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In this paper we present properties of relativistic and non-relativistic
perfect hydrodynamical models. In particular we show illustrations of the
fact that different initial conditions and equations of state can lead to the
same hadronic final state. This means that alone from the hadronic ob-
servables one cannot determine either of the above, one needs for example
penetrating probes that inherit their properties from each timeslice of the
evolution of the fireball.
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1. Perfect fluid hydrodynamics

Perfect fluid hydrodynamics is based on local conservation of entropy or
density, energy and momentum, expressed by so-called conservation equa-
tions. The fluid is perfect if the energy-momentum tensor is diagonal in the
local rest frame, i.e. there are no shear stress, viscosity or heat conduc-
tion effects. The conservation equations are closed by the equation of state,
which gives the relationship between energy density ε, pressure p. Typically
ε = κp, where the proportionality “constant” κ may depend on tempera-
ture T , which is connected to the density n and pressure p via p = nT in
many solutions of the exactly solvable class, especially those discussed in
following. In addition, a bag constant B can be introduced with a modi-
fied equation of state of ε − B = κ(p + B), where B = 0 in the hadronic
phase, non-zero in a deconfined phase. In this paper only the ε = κp case is
discussed.

Solutions describing non-relativistic flows that are applicable to relativis-
tic heavy ion collisions are e.g. described in Refs. [1–3], we will investigate
a family of such solutions.
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Solving the relativistic equations is much harder. There are only a few
exact solutions for these equations. One (and historically the first) is the
Landau–Khalatnikov implicit solution discovered more than 50 years ago
[4–6]. This is a 1 + 1 dimensional solution, and has realistic properties:
it describes a 1 + 1 dimensional expansion, does not lack acceleration and
predicts an approximately Gaussian rapidity distribution.

Another renowned solution of relativistic hydrodynamics is the Hwa–
Bjorken solution [7–9], which is a simple, 1 + 1 dimensional, explicit and
exact, but accelerationless solution. This solution is boost-invariant in its
original form, hence fails to describe the data [10,11]. However, the solution
allowed Bjorken to obtain a simple estimate of the initial energy density
reached in high energy reactions from final state hadronic observables.

Important are solutions [12, 13] which are explicit and describe a rela-
tivistic acceleration, i.e. combine the properties of the above solutions. We
will investigate such a family of solutions.

2. Investigated solutions

We will investigate here an exact relativistic and an exact non-relativistic
solution. We will use these solutions to extract information on the depen-
dence of the final state on initial state, the parameters of the exact solution
and the equation of state used.

A non-relativistic hydro solution

The below discussed non-relativistic solution describes a 3 + 1 dimen-
sional ellipsoidally symmetric expansion [1, 14], with an arbitrary κ ∈ R.
The velocity field v is
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where X, Y and Z are time-dependent principal axes of the expanding ellip-
soid, Ẋ , Ẏ and Ż are their expansion rate versus time, and r = (rx, ry, rz)
are the spatial coordinates. As for the thermodynamical quantities, one has
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T (r, t) = T0

(
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XY Z

)1/κ

, (3)

where X0 = X(t0), Y0 = Y (t0), Z0 = Z(t0) are the principal axes at a given
(arbitrarily chosen) time t0, and n0 = n(0, t0), T0 = T (0, t0). This represents
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a solution if the ordinary differential equations

ẌX = Ÿ Y = Z̈Z = α

(

X0Y0Z0

XY Z

)1/κ

(4)

are fulfilled. Here α is an “acceleration parameter”, in the above mentioned
solution α = T0/m, but note, that with a generalisation in the expression
for n(r, t) α can be made arbitrary.

