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A novel type of correlation involving particle–antiparticle pairs was
found out in the 1990’s. Currently known as squeezed or Back-to-Back
Correlations (BBC), they should be present if the hadronic masses are
modified in the hot and dense medium formed in high energy heavy ion
collisions. Although well-established theoretically, such hadronic correla-
tions have not yet been observed experimentally. In this phenomenological
study we suggest a promising way to search for the BBC signal, by looking
into the squeezed correlation function of φφ and K+K− pairs at RHIC
energies, as function of the pair average momentum, K12 = (k1 + k2)/2.
The effects of in-medium mass-shift on the identical particle correlations
(Hanbury–Brown and Twiss effect) are also discussed.

PACS numbers: 25.75.Gz, 25.75.–q, 21.65.Qr, 21.65.Jk

1. Introduction

The hadronic particle–antiparticle correlation was already pointed out
in the beginning of the nineties. However, the final formulation of these
hadronic squeezed or back-to-back correlations was proposed only at the
end of that decade [1], predicting that such correlations were expected if the
masses of the mesons were modified in the hot and dense medium formed in
high energy nucleus–nucleus collisions. Soon after that, it was shown that
analogous correlations would exist in the case of baryons as well. An in-
teresting theoretical finding was that both the fermionic (fBBC) and the
bosonic (bBBC) Back-to-Back Correlations were very similar, both being
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positive and treated by analogous formalisms. In what follows, we will focus
our discussion to the bosonic case, illustrating the effect for φφ and K+K−

pairs, considered to be produced at RHIC energies [3].

Let us discuss the case of φ-mesons first, which are their own antiparti-
cles, and suppose that their masses are modified in hot and dense medium.
Naturally, they recover their asymptotic masses after the system freezes-
out. Therefore, the joint probability for observing two such particles, i.e.,

the two-particle distribution, N2(k1,k2) = ωk1
ωk2
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ak2
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〉, can be

factorized as N2(k1,k2) = ωk1
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[
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, after applying a generalization of Wick’s theorem for lo-

cally equilibrated systems [4, 5].

The first term corresponds to the product of the spectra of the two φ’s,

N1(ki) = ωki

d3N
dki

= ωki
〈a†

ki
aki

〉, being a†
k

and ak the free-particle creation

and annihilation operators of scalar quanta, and 〈. . .〉 means thermal aver-
ages. The second term contains the identical particle contribution and is
represented by the square modulus of the chaotic amplitude, Gc(k1,k2) =√

ωk1
ωk2

〈a†
k1

ak2
〉. Together with the first term, it gives rise to the fem-

toscopic or Hanbury–Brown and Twiss (HBT) effect. The third term, the
square modulus of the squeezed amplitude, Gs(k1,k2) =

√
ωk1

ωk2
〈ak1

ak2
〉,

is identically zero in the absence of in-medium mass-shift. However, if the
particle’s mass is modified, together with the first term it leads to the squeez-
ing correlation function.

The annihilation (creation) operator of the asymptotic, observed bosons
with momentum kµ =(ωk,k), a (a†), is related to the in-medium annihila-
tion (creation) operator b (b†), corresponding to thermalized quasi-particles,

by the Bogoliubov–Valatin transformation, ak = ckbk + s∗−kb
†
−k ; a†k =

c∗kb
†
k + s−kb−k, where ck = cosh(fk), sk = sinh(fk). The argument, fi,j(x) =

1
2 log

[

K
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i,j
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]

, is the squeezing parameter. In terms of the above am-

plitudes, the complete φφ correlation function can be written as

C2(k1,k2) = 1 +
|Gc(k1,k2)|2

Gc(k1,k1)Gc(k2,k2)
+

|Gs(k1,k2)|2
Gc(k1,k1)Gc(k2,k2)

, (1)

where the first two terms correspond to the identical particle (HBT) corre-
lation, whereas the first and the last terms represent the correlation func-
tion between the particle and its antiparticle, i.e., the squeezed part. The
in-medium modified mass, m∗, is related to the asymptotic mass, m, by
m2

∗(|k|) = m2 − δM2(|k|), here assumed to be a constant mass-shift.
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2. Results

The formulation for both bosons and fermions was initially derived for a
static, infinite medium [1,2]. More recently, it was shown [3] in the bosonic
case that, for finite-size systems expanding with moderate flow, the squeezed
correlations may survive with sizable strength to be observed experimen-
tally. Similar behavior is expected in the fermionic case. In that analysis,
a non-relativistic treatment with flow-independent squeezing parameter was
adopted for the sake of simplicity, allowing to obtain analytical results. The
detailed discussion is in Ref. [3], where the maximum value of Cs(k,−k), was
studied as a function of the modified mass, m∗, considering pairs with exact
back-to-back momentum, k1=−k2=k (in the identical particle case, this
procedure would be analogous to study the behavior of the intercept of the
HBT correlation function). Although illustrating many points of theoretical
interest, this study in terms of the unobserved shifted mass and exactly back-
to-back momenta was not helpful for motivating the experimental search of
the BBC’s. A more realistic analysis would involve combinations of the mo-
menta of the individual particles, (k1,k2), into the average momentum of the
pair, K = 1

2 (k1 +k2). Since the maximum of the BBC effect is reached when
k1 =−k2 =k, this would correspond to investigate the squeezed correlation
function, Cs(k1,k2) = Cs(K,q), close to |K|=0.

