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We investigate thermalization of a longitudinally expanding color glass
condensate with Bjorken boost invariant geometry within microscopical
parton cascade BAMPS. Our main focus lies on comparison of thermal-
ization processes, observed in BAMPS with the picture suggested in the
“Bottom–Up” scenario. Contrary to the “Bottom–Up” scenario, soft and
hard gluons thermalize at the same time. No significant increase of the net
gluon number is observed with both RHIC and LHC relevant initial con-
ditions. The time scale of thermal equilibration in BAMPS calculations is
of the order of α−2

s (lnαs)
−2Q−1

s . After this time the gluon system exhibits
nearly hydrodynamical behavior.

PACS numbers: 25.75.–q, 12.38.Mh, 05.60.–k, 24.10.Lx

1. Introduction

Applicability of ideal hydrodynamics [1] to explanation of large values of
the elliptic flow measured in Au+Au collisions at RHIC [2, 3] implies that
a thermal equilibration is achieved on a short time scale and the shear vis-
cosity to entropy density ratio of the produced medium is small. Moreover,
the thermal state is maintained until hadronisation. A study of the mecha-
nisms which drive the quark-gluonic system to equilibrium is thus of great
interest. Coherent quantum effects like color instabilities [4] may play an
important role at the very early stage when the system is super dense. As
the system becomes more dilute due to the strong longitudinal expansion,
perturbative QCD (pQCD) bremsstrahlung processes become essential for
momentum isotropisation of quark–gluon matter [5, 6] and are responsible
for the low value of the shear viscosity to entropy density ratio [8, 9].

As a possible initial state of the quark–gluon matter produced in high
energy heavy ion collisions Color Glass Condensate (CGC) has been pro-
posed [10, 11] and numerous studies of its evolution have been done. Ther-
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malization of an idealized form of color glass condensate [12] was studied
in [13] by solving the Landau transport equation. Same topic has been in-
vestigated in [14] using the relaxation time approximation to simplify the
collision term in the Boltzmann equation. A conclusion from these two
studies is that pQCD gg → gg collisions are not sufficient to achieve ther-
mal equilibrium. The importance of inelastic gg ↔ ggg processes has been
emphasized in the so called “Bottom–Up” scenario [15] of thermalization.
The main aspect of the “Bottom–Up” scenario is the difference between the
timescales of thermalisation of ‘soft’ and ‘hard’ gluons. In the “Bottom–Up”
scenario ‘soft’, i.e. gluons with transverse momenta pT < QS, where QS is the
characteristic scale of the CGC, are produced in pQCD gg → ggg processes
and thermalize first. “Bottom–Up” scenario predicts a strong parametric en-
hancement of ‘soft’ gluon number. Thermalization of ‘hard’ gluons proceeds
on a longer time scale as they loose their energy to the thermal bath built
up by ‘soft’ particles. A parametric time scale for overall thermalization is

given by τth ∼ α
−13/5
s Q−1

s [15].
In this work we present our results on thermalization of both simple CGC

proposed in [12] and already discussed by us in [7] and the so called KLN
form of CGC [16,17]. We will show that using both forms of a CGC [12,16,17]
with the BAMPS partonic cascade [5, 6] a thermalization on a short time
scale (1 fm/c) is observed. The η/s ratio, extracted from BAMPS calcu-
lations with a CGC initial condition is small, which explains the observed
quasi ideal hydrodynamic behavior at later (around 1 fm/c) times.

2. Parton cascade BAMPS

We will use the on-shell partonic cascade BAMPS presented in [5, 6] to
solve the Boltzmann Equation for gluons. BAMPS has been recently used
to study various topics on gluonic matter produced in Au+Au collisions
at RHIC energy: thermalization has been studied in [5–7], elliptic flow v2

in [18, 19], the energy loss in [20] and viscous shock waves are presented
in [21].

In this work we investigate a Bjorken-type one-dimensional (0+1) ex-
pansion [22] in a tube with a radius of R = 5 fm. The transverse wall of
the tube serves as a boundary to mimic one-dimensional (longitudinal) ex-
pansion. Gluons are simply reflected on the cylindrical wall. Longitudinally,
space is divided in ∆z bins, which have the same width in the space time
rapidity η = 1

2
ln((t + z)/(t − z)). ∆η = 0.2 is set to be a constant for

all ∆z bins. The initial gluons are put into rapidity interval [−3; 3]. The
results presented in this paper are extracted from the central rapidity bin
η ∈ [−0.1 : 0.1], which is the local rest frame of the medium.
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Gluon interactions included in BAMPS are elastic pQCD gg → gg scat-
terings as well as pQCD inspired bremsstrahlung gg ↔ ggg. The details
on the matrix elements applied to calculate differential cross sections and
collision probabilities are given in [5]. The strong coupling αs is a constant
in our calculations.

3. CGC initial conditions

We apply the initial condition a gluon distribution of a color glass con-
densate [10]. The theory of a color glass condensate is given by the satu-
ration picture, which assumes that the parton distribution in a hadron or
nuclei saturates at high energies as a result of competition between QCD
bremsstrahlung and annihilation processes. The initially present gluons are
produced by the nonperturbative part of the nucleus–nucleus interaction.
The CGC is characterized by the saturation momentum scale QS, on which
the parton density is saturated, i.e. grows only slow (logarithmically). We
will use two different types of CGC initial conditions, which will be discussed
in the following sections.