A relativistic hydro solution

Next being discussed is a family of analytic, explicit and simple solutions,
which do not lack acceleration, and yield finite, realistic rapidity distribu-
tions [12]. In these solutions the velocity field is given by

uµ = γ(1,v) (5)

with v being the d dimensional spherically symmetric velocity. The length of
this vector is denoted by v, and this length can be expressed in the Rindler
coordinates η and τ by

v = tanh(λη) , (6)

where λ is a kind of “acceleration parameter”, because relativistic accelera-
tion uµ∂µuν vanishes if λ = 1, but is non-vanishing for a positive λ different
from 1. The pressure p and the temperature T are given by

p = p0

(τ0

τ

)λdκ+1

κ

, (7)

T = T0

(τ0

τ

)λd 1

κ

. (8)

The value of the constants λ (“acceleration parameter”), d (number of spatial
dimensions) and κ (adiabatic index of the fluid) are constrained, and dif-
ferent possible set of values yield different solutions. For example if λ = 1,
then d ∈ R and κ ∈ R are arbitrary (this is corresponds to the Bjorken
solution). In this case there is no acceleration. If however λ = 2, i.e. there
is substantial acceleration, d ∈ R is arbitrary but κ = d must be fulfilled.
Another important case is, that if d = 1 and κ = 1, then λ ∈ R is arbitrary.
This last case has a remarkably general velocity field: the λ acceleration
parameter can be arbitrary. On the other hand, this solution works only for
d = 1 and κ = 1, which is obviously a drawback. For a discussion of greater
detail Refs. [12, 15] are recommended.
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3. Dependence on the initial conditions and equation of state

To calculate observables from the above solutions, freeze-out criteria have
to be utilised. For example the simple condition of T (r, t) = Tfreeze−out

can be used, or a condition where the freeze-out hypersurface is pseudo-
orthogonal to the velocity field. This is an important aspect of hydrody-
namics, that a freeze-out condition has to be chosen, but here it does not
need to be discussed: we fix the hydrodynamical final state and investigate
only those hydrodynamical evolutions that lead exactly to the same final
state (i.e. to the same hadronic observables).

First, let us see relativistic solutions of Section 2. In Figs. 1 and 2 the
spatial temperature distribution is shown at different times, for different
initial conditions and different λ and/or κ values. All the plotted solutions
go to the same final temperature at mid-rapidity (η = 0), although their
initial condition, acceleration parameter and/or equation of state is different.

Then let us see non-relativistic solutions of Section 2. In Fig. 3 time
evolution of the principal axes of the expanding ellipsoid, their expansion
rates and the temperature is shown, for different equations of state and
different initial conditions. Here parameters were chosen so that the final
states of all cases are the same: T0 = 200 MeV, X = 11 fm, Y = 12 fm,
Z = 13 fm, Ẋ0 = 0.6, Ẏ0 = 0.5, Ż0 = 0.7.
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Fig. 1. These plots show the temperature distribution of a d = 1 exact relativistic

solutions from Section 2, for different λ parameters and different initial temperature

distributions. All approximate the same final temperature distribution (T ≈ T0).
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Fig. 2. Temperature distribution is shown for a d = 1 exact relativistic solution

from Section 2 with different initial temperatures and equations of state (κ). All

approximate the same final temperature distribution.
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Fig. 3. Time evolution of the principal axes of the expanding ellipsoid (X, Y, Z),

their expansion rates (Ẋ, Ẏ , Ż, denoted by Xv etc.), as well as that of the temper-

ature (T ) is plotted, for different equations of state (κ). It is evident that different

equations of states combined with different initial conditions can lead to the same

final state. The solution used here is the exact non-relativistic solution of Section 2.



1198 M. Csanád

Conclusions

We have seen that the same hydrodynamical final state can be achieved
with different solutions, equations of state or initial conditions. A very im-
portant consequence is also, that the hydrodynamic scaling laws observed in
relativistic heavy ion collisions [16] do not depend on the initial conditions
or the equation of state separately — one needs to restrict one in order to
extract information on the other. These examples show that in order to
extract the initial conditions or the equation of state from hadronic (final-
state) observables, one needs further restrictions or experimental constraints.
With penetrating probes one has access to the earlier times of the evolution
thus can restrict results on initial conditions or equation of state.
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