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The systematic study of shape in non-Gaussian HBT distributions re-
quires a systematic understanding of the underlying mathematical struc-
tures. Gram–Charlier series as the statistics approach to their systematic
description have elegant series and good properties but do not converge
uniformly. Extensions and relationships to other systems are briefly out-
lined.

PACS numbers: 13.85.Hd, 13.87.Fh, 13.85.–t, 25.75.Gz

There has been a very successful programme of description of the shape
of the two-particle correlation function R(q) = C(q) − 1 and the relative
source distribution S(r) by expansions in terms of spherical harmonics [1,2]
and Cartesian harmonics [3], which are couched in the language of orthogo-
nal functions and spherical coordinates (q, r, cos θqr). Expansions based on
statistical considerations were proposed by Hegyi and Csörgő [4]. Termed
“Edgeworth Series” there and more generally “Gram–Charlier Series”, they
are based on derivatives of a reference probability distribution function
(PDF) f0(x).

Fully three-dimensional expansions for R(q) in terms of a Gram–Charlier
series (GCS) were calculated in [5]. With q = (q1, q2, q3) the three-momen-
tum difference in the out-side-long system, R(q) is normalised to a “data
PDF” f(q) = R(q)/

∫

R(q) dq with moments µn1n2n3
=
∫

f(q) qn1

1 qn2

2 qn3

3 dq

and cumulants κn1n2n3
, while the reference PDF f0(q) has moments νn1n2n3

and cumulants λn1n2n3
. In Refs. [5, 6], the Gram–Charlier expansion with
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Gaussian reference f0(q) was calculated in detail, yielding

f(q)

f0(q)
= 1+ 1

4! {κ400H400[3]+4κ310H310[6]+6κ220H220[3]+12κ211H211[3]}

+ 1
6! {κ600H600[3]+6κ510H510[6]+15κ420H420[6]+30κ411H411[3]

+20κ330H330[3]+60κ321H321[6]+90κ222H222} + . . . (1)

with square brackets indicating the number of terms of a given type (“Stirling
numbers”) and where, with n = n1 + n2 + n3,

Hn1n2n3
(q) =

1

f0(q)

(−1)n ∂ nf0(q)

(∂q1)n1(∂q2)n2(∂q3)n3

(2)

are the “hermite tensors” generalising normal hermite polynomials for an ar-
bitrary covariance matrix. Prescriptions for experimental measurement of
three-dimensional q-cumulants κn1n2n3

were set out in Ref. [6].
The GCS expansions are, however, asymptotic series, both in the sense

that the magnitude of cumulants as well as some combinatoric factors en-
tering the expansions both rise with order. It is therefore imperative to
understand the behaviour of expansions in theory before applying them to
experimental data with associated additional complications. At the same
time, the use of non-Gaussian reference PDFs opens up significant opportu-
nities, in the same way (but at a higher level) that fitting of non-Gaussian
data is augmented by non-Gaussian parametrisations.

In the following, we therefore study the mathematics of underlying ex-
pansions while confining ourselves to the one-dimensional case. The refer-
ence PDF f0(x | θ) will be a one-dimensional analytic PDF (which may or
may not be Gaussian) with a parameter θ. The measured R(q) will be mod-
elled by another (definitely non-Gaussian) “test PDF” f(x |α) whose form
and parameter(s) α are “measured experimentally”, i.e. chosen freely for test
purposes. The symmetry R(−q) = R(q) for identical particles guides our
choice of symmetric toy PDFs, f(−x) = f(x) and f0(−x) = f0(x).

A Gram–Charlier series is an expansion of f(x) in derivatives of f0(x),

f(x |α) = a0f0(x)−a1f
′

0(x)+ 1
2a2f

′′

0 (x)− . . . =
∞
∑

j=0

aj

j!
(−Dx)jf0(x | θ) , (3)

where Dx = (d/dx). Multiplying by eitx and integrating, we find formally

Φ(t |α) =
∞
∑

j=0

aj

j!