For a hydrodynamical ensemble, both the chaotic and the squeezed am-
plitudes, Gc and Gs, respectively, can be written in a special form derived
in [5] and developed in [1, 3]. Therefore, within a non-relativistic treat-
ment with flow-independent squeezing parameter, the squeezed amplitude

is written as in [3], i.e., Gs(k1, k2) =
E
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the spectrum, as Gc(ki, ki)=
Ei,i

(2π)
3
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,

where R∗ = R
√

T/T∗ and T∗ = T + m
2〈u〉2

m∗

[3, 6]. We adopt here ~ = c = 1.
Inserting these expressions into Eq. (1) and considering the region where

the HBT correlation is not relevant, we obtain the results shown in Fig. 1.
Part (a) shows the squeezed correlation as a function of 2K = (k1 + k2),
for several values of q = (k1 − k2). The top plot shows results expected
in the case of a instant emission of the φφ correlated pair. If, however, the
emission happens in a finite interval, the second term in Eq. (1) is multiplied
by a reduction factor, in this case expressed by a Lorentzian (F (∆t) = [1 +

(ω1 + ω2)
2∆t2]−1), i.e., the Fourier transform of an exponential emission.

The result is shown in the plot in the middle of Fig. 1(a). We see that this
represents a dramatic reduction in the signal, even though its strength is
sizable for being observed experimentally. If the system expands with radial
flow (〈u〉 = 0.5), the result is shown in the plot at the bottom of Fig. 1(a),
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again considering that the φ’s are emitted during a finite period of time,
∆t = 2 fm/c. We see that, in the absence of flow, the squeezed correlation
signal grows faster for higher values |q| than the corresponding case in the
presence of flow. However, this last one is stronger in all the investigated
|q| region, showing that the presence of radial flow enhances the signal. The
sensitivity of the squeezed-pair correlation to the size of the region where
the mass-shift occurs is shown in Fig. 1(b) for two values of radii, R = 7 fm
and R = 3 fm, keeping |q

12
| = 2.0 GeV/c fixed. The differences are reflected

in the inverse width of the curves, plotted as a function of 2|K |. In case of
no in-medium mass modification, the squeezed correlation functions would
be unity for all values of 2|K | in both plots.
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Fig. 1. In part (a), the squeezed-pair correlations are shown, illustrating the effects

of flow and finite emission times. Part (b) shows the response of the BBC function

to the size of the squeezing region, with R = 7 fm (top) and R = 3 fm (bottom).

In the case of the squeezed correlations of K+K− pairs, we show in
Fig. 2(a) results for the generated momenta of the pairs within the narrow
interval |K

12
| ≤ 10 MeV/c, by plotting the squeezed correlation, Cs(m∗,q12

)
versus m∗ and q

12
. For the kaons, we can fix the value of the shifted mass

to be m∗ ≈ 650 MeV, corresponding to one of the maxima in Fig. 2(a),
and then proceed similarly to what was done in the φφ case. The result is
shown in Fig. 3 of Ref. [7]. Also in this case the intensity of the squeezed
correlation would be large enough to be searched for experimentally.

Next, we investigate how the behavior of the identical particle corre-
lations could be affected in case of in-medium mass modification, since
the femtoscopic correlation function also depends on the squeezing factor,
fi,j(m,m∗). The HBT correlation function is obtained by inserting the
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Fig. 2. Part (a) shows the behavior of the correlation function with the in-medium

modified mass and the relative momentum of the pair. Part (b) shows the HBT

correlation function when squeezing and radial flow are either absent or present.
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together with the expression for the spectrum, into Eq. (1). We use the case
of identical K±K± pairs as illustration, as seen in Fig. 2(b). The investi-
gation is extended to both the cases of instant emission (∆t = 0) and finite
emission (∆t = 2 fm/c), in which case the third term in Eq. (1) is multiplied
by F(∆t) = [1+(ω1−ω2)

2∆t2]−1. In this figure, we can see the well-known re-
sult corresponding to the narrowing of the femtoscopic correlation function
with increasing emission times, as well as the broadening the curve with
flow in the absence of squeezing, as expected. However, if the squeezing
originated in the mass-shift is present, its effects tend to oppose to those of
flow (for large |K|, it practically cancels the broadening of the correlation
function due to flow), another striking indication of mass-modification, even
in HBT!

3. Conclusions

In the present work we suggest an effective way to search for the back-to-
back squeezed correlations in heavy ion collisions at RHIC, and later at LHC
energies, by investigating the squeezed correlation function, Cs(k1,k2) =
Cs(K,q), in terms of 2K

12
= (k

1
+k

2
), for different values of q

12
= (k

1
−k

2
).

We showed that, in the presence of flow, the signal is stronger over the
momentum regions analyzed in the plots, suggesting that flow may help to
effectively discover the BBC signal experimentally. Another important point
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that we find, within this simplified model and in the non-relativistic limit
considered here, is that the squeezing would distort significantly the HBT
correlation function as well, tending to oppose to the flow effects on those
curves, practically neutralizing it for large values of |K|.

The analysis in terms of the variable 2K would not be suited for a gen-
uine relativistic treatment. In this case, however, a momentum variable
could be constructed, as Qback = (ω1 − ω2,k1 + k2) = (q0, 2K). In fact,
it would be preferable to redefine this variable as Q2

bbc = −(Qback)
2 =

4(ω1ω2−KµKµ), whose non-relativistic limit is Q2
bbc → (2K)2, as discussed

in Ref. [6, 7]. Finally, it is important to emphasize that all the effects and
signals discussed here would exist only if the particles analyzed had their
masses modified by interactions in the hot and dense medium.
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