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A century after Paul Langevin’s landmark paper (1908) we derive here
an analog of the Itô formula for subordinated Langevin equation. We show
that for any subdiffusion process Yt with time-dependent force its image
f(t, Yt) by any function f ∈ C1,2(R+ × R) is given again by a stochastic
differential equation of Langevin type.

PACS numbers: 02.70.–c, 05.10.–a, 05.40.Fb, 02.50.Ey

1. Introduction

In 1905 A. Einstein initiated the modern study of random processes
with his breaking paper on Brownian motion [1]. Three years later, in 1908,
P. Langevin motivated also by a paper of Smoluchowski [2] devised an-
other description of Brownian motion [3] in the form of stochastic differential
equations (SDE). Works on Brownian diffusion by Einstein, Smoluchowski
and Langevin have inspired physicists and mathematicians over the whole
XX century. They still remain current and are widely referenced and dis-
cussed [4]. In the large family of stochastic processes used to model different
kinds of fluctuations, Brownian motion is beyond any doubt the brightest
star. It is the most extensively studied stochastic process and the foundation
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of the modern stochastic analysis. Even earlier, in 1900, Bachelier [5] bound
up Brownian motion with financial modeling, by introducing the first model
of stock price at the Paris Bourse. It was corrected later by Samuelson and
mastered in the famous Black–Scholes–Merton model [6, 7]. Since then, the
role of Brownian motion in modeling of various real-live phenomena of ran-
dom character became absolutely indispensable. The rigorous mathematical
treatment of Brownian motion is mostly due to N. Wiener, who proved many
properties of the trajectories of the Brownian particle. Further significant
contributions were done by Lévy, Kac, Doob, Itô and others [8].

However, in spite of many obvious advantages, models based on Brow-
nian diffusion fail to provide satisfactory description of many dynamical
processes [9–11]. The detailed empirical analysis of various complex sys-
tems shows that some of the significant properties of such systems cannot
be captured by the Brownian diffusion models [10]. One should mention
here such properties as: nonlinear in time mean-squared displacement, long-
range correlations [12], non exponential relaxation, heavy-tailed and skewed
marginal distributions, lack of scale invariance, discontinuity of the trajecto-
ries, and many others [9,13]. To capture such anomalous properties of phys-
ical systems, some different mathematical models need to be introduced. In
recent years one observes a rapid evolution in this direction, which results
in emerging of various alternative models, such as: fractional kinetic equa-
tions [9], fractional Fokker–Planck equations (FFPE), fractional Brownian
motions, generalized Langevin equations, jump-diffusion models, subordi-
nated Langevin equations [13–17]. The increasing accuracy of the empirical
measurements reveals different anomalous properties of the systems, which
cannot be satisfactorily described by the models based on Brownian diffu-
sion, so this leads to so called anomalous diffusions [13].

2. Subdiffusive Langevin equation

In this section we consider diffusion process {X(τ)}τ≥0 (with internal
time τ), given by the following subordinated Itô stochastic differential equa-
tion with respect to Brownian motion {B(τ)}τ≥0:

dX(τ) =
F (Uα(τ))

η
dτ + (2K)

1
2 dB(τ) , X(0) = 0 , (1)

where F (x) = −V ′(x) (F (x) is force and V (x) is an external potential), F ∈
C[0,∞) and {Uα(τ)}τ≥0, α ∈ (0, 1), denotes a strictly increasing

α-stable Lévy motion [18], with Laplace transform 〈e−kU(τ)〉 = e−τkα

. The
constant K denotes the anomalous diffusion coefficient, whereas η is the
generalized friction constant. Subordinated diffusion process (subdiffusion
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process) is defined as [16, 19]:

Y (t) = X(St) , (2)

where {St}t≥0 is the inverse-time α-stable subordinator of {Uα(τ)}τ≥0,
defined as follows [20, 21]:

St = inf{τ > 0 : Uα(τ) > t} (3)

and the process X(τ) is the solution of Eq. (1). Let us note that the p-th
moment of subordinator St is given by:

