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It is shown how the initial azimuthally asymmetric flow develops from
the free-streaming + sudden equilibration approximation to the early dy-
namics in relativistic heavy-ion collisions. Consequences for the hydrody-
namics and physical results are discussed.
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We present a description of the early-stage dynamics in relativistic heavy
ion collisions, where the free-streaming (FS) of partons is followed by a sud-
den equilibration (SE) to a thermalized phase, providing initial conditions
for the subsequent hydrodynamic evolution. This FS + SE approximation
has been proposed by Kolb, Sollfrank, and Heinz [1]. It has been fur-
ther discussed in the context of the isotropization problem by Jas and
Mrówczyński [2], as well as used to analyze the early development of col-
lective flow by Sinyukov, Gyulassy, Karpenko, and Nazarenko [3–5]. In this
talk we point out the emergence of the initial azimuthally asymmetric flow
from FS + SE.

The cartoon of the approach is given in Fig. 1. Rather than assuming
a gradual transition from an inequilibrated partonic stage to a thermalized
system (top panel), in FS + SE one approximates this early stage of evolu-
tion with free streaming followed by a sudden equilibration (bottom panel).
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Note that this is analogous to the standard treatment of the freeze-out at
the end of the hydrodynamic evolution, where the continuous decoupling
of hadrons (see the papers by Sinyukov and Knoll in these proceedings) is
approximated with a sudden Cooper–Frye freeze-out.

Fig. 1. Evolution of the system formed in relativistic heavy-ion collisions, consist-

ing of partonic free streaming, equilibration, hydrodynamics, freeze-out, and free

streaming of hadrons to detectors. Top: equilibration and freeze-out occur grad-

ually. Bottom: the approximation of the sudden equilibration and instantaneous

freeze-out.

Ever since the FS + SE has been proposed, it has been generally thought
that it unavoidably reduces the elliptic flow, which develops hydrodynami-
cally due to the azimuthal asymmetry of the initial density profile for non-
central collisions. Admittedly, FS decreases the spatial azimuthal asymme-
try of the system with time. We carefully reexamine this argument. The
point is that while FS alone obviously cannot generate azimuthal asymmetry
in the momentum distribution, due to the well-known fact that interactions
among produced particles are needed to generate v2, the SE in fact does
the job. This is because SE is dynamical in nature, resulting in an abrupt
change, due to interactions, of the energy-momentum tensor of the system
into a diagonal form (in the reference frame of the fluid element) of perfect
hydro.

One may interpret the FS + SE approach as an approximation to vis-
cous hydrodynamics. Instead of considering a complicated viscous system
far from the thermal equilibrium, where the partonic cross-section has a fi-
nite value, one initially treats the partons as free, and later supplies them
with a large cross-section which results in an instantaneous equilibration of
the system and transition to perfect hydrodynamics. Such an interpreta-
tion works when viscosity decreases with time, or equivalently, the partonic
cross-section increases. Confinement effects, which switch on as the dis-
tance between the partons increases, provide a mechanism for this behavior
and support this interpretation, although a convincing solution of the early
thermalization or isotropization problems is still missing despite many the-
oretical efforts.
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Here we analyze a boost-invariant system with an initial Gaussian trans-

verse energy profile, n(x0, y0) = exp
(

− x2

0

2a2 − y2

0

2b2

)

, where the widths a and

b depend on centrality and are obtained with GLISSANDO [6]. We intro-

duce the initial, τ0 =
√

t20 − z2
0 , and final, τ =

√
t2 − z2, proper times

of free streaming, as well as the space-time rapidities η0 = 1

2
log t0−z0

t0+z0
and

η = 1

2
log t−z

t+z
. Elementary kinematics, following from the fact that a mass-

less parton moves along a straight line with the velocity of light and a four
momentum pµ = (pT cosh Y , pT cos φ, pT sinφ, pT sinhY ), relates the initial
and final coordinates of the parton:

τ sinh(η − Y ) = τ0 sinh(η0 − Y ) , x = x0 + d cos φ , y = y0 + d sin φ ,

d =
t − t0
cosh

Y = τ cosh(Y − η) −
√

τ2
0 + τ2 sinh2(Y − η) . (1)

Consequently, the phase-space densities of partons at the proper times τ0

and τ are related,

d6N(τ)

dY d2pTdηdxdy
=

∫

dη0dx0dy0

d6N(τ0)

dY d2pTdη0dx0dy0

(2)

×δ

(

η0−Y −arcsinh

[

τ

τ0

sinh(η−Y )

])

δ(x−x0−d cos φ)δ(y−y0−d sin φ) .