3.1. Simplified Color Glass Condensate

This form of CGC has been used in our previous work [7] as well as
in [13] and introduced in [12]. It is given by the boost-invariant form

f(x, p) =
c

αsNc

1

τ
δ(y − η)Θ

(

Q2
s − p2

T

)

. (1)

We take Nc = 3 for SU(3). The factor c in (1) is the “parton liberation
coefficient” which accounts for the transformation of virtual partons in the
initial state into on-shell partons in the final state, as introduced in [16].
The value of c for SU(3) gauge theory is c ≃ 0.4 [23, 24]. The initial gluons
are produced at eigentime τ ∼

1
QS

. The initial particle density in this CGC

approach is given by [12,13]

1

πR2

dN

dη
= c

N2
c − 1

4π2αsNc
Q2

s . (2)

For the application of the Boltzmann equation, we need the phase space
density to be smaller than unity. If phase space density is high, Bose en-
hancement factors (1 + f) should be considered in the collision integrals,
which is not done in BAMPS model. Hence, as long as f is larger than 1
we underestimate the collision rates. With (1) initial transverse spectrum is
a theta function, i.e. the momentum region pT > QS is empty and a sharp
edge at pT = QS exists. This initial condition is clearly not realistic since
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one would expect some smooth transition between the two momentum re-
gions separated by QS. We will present results with QS = 2, 3, 4 GeV and
different values of αs. We will refer to this type of initial condition as CGC1.

3.2. KLN approach to Color Glass Condensate

Here we use the CGC initial condition of the form implemented in [17].
This form of CGC is based on the so called KLN approach [16]. The satura-
tion scale QS is now dependent on the momentum fraction x of the gluons.
For p2

T < Q2
S gluon distribution is saturated and increases only logarithmi-

cally for small pT. For p2
T > Q2 the distribution is given by a power law

f(pT) ∼ 1/p4
T. We will present results for Au+Au collision at 200 AGeV

center of mass energy. We will refer to this type of initial condition as CGC2.

4. Results: Thermalization of a CGC

Here we discuss thermalization of CGC in our partonic cascade BAMPS
and compare the results with the predictions of the “Bottom–Up” scenario.
To estimate thermalization times we show the scaled temperature T τ1/3 in
Fig. 1(a)–(b) (with T = e/3n, e denoting the energy and n the particle
densities). If this value saturates, the system is (almost) thermalized, since
T ∼ τ−1/3 behavior is ideal hydrodynamic behavior and even dissipative
systems relaxate at late times to ideal hydrodynamics. The thermalization
times t(QS) with CGC1 initial condition from Fig. 1(a) read as follows:
tth(2 GeV) = 1.2 fm/c, tth(3 GeV) = 0.75 fm/c, tth(4 GeV) = 0.55 fm/c .
For the fixed QS = 3 GeV and αs = 0.1–0.3 (Fig. 1(b)) t(αs) are: tth(0.1) =
1.75 fm/c, tth(0.2) = 1 fm/c, tth(0.3) = 0.75 fm/c . From these thermaliza-
tion times we can conclude, that the dependence of thermalization time on

αs tth ∼ α
−13/5
s Q−1

s predicted by “Bottom–Up” scenario is wrong and reads
in BAMPS tth ∼ α−2

s (ln αs)
−2Q−1

s . This is due to inelastic processes, as has
been discussed in [6]. In Fig. 1(a) we observe, that CGC2 initial condition
behaves similar to CGC1 with QS ≈ 3 GeV and thermalization proceeds
even faster (with αs = 0.3).

The evolution of the particle multiplicity dN/dη is shown in Fig. 1(c).
No increase of total particle number can be observed, in contrast to the
“Bottom–Up” scenario. Instead, if using CGC1 initial condition, we observe
particle annihilation at early times. During this time hard particles with
pT > QS are produced, since they are missing in the initial distribution.
Using CGC2 initial condition, where the hard sector is not empty initially,
we observe only slight increase of particle number. The transverse spectra
from simulations with CGC1 initial condition are shown in Fig. 1(d). The
thermal fits are calculated using the distribution function
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Fig. 1. (a) Temperature scaled by τ1/3 for αs = 0.3, QS = 2–4 GeV and

AuAu@200GeV initial condition. (b) Temperature scaled by τ1/3 for QS = 3 GeV,

AuAu@200GeV initial condition, αs = 0.1–0.3. (c) Particle multiplicity dN/dη in

central rapidity bin η ǫ[−0.1 : 0.1] for constant αs = 0.3. (d) Transverse spectra

at different times and thermal fits for simulations with CGC1 initial condition,

QS = 3 GeV, αs = 0.3.

f(x, p) = gλe−E/T

(

1 + C0π̄

(

p2
Z −

1

2
p2
T

))

, (3)

where λ = n/neq denotes the fugacity, π̄ = T33−T eq
33 with T eq

33 = 1
3
e and C0 =

1
8nT 3 . n, e, T33 are calculated by BAMPS. This form of distribution function
models one dimensional hydrodynamic evolution of a viscous medium close
to equilibrium, which has been studied recently in [9]. Fig. 1(d) shows a very
good agreement between BAMPS results and fit already at t = 0.5 fm/c.
Both ‘hard’ and ‘soft’ sectors are almost thermal at t = 0.5 fm/c, i.e. we do
not observe any significant difference on thermalization time scales.

Authors thank H.J. Drescher for providing the numerical code to calcu-
late the initial condition.
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