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We study the energy dissipation in an one-dimensional expansion of
gluon matter with Bjorken boost invariance and the formation of shock
waves in viscous gluon matter by employing a microscopic parton cascade
as well as by solving the Israel–Stewart hydrodynamic equations. Compar-
isons between the present results from the two approaches are reported.
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1. Introduction

Recently, a great interest is taken in estimating the shear viscosity of
the quark gluon plasma (QGP) created in heavy ion collisions at the BNL
Relativistic Heavy Ion Collider (RHIC). Attempts are made by employing
perturbation QCD based parton cascade calculations [1] as well as by solving
the second order Israel–Stewart (IS) hydrodynamic equations [2]. In both
approaches the ratio of the shear viscosity to the entropy density η/s of the
QGP is extracted by matching the experimental data on the elliptic flow v2

[3] measured at RHIC. A rough agreement is achieved with the conclusion
of 0.08 < η/s < 0.4, although details on initial conditions, hadronization,
dissipation in hadronic cascade, and freeze-out conditions should be carefully
examined to make fair comparisons.

Transport models provide an excellent tool to test the applicability limit
of the IS hydrodynamic equations [4,5]. In the rest of the paper, we present
further comparisons between the transport and hydrodynamic calculations
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considering two examples: The one is the energy dissipation in an one-
dimensional expansion, and another concerns the formation of relativistic
shock waves.

The transport model that we use is the parton cascade BAMPS (Boltz-
mann Approach of MultiParton Scatterings), which has been developed by
two of us [6]. BAMPS solves the Boltzmann equations

pµ∂µf(x, p) = C(x, p) (1)

for on-shell quarks and gluons with full detailed balance, especially for mul-
tiple processes. Calculations using BAMPS showed that the pQCD gluon
bremsstrahlung and its backreaction gg ↔ ggg are essential for fast thermal-
ization [6], small η/s ratio [7], large elliptic flow buildup [1], and a reasonable
energy loss of high energy gluons [8] in a consistent manner.

2. Dissipation in an one-dimensional expansion

The early stage in ultrarelativistic heavy ion collisions can most probably
be described by a longitudinal expansion along the beam axis. We mimic
such an expansion of gluon matter in a 3-dimensional tube with a fixed
radius and an infinite length. The details of the numerical setup can be
found in Ref. [9]. The initial gluon system is assumed to possess Bjorken
boost invariance and is further assumed to be in thermal equilibrium with
an energy density of e0 = 0.3 GeV4 at τ0 = 0.4 fm/c.

The shear viscosity is extracted by means of f(x, p) via

η = 4n
−T 2π̄

P 33 − P 00/3
, (2)

where n is the local gluon density, T = e/(3n) is the temperature, π̄ =
T 33

− e/3 denotes the shear component, and T µν =
∫

dwpµpνf(x, p) and
Pµν =

∫

dwpµpνC[f(x, p)] with dw = d3p/p0/(2π)3. f(x, p) is obtained by
solving the Boltzmann equation (1) with BAMPS. Eq. (2) is derived using
the Grad’s method to the second order [5, 10]. The symbols in Fig. 1 show
the shear viscosity scaled by T 3.

Because η/T 3 is approximately constant in time (stronger effect is seen
when using small QCD coupling αs = 0.1), we set η/T 3 to be time indepen-
dent (solid lines) as a simplified input to solve the IS hydrodynamic equa-
tions. Approximately one obtains η/s ≈ η/(4neq) ≈ (π2/64)(η/T 3) = 0.83,
0.18, and 1/4π for αs = 0.1, 0.3, and 0.6, respectively. neq denotes the gluon
number density at thermal equilibrium.
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Fig. 1. Shear viscosity scaled by T 3 at the central slice (z = 0).