〈Sp
t 〉 =

Γ (p + 1)tpα

Γ (pα + 1)
, (4)

where p ≥ 1(p ∈ R) and Γ (a) =
∫ ∞

0 xa−1e−xdx is well known Gamma
function. Density p(x, t) of process (2) is given by the following FFPE
[13,15, 19]:

∂p(x, t)

∂t
=

[

−
F (t)

η

∂

∂x
+ K

∂2

∂x2

]

0D
1−α
t p(x, t) , (5)

where p(x, 0) = δ(x) and 0D
1−α
t , 0 < α < 1, is the fractional derivative of

Riemann–Liouville type [22], which does not commute with Fokker–Planck
operator and it is essential that it appears to the right of F (t). Therefore,
it does not modify the time-dependent force. Since in every jump moment
we have U(St) = t (see [23, 24]), process {Yt}t≥0 satisfies the following sub-
ordinated SDE [17]:

dY (t) =
F (t)

η
dSt + (2K)

1
2 dB(St) , Y (0) = 0 , (6)

where B(St) is subordinated Brownian motion. Moreover, processes St and
B(τ) are assumed to be independent.

3. Itô formula for subdiffusion

Now we derive the analog of Itô formula for the stochastic differential
{df(Y (t))}t≥0, where f ∈ C1,2(R+ × R) and Y (t) is defined in (2). This is
a very useful result for solution of new stochastic differential equations as
well as for simulation of subdiffusion processes, and Monte Carlo methods
for solving FFPE [19] and [17]. It is definitely a powerful tool for modelling
of anomalous diffusion processes.
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If f ∈ C1,2(R+×R) and {Y (t)}t≥0 is subdiffusion process defined in (2),
then process {f(Yt)}t≥0 satisfies the following SDE:

df(t, Yt) = ft(t, Yt)dt + (2K)
1
2 fx(t, Yt)dB(St)

+
(
η−1F (t)fx(t, Yt) + Kfxx(t, Yt)

)
dSt . (7)

The difference between this result and the classical Itô formula is that
here we have two new types of stochastic differentials for the inverse-time
α-stable subordinator S(t), defined in (3) and for the subordinated Brownian
motion B(St). Only when we take the deterministic subordinator St = t

then we obtain the classical Itô formula. For a case of a time-independent
function f(t, x) = f(x) and f ∈ C2(R), Eq. (7) reduces to the simpler form:

df(Yt) =
(
η−1F (t)fx(Yt) + Kfxx(Yt)

)
dSt + (2K)

1
2 fx(Yt) dB(St) . (8)

To obtain the above results we will use theory of semimartingales and
the Itô lemma for semimartingales [8,25]. Let us notice that the anomalous
diffusion process {Y (t)}t≥0 (defined in (2)) is a continuous semimartingale
(see [26]). From (6) we obtain the following representation of {Y (t)}t≥0

[16, 17]:

Yt =

t∫

0

η−1F (u)dSu + (2K)
1
2 B(St) , (9)

where
∫ t

0 η−1F (u)dSu is defined in the Stieltjes sense, because S(t) is contin-
uous finite variation process almost surely and F ∈ C[0,∞). Since B(St) is

continuous (local) martingale [26,27] and
∫ t

0 η−1F (u)dSu is continuous finite
variation process, so Y (t) is semimartingale. Now we use the Itô lemma for
semimartingale Y (t) (see [25]) and obtain:

df(t, Yt) = ft(t, Yt) dt + fx(t, Yt) dYt + 1
2 fxx(t, Yt) d[Y ]t , (10)

where [Y ]t is a quadratic variation [25, 26] of process Y (t). Moreover, from
representation (6) of Y (t), we have:

[Y ]t =




t∫

0

η−1F (u)dSu + (2K)
1
2 B(S)





t

=




t∫

0

η−1F (u)dSu





t

+ [(2K)
1
2 B(S)]t + 2




t∫

0

η−1F (u)dSu, (2K)
1
2 B(S)





t

. (11)
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At first let us notice that, for all 0 < t < ∞, [
∫ t

0 η−1F (u)dSu]t = 0, because
it is continuous finite variation process [25, 26].