∫

eitx (−Dx)jf0(x | θ) dx , (4)
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where Φ(t |α) =
∫

eitx f(x |α) dx is both the characteristic function and
proportional to the relative source distribution for noninteracting particles.
Assuming that f0(x) is continuous and that it and its derivatives vanish at
the surface of the support of x, i.e. assuming that, after j-fold integration
by parts

∫

eitx (−Dx)jf0(x | θ) dx = (it)j
∫

eitx f0(x | θ) dx , (5)

Eq. (4) simplifies to

Φ(t |α) = Φ0(t | θ)

∞
∑

j=0

aj

j!
(it)j , (6)

where Φ0(t | θ) =
∫

eitx f0(x) dx. Defining τ = it and Dτ = −i d/dt, the aj

are then just the coefficients in the Taylor expansion of Φ/Φ0 [7],

aj = Dj
τ

Φ(t |α)

Φ0(t | θ)

∣

∣

∣

∣

τ=0

(7)

and therefore functions of both parameter sets (α, θ). The characteristic
functions can be expanded in terms of their respective moments or cumu-
lants,

Φ(t |α) =
∞
∑

j=0

τ j

j!
µj = exp

( ∞
∑

j=1

τ j

j!
κj

)

, (8)

Φ0(t | θ) =

∞
∑

j=0

τ j

j!
νj = exp

( ∞
∑

j=1

τ j

j!
λj

)

, (9)

and so the coefficients aj can be expressed directly in terms of cumulant
differences ηj = κj − λj ,

aj = Dj
τ exp

(

∑

ℓ

τ ℓ

ℓ!
ηℓ

)

τ=0

. (10)

Insertion of expressions obtained for the lowest orders leads to the GCS in
terms of cumulant differences. Setting cumulants of odd order to zero due
to the symmetry, we have

f(x) = f0(x) + 1
2! η2f

(2)
0 + 1

4! (η4 + 3η2
2)f

(4)
0 + 1

6! (η6 + 15η4η2 + 15η3
2)f

(6)
0

+ 1
8! (η8 + 35η2

4 + 28η6η2 + 210η4η
2
2 + 105η4

2)f
(8)
0 + . . . , (11)
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with f
(j)
0 = Dj

xf0(x | θ). Define the functions

hj(x | θ) =
(−Dx)jf0(x | θ)

f0(x | θ)
, (12)

which for Gaussian f0 are the usual hermite polynomials but will take on
other forms for other choices of f0. In terms of the hj(x), Eq. (11) can be
expressed as

f(x)

f0(x)
= 1 + 1

2! η2 h2(x) + 1
4!(η4 + 3η2

2)h4(x) + 1
6!(η6 + 15η4η2 + 15η3

2)h6(x)

+ 1
8! (η8 + 35η2

4 + 28η6η2 + 210η4η
2
2 + 105η4

2)h8(x) + . . . . (13)

The textbook Gram–Charlier series, which we shall call the “fixed GCS” is

the special case where f0 is chosen to be Gaussian f0(x |σ) = e−x2/2σ2

/
√

2πσ2

with the free parameter θ2 ≡ σ2 = λ2 set equal to κ2, the measured cumulant
of f(x), so that η2 = 0 and (13) simplifies to

f(x)

f0(x)
= 1 + 1

4! η4h4(x) + 1
6! η6h6(x) + 1

8! (η8 + 35η2
4)h8(x) + . . . . (14)

The same series can be expressed also in terms of moments, either by direct
application of Eq. (7) and using µj = Dj

τΦ(t)|τ=0 and νj = Dj
τΦ0(t)|τ=0, or

multiplying both sides of (3) by xk and integrating.
The above infinite sums are, of course, never implemented experimen-

tally. Inevitably, a partial sum up to a maximum order k is used

fk(x |α) =
k
∑

j=0

aj

j!
(−Dx)jf0(x | θ) , (15)

so that all formulae following from it will also be truncated at order k as
experiments probably cannot measure cumulants beyond k = 6 or 8.

