our present study con-
firms the conclusions made in [13] on the location and the nature of the pole
near the

∑

N threshold since, the new CLAS data will be rather accurately
described by the set of the P -matrix parameters obtained in [13]. The cor-
relation function RpΛ(ε) (ε = MpΛ −mp −mΛ, where MpΛ is the invariant
mass of pΛ pair) calculated according to P -matrix [14] analysis of the YN
interaction is presented in Fig. 3 (right). The corresponding spin-averaged
scattering length and effective radius are a = 2.44 fm, d = 2.64 fm. The
agreement with the experimental data is reasonable.

6. Conclusions

Being summarized, the small relative momentum correlations between
proton and Λ produced in eHe interactions at 4.5–4.7 GeV have been in-
vestigated. Small relative momentum pΛ correlation function both for He
nuclei and for electroproduction reaction were measured for the first time.
The data clearly show a narrow structure in the correlation function in the
region of small relative momenta (q < 0.2 GeV/c) which is in qualitative
accordance with theoretical expectations. The important p–pπ correlations
were studied. It was shown that p–pπ pairs in the region of Mpπ ≈MΛ are
correlated. The measured proton–Λ correlation function was corrected for
the p–pπ correlations. The source size for the strangeness-production reac-
tion proved to be consistent with the one measured in semi-inclusive two-
proton-production reaction. The experimental proton–lambda correlation
function is compatible with the P -matrix fit of the hyperon–nucleon data.
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