We assume for simplicity a factorized form of the initial parton distribution,

d6N(τ0)

dY d2pTdη0dx0dy0

= n(x0, y0)F (Y − η0, pT) . (3)

In Ref. [7] we show that to a very good accuracy F (Y − η0, pT) ∼ δ(Y − η).
Then, the energy-momentum tensor of the system at η = 0 is

T µν = A

2π
∫

0

dφn (x − (τ − τ0) cos φ, y − (τ − τ0) sin φ)

×









1 cos φ sin φ 0
cos φ cos2 φ cos φ sin φ 0
sin φ cos φ sin φ sin2 φ 0

0 0 0 0









, (4)

where A is a constant from the pT integration. Next, at each point we pass
to the local reference frame in which the T0i components of the energy-
momentum tensor vanish. The four-velocity needed for the appropriate
boost is found from the condition T µν(x, y)uν(x, y) = ε(x, y)gµνuν(x, y),
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where ε is the energy density in the local rest frame. In the left part of
Fig. 2 we show the profile of ε together with the energy-momentum tensor
in the local rest frame (in units of ε), displayed at a few points. We note
that it has a structure very close to the case of the perfect transverse hydro-

dynamics of massless particles [8], where the transverse pressure is equal to
ε/2. Small departures from this form, present in our case, have the struc-
ture of the shear tensor used to include the viscosity effects in transverse
hydrodynamics [9].
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Fig. 2. Left: Energy–density contours with the energy–momentum tensor in the

local rest frame (in units of ε) shown at a few points (dots). Right: the profile of

the transverse velocity, v =
√

v2
x

+ v2
y
, in units of c.

The right part of Fig. 2 shows the transverse velocity profile. We note
that it is azimuthally asymmetric (stronger in the direction of the impact
parameter), which simply reflects the original geometry. In fact, for low
free-streaming times and close to the origin one finds v = −1

3
(τ − τ0)∇n/n.

Thus the space — collective velocity correlations are induced.
Following Ref. [1], we now consider a convenient measure of the momen-

tum anisotropy, ǫp = (〈Txx〉 − 〈Tyy〉)/(〈Txx〉 + 〈Tyy〉), where brackets denote
the spatial integration. In the FS phase identically ǫp = 0, as no interactions
have occurred. Then, at the proper time τ , SE occurs. As a result, the energy
momentum tensor in the local frame is replaced, due to interactions, with
a diagonal form of the perfect hydrodynamics: T µν → diag(ε, ε/3, ε/3, ε/3)
for the isotropic, or T µν → diag(ε, ε/2, ε/2, 0) for the transverse hydro. It is
this Landau matching condition which causes ǫp to jump to a nonzero value.
We show the result in Fig. 3.
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Fig. 3. Left: The schematic development of the partonic elliptic flow ǫp from

FS + SE. Right: the value of the generated momentum asymmetry ǫp plotted

as a function of the proper time when the Landau matching is imposed. The dot-

ted (dashed) line corresponds to matching to isotropic (transverse) hydro, while

the solid line shows the results of hydrodynamics only, with no FS present. The

top curve shows the spatial asymmetry ǫ, which decreases with time.

Finally, we compare the physical results obtained with (isotropic) hydro-
dynamics only (starting at an early proper time τ0 = 0.25 fm) to the results
obtained with FS from τ0 to τ = 1.0 fm, followed by SE and (isotropic) hy-
dro. We use the realistic equation of state [11]. The statistical hadronization
is carried out with the help of THERMINATOR [12]. In Fig. 4 we notice strik-

Fig. 4. The pion HBT radii Rside, Rout, Rlong, and the ratio Rout/Rside for central

collisions. The darker (lighter) lines describe the results with (without) FS + SE.

The data from Ref. [10].
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ingly similar results for the two considered cases, not to mention the very
good description of the HBT data, including the infamous ratio Rout/Rside.
The similarity and agreement is similar for the pT-spectra and v2 [7, 11], as
well as for other centrality classes. In Ref. [13] we have also shown that our
model calculations reproduce very well the azHBT pion interferometry.

A practical conclusion from our study is that the inclusion of FS + SE
may be used to delay the start of perfect hydrodynamics to “comfortable”
times of about 1 fm/c. The physical results remain practically unaltered,
since the decrease of the spatial anisotropy with time, resulting in milder
hydrodynamic development of v2, is intertwined with the buildup of the
initial azimuthally asymmetric flow. Recall that in some studies, in order
to obtain a proper description of the particle spectra and femtoscopy, hydro
was used with initialization times of 0.1 fm/c [14, 15] (with viscous hydro).
Recently, the phenomenological relevance of the initial flow, first examined
in hydrodynamics in Ref. [16], has been emphasized in Refs. [15,17] (see also
the contribution of Pratt to these proceedings).

Two of us (W.B. and W.F.) are grateful to Piotr Bożek and Stanisław
Mrówczyński for useful conversations.
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