The textbook formalism for GCS which culminates in (14) is instructive
and elegant, but it does not automatically yield a convergent series or even
a partial sum which approximates f(x) reasonably well. In Fig. 1, we show
an example: take for the test PDF the “logistic distribution”, f(x |α) =
[4α cosh2(x/2α)]−1 which has cumulant κ2 = α2π2/3 and for the reference

PDF a Gaussian f0(x |σ) = (2πσ2)−1/2e−x2/2σ2

, choosing α = 1 and σ =
π/

√
3 to ensure η2 = 0, we find that the successive partial sums improve

from 2nd to 4th order but deteriorate for higher orders. The partial sums
may also develop slightly negative tails, which would be unphysical.

Nevertheless, it is desirable to develop GCS-based systematic expansions
as they have some good properties. For example, if the underlying variables
(q1, q2, q3) are statistically independent and a factorised reference PDF is
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Fig. 1. Fixed GCS example. Partial sums of order beyond k = 4 do not improve

as approximations of the non-Gaussian f(x), the curve peaking at 0.25.

chosen, a three-dimensional GCS-based series will factorise into products of
three one-dimensional series. Depending on the choice of series and reference
PDF, the derivative functions hj(x) can be orthogonal and/or polynomial
in form. The cumulant coefficients are highly sensitive measures of correla-
tion, and the prescriptions to measure them exist. For nonsymmetric cases
with “offsets”, the formalism remains essentially unchanged. And there is
flexibility in choice of reference PDF.

A first and immediate improvement over fixed GCS can be obtained
with the “free GCS” with η2 6= 0 and expansion (13). The value of free
parameter σ is in this case determined by a separate fit for each partial sum.
For illustrative purposes, we approximate the experimental goodness-of-fit
χ2 =

∑

i[f(xi)−fk(xi |σ)]2/(error)2
i of a “parametrisation” fk(x) to “data”

f(x) by
∫

f0(x |σ) [f(x |α)−fk(x |σ)]2 dx, where the f0 weight mimics larger
relative errors in the tails. (The point is not the detail of the fitting procedure
per se, but the behaviour of the partial sums.) With f(x) again the logistic
distribution with α = 1 and f0(x) the Gauss with variable σ, we obtain
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results shown in Fig. 2 with best-fit values σ = {1.62, 1.81, 1.86, 2.10, 2.11}±
0.01 for partial sums of order 0 to 8. While there is visible improvement over
the fixed-GCS case, the approximation again does not improve uniformly
with the order of the partial sum.
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Fig. 2. Free-GCS example. The σ parameter of f0 is adjusted for each order for

a best fit. Approximations do not improve uniformly with increasing order of the

partial sum.

Several generalisations of the basic GCS formalism are possible, the most
immediate being the use of non-Gaussian reference PDFs. As in the above
example, the available parameter can be either fixed from the data to ensure
that η2 = 0 or determined from fits.

Opening the door to non-Gaussian reference PDFs in the GCS formalism
raises the question of the relationship to systems of orthogonal polynomials
{φr(x)}∞r=0. Eq. (12) is a simplified form of a Rodrigues formula φr(x) =
[erf0(x)]−1Dr

x[f0(x)g(x)r ] with g(x) = 1. Indeed, GCS expansions with
g(x) 6= 1 have been developed for those PDFs which are part of the Pearson
system [8], but the resulting functions are not necessarily polynomial. There
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is also a close connection between the Pearson differential equation

df0

dx
=

(x − a)f0(x)

b0 + b1x + b2x2
(16)

with a, b0, b1, b2 constants, and the second-order differential equations gov-
erning the usual orthogonal polynomial systems. So far, it seems that there
is no single system having both the good statistical properties of Gram–
Charlier series on the one hand, and the good convergence properties of
orthogonal polynomials on the other.
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