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A very early start up time of the hydrodynamic evolution is needed
in order to reproduce observations from relativistic heavy-ion collisions ex-
periments. At such early times the systems is still not locally equilibrated.
Another source of deviations from local equilibrium is the viscosity of the
fluid. We study these effects at very early times to obtain a dynamical
prescription for the transition from an early 2-dimensional expansion to
a nearly equilibrated 3-dimensional expansion at latter stages. The role of
viscosity at latter stages of the evolution is also illustrated.

PACS numbers: 25.75.–q, 25.75.Dw, 25.75.Ld

1. Introduction

Recent hydrodynamic calculations modelling heavy-ion collisions can
reproduce experimentally measured soft observables: transverse momen-
tum spectra, collective elliptic flow and Hanbury-Brown–Twiss correlation
radii [1, 2] if the initial time of the collective expansion is pushed down to
τ0 = 0.25 fm/c. This raises the question about the applicability of perfect
fluid hydrodynamics at such small proper times. The mechanism of the
formation of the dense matter in the fireball is not understood up to now.
However, in all imaginable scenarios some time is required for the formation
of the matter constituents and for their subsequent equilibration. In hy-
drodynamics, which is a coarse-grained description, the dynamics is defined
by the local thermodynamical quantities, such as the energy density and
pressure. The details of the underlying microscopic degrees of freedom are
irrelevant. Although formally, perfect fluid thermodynamics requires that
local thermal equilibrium is maintained, phenomenological applicability of
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the hydrodynamics in the description of heavy-ion collisions starts as soon
as the pressure becomes approximately isotropic. The dense matter in the
fireball can be described by the hydrodynamic model after the time when the
effective pressure in the system is similar in the longitudinal and transverse
directions. Complete kinetic equilibrium is not required, since the model
has other sources limiting the robustness of its predictions, such as the un-
certainties in the high temperature equation of state, in the initial density,
and in the freeze-out procedure.

When the deviations of the energy momentum tensor T µν from its form
in a perfect fluid T µν

0
T µν = T µν

0 + πµν (1)

is small the evolution can be formulated as the hydrodynamics of a viscous
fluid [3–8]. But, in the very early evolution the initial anisotropy of the
pressure is the main contribution that makes the matter to evolve differently
from the perfect fluid [9]. These early dissipative effects are strong, since
the initial pressure anisotropy is large.

2. Early dissipation

The initial anisotropy of the pressure and its relaxation towards the per-
fect fluid value cannot be reliably described with the second order Israel–
Stewart relativistic viscous fluid formalism [10]. The applicability of the
viscous fluid equations requires πµνπµν ≪ p2, where πµν is the stress ten-
sor. Instead, we propose an effective description of the transition from the
anisotropic system with a two-dimensional pressure to the three-dimensional
hydrodynamics [9]. The energy momentum tensor is the sum of the perfect
fluid energy momentum tensor and a stress correction

T µν =









ǫ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p









+









0 0 0 0
0 π/2 0 0
0 0 π/2 0
0 0 0 −π









. (2)

The dissipative correction π quantifies the pressure anisotropy in the trans-
verse and longitudinal directions. A similar form of the stress tensor ap-
pears in the hydrodynamics with shear viscosity for the case of the Bjorken
flow [4]. For large stress corrections the second order viscous hydrodynam-
ics equations for π cannot be reliably applied. Instead an effective equation
describing the relaxation of the pressure asymmetry is used. Neglecting the
shear viscosity we take

π(τ) = π(τ0)e
−(τ−τo)/τπ , (3)

where τπ is a phenomenological parameter, in principle unrelated to the
relaxation time in the Israel–Stewart equation for the stress-tensor.
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Fig. 1. Relative increase of the entropy from dissipative processes in the early

stage of the collision for several initial times τ0 of the evolution. The dotted line

represents the entropy production from the Navier–Stokes shear viscosity tensor

with η = 0.1 s, the dashed line represents the increase of the entropy obtained

from the second order viscous hydrodynamic equation with η = 0.1 s, τπ = 6η/T s,

and Π(τ0) = 4η

3τ0

, and the solid represents the relative entropy production due to

the stress tensor term of the form Π(τ) = p(τ0) exp(−(τ − τ0)/τ0) [9].