Next we show that [
∫ t

0 F (u)dSu, B(S)]t = 0. Denote
∫ t

0 η−1F (u)dSu = Ŝt

and (2K)
1
2 B(St) = B̂t, let 0 = t0 < t1 < . . . < tmn

= t will be n-th partition
of the interval [0, t]. Let us notice that:

〈 mn∑

k=1

(
Ŝ

t
(n)
k

−Ŝ
t
(n)
k−1

)(
B̂

t
(n)
k

−B̂
t
(n)
k−1

)〉
=

mn∑

k=1

〈(
Ŝ

t
(n)
k

−Ŝ
t
(n)
k−1

)(
B̂

t
(n)
k

−B̂
t
(n)
k−1

)〉

=
mn∑

k=1

(〈
Ŝ

t
(n)
k

B̂
t
(n)
k

〉
−

〈
Ŝ

t
(n)
k

B̂
t
(n)
k−1

〉
−

〈
Ŝ

t
(n)
k−1

B̂
t
(n)
k

〉
+

〈
Ŝ

t
(n)
k−1

B̂
t
(n)
k−1

〉)
=0 ,

(12)

because for all 0 ≤ t < ∞ and 0 ≤ s < ∞, 〈ŜtB̂u〉 = 0 from [17]. Conver-
gence in L1 implies convergence in probability, therefore finally:

[Ŝ, B̂]t = lim
n→∞

mn∑

k=1

(
Ŝ

t
(n)
k

− Ŝ
t
(n)
k−1

)(
B̂

t
(n)
k

− B̂
t
(n)
k−1

)
= 0.

Hence [Y ]t defined in (11), takes the form:

[Y ]t = [(2K)
1
2 B(S)]t = 2K[B(S)]t . (13)

Now, we show that [B(S)]t = St. From Doob’s decomposition theorem for
submartingale B2(St) [26], we have:

B2(St) = Mt + 〈B(S)〉t ,

where Mt is martingale (for all t ≥ 0, 〈Mt〉 = C = const.) and 〈B(S)〉t is
called the compensating process. Moreover, 〈B(S)〉t is non-decreasing and
〈B(S)〉0 = 0 almost surely. Process B(St) is continuous (local) martingale
and 〈B2(St)〉 = 〈St〉 < ∞ (see [27] and (4)), therefore for all 0 ≤ t < ∞,
[B(S)]t = 〈B(S)〉t (see [28]). Hence we obtain:

〈St〉 = 〈B2(St)〉 = 〈Mt〉 + 〈〈B(S)〉t〉 = C + 〈〈B(S)〉t〉 = C + 〈[B(S)]t〉 .

Since we know from the definition and Doob’s theorem, that S0 = 0 and
[B(S)]0 = 0, hence C = 0. Therefore 〈St〉 = 〈[B(S)]t〉, so [B(S)]t = St in L1

and from the Chebyshev inequality [25] we obtain that this equality holds in
probability. Thus, we obtain finally that [Y ]t = 2KSt and Eq. (10) reduces
to the following form:

df(t, Yt) = ft(t, Yt)dt + fx(t, Yt)dYt + Kfxx(t, Yt)dSt .

The last formula in connection with Eq. (6) gives us the desired SDE (7).
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4. Conclusions

We have derived in this paper a new Itô formula for subdiffusion with
a time-dependent force. It reduces to the classical Itô formula only when we
consider the deterministic subordinator St = t. An advanced semimartin-
gales techniques was employed here. By stochastic representation for FFPE
via the corresponding subordinated Langevin equation [16, 17], one can ap-
ply this result as a basic tool for a Monte Carlo solution of more complicated
FFPE’s.
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