For the one-dimensional expansion with Bjorken boost invariance the IS
equations are reduced to

dn

dτ
= −

n

τ
, (3)

de
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= −
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, (4)
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β2τ
, (5)

where β2 = 9/(4e) and τπ = 2β2η denotes the relaxation time. The solutions
of e(τ) with the η/s inputs are shown in Fig. 2 and compared with those
obtained from BAMPS calculations. Energy density decreases with time
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Fig. 2. Local energy density at the central slice. The results for αs = 0.3(0.6) are

amplified by a factor of 2(3) to make clear comparisons.
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due to the work done by pressure during the longitudinal expansion [11].
Perfect agreements between the transport and hydrodynamical calculations
are seen for small η/s values corresponding to αs = 0.3 and 0.6, whereas
moderate difference is observed for αs = 0.1 at late times. The difference
might indicate the break down of the IS hydrodynamics, as expected to
occur for larger η/s. However, we must note that the shear viscosity in both
calculations is not exactly the same (compare the red symbols with the red
line in Fig. 1). Further comparisons using the same value of η are under
way.

In general, an expanding viscous medium cannot maintain chemical equi-
librium [5]. Fig. 3 shows the gluon fugacity λ = n/neq, which quantifies the
extent of out of chemical equilibrium. The larger the η/s, the faster is the
deviation from the initial chemical equilibrium. Moreover, large difference
is visible between the results from the transport and hydrodynamic calcula-
tions. This is mainly due to the reason that gg ↔ ggg processes, which are
included in BAMPS, drive the system toward chemical equilibrium again,
whereas particle number conservation is assumed in the IS equation (3). To
make more detailed comparisons, the present IS equations should in principle
be improved by adding terms to describe chemical equilibration.
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Fig. 3. Gluon fugacity in the central slice.

3. Shock waves in viscous matter

At RHIC, significant and exciting structures in the two-particle and
three-particle correlations of associated particles of a high energy jet have
been observed, which might indicate the conical emission of propagating
Mach cones created by a jet crossing the expanding medium [12]. Important
and relevant questions are whether relativistic shock waves can be observed
in parton cascade simulations and how finite (shear) viscosity will alter the
shock formation.
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To answer these questions, we consider the relativistic Riemann problem:
Matter initially possesses a discontinuity in pressure at a particular plan
(e.g. at z = 0). The ideal hydrodynamic solution of the Riemann problem
represents a propagating relativistic shock, as shown by the solid curve in
Fig. 4. Assuming only isotropic binary collisions the shear viscosity is given
by η = 0.4enσ [13], where σ denotes the cross section. The IS equations,
with shear viscosity only, are given by

∂tT
00 + ∂z

(

vT 00
)

= −∂z(vP + vπ̄) , (6)

∂tT
0z + ∂z

(

vT 0z
)

= −∂z(P + π̄) , (7)

γ∂tπ̄ + γv∂zπ̄ =
1

τπ

(πNS − π̄) −
π̄

2

(

θ + D ln
β2

T

)

, (8)

where θ ≡ ∂µuµ and D ≡ uµ∂µ with uµ = γ(1, 0, 0, v). v denotes the
collective velocity in z-direction and πNS = −(4/3)ηθ is the Navier–Stokes
value of the viscous pressure.
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Fig. 4. Pressure normalized by the initial value as a function of the position at a

time of 3.2 fm/c.

Results obtained from the BAMPS and the IS hydrodynamic calculations
[14] for two η/s values are shown in Fig. 4. Viscous effect changes the shock
to a smooth and less abrupt shape. For small η/s a characteristic plateau
behind the shock front is still visible, whereas for larger η/s the structure
resembles that of diffusion process.

We see a nice agreement between the results from the transport and
hydrodynamic calculations for small η/s, while large difference is present
for large η/s. Viscous hydrodynamics can be well described by the present
IS equations, only if the microscopic scales like the mean free path
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λmfp = 1/(nσ) are much smaller than the macroscopic dimensions. This
condition can be expressed by Kn ≪ 1, where Kn is the Knudsen number
defined as Kn ≡ λmfp∂µuµ. Once a shock is built up, ∂µuµ becomes large
at the shock front. For large η/s values, i.e., for large λmfp, the Knudsen
number is also large at the shock front. Thus, the application of the IS
hydrodynamics there is questionable. This drawback is not present in the
microscopic transport calculations.
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