The dynamics is followed using a numerical solution of the relativistic
hydrodynamic equations

∂µT µν = 0 (4)

with some assumed symmetry of the fireball. Entropy production from the
dissipative relaxation of the pressure can be estimated in the Bjorken so-
lution. Depending on the ratio τπ/τ0, up to 30% increase of the entropy
is possible in the early phase. This additional entropy forces a retuning of
the initial conditions of the evolution to reproduce final particle multiplic-
ities. After this retuning is taken into account, most of the effect of the
early dissipation on final observables is cancelled. However, we note that
the transverse momentum spectra of final particles are harder if the early
dissipative phase is present.
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Fig. 2. π+ (left) and proton (right) spectra from hydrodynamic calculations (solid

and dashed-dotted line are for the ideal hydrodynamics starting at τ0 = 1 fm/c

and τ0 = 0.5 fm/c, respectively. The dotted and dashed lines are for the dissipative

evolution corresponding to τ0 = 1 fm/c and τ0 = 0.5 fm/c.). Data are from the

PHENIX Collaboration [11] for most central events (0–5%) [9].
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3. Dissipation and viscosity

We use relativistic hydrodynamics with viscosity [10]. The stress tensor
πµν is the solution of a dynamical equation

τπ∆µ
α∆ν

βπαβ + πµν = η 〈∇µuν〉 −
ηT

2τπ
πµν∂β

(

τπuβ

ηT

)

, (5)

where

〈∇µuν〉 = ∇µuν + ∇νuµ − 2
3∆µν∇αuα , (6)

∇µ = ∆µν∂ν (7)

with uµ the fluid velocity, ∆µν = gµν − uµuν , η the shear viscosity, τπ the
relaxation time. We solve the equations numerically in a boost-invariant
geometry with an azimuthally asymmetric expansion in the transverse di-
rections. We use η/s = 1/4π, τ0 = 0.25 fm/c and πzz(τ0)/2 = πxx(τ0) =
πyy(τ0) = p/2. Compared to other calculations of the hydrodynamic model
with viscosity, we use a small initial time and a large value of the initial stress
correction π(τ0). The model encompasses both the relaxation of the initial
pressure anisotropy, and the latter interplay of the relaxation and velocity
gradients. To compare with perfect fluid results again a retuning of the
initial energy density is necessary to reproduce the final multiplicity. The
additional transverse push is strong, it has a contribution from the initial
stage of large pressure anisotropy and another one due to the viscosity driven
stress corrections. As a consequence of the prolongated transverse push, the
transverse momentum spectra get even harder for the case when shear vis-
cosity and initial anisotropy are combined than for the case with only initial
dissipation. A similar effect is observed for the elliptic flow. The reduction
of the azimuthal asymmetry is the strongest for the viscosity + dissipation
scenario of the fluid evolution.
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Fig. 3. Ratio of the stress correction to the pressure at the center of the fireball for

two initial conditions for πxx.
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Fig. 4. Transverse momentum spectra (left) and elliptic flow coefficient (right)

for π+ for the perfect fluid (solid line), for the perfect fluid with initial pressure

anisotropy (dashed line) and for the viscous fluid (dashed-dotted line).

4. Summary

We discuss dissipative effects in the very early phase of the collective
development of the fireball created in relativistic heavy-ion collisions. The
initial anisotropy of the effective fluid pressure must dissipate. In the pro-
cess entropy is produced. After the retuning of the initial conditions to
accommodate for this additional entropy, the effect of the early dissipation
is most pronounced in the transverse momentum spectra of emitted parti-
cles. The initial dissipation of the pressure can be taken together with the
effect of the shear viscosity at latter stages. These corrections to the energy
momentum-tensor combine to increase the transverse push in the collective
flow and cause a significant reduction of the elliptic flow.
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