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Sommerfeld’s work on the low temperature theory of an ideal Fermi gas
cannot be easily extended nor generalized. By recognizing an underlying
logarithmic structure in ideal quantum gases, a new approach has been
developed and this work is reviewed with some new insights. A unified for-
mulation of the grand partition function provides several special solutions
such as thermodynamic equivalence in two dimensions and µ singularity in
null dimension.
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1. Introduction

Since the early days it has been customary to study the statistical me-
chanics of ideal Fermi and Bose gases separately. This is entirely natural as
these quantum particles obey different statistics. As we now know well, the
different statistics manifest themselves in different thermodynamic behav-
ior. Perhaps the most notable for these gases in 3d is: For a Fermi gas the
existence of the Fermi energy and, as a result, the zero point pressure; for
a Bose gas the occurrence of Bose–Einstein Condensation (BEC). It is thus
not surprising that statistical mechanics has divided itself into two branches,
one for Fermi and the other for Bose.

Given this history and the weight of evidence, probably no one seriously
entertained any idea of “unifying” the two branches of statistical mechanics.
But it could have happened much earlier, had the underlying mathematics
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was understood. The basic mathematical structure is logarithmic. When
logarithms are encountered e.g. log x say, a common tendency is to “de-log”
it by finding a way to replace it with dx/x. Such an elementary step will
often enable one to solve a log integral. But if a problem comes naturally
“enlogged”, this practice may keep us from seeing an underlying structure.
Knowing it might lead us to a big picture. One aim of this work is to
illustrate this point through the statistical physics of ideal quantum gases.

2. Fermi gas model and Sommerfeld

As is well known, the electrons in normal metals are nearly free and
ideal, which give rise to an ideal Fermi gas model. The quantum theory of
normal metals is essentially the physics deduced from the ideal Fermi gas
model. We do not intend to review this rich subject, but focus on some
special aspects, especially on the calculation of the chemical potential µ as
a function of temperature T . In quantum statistical mechanics µ is perhaps
the most important thermodynamic variable. It contains information on
statistics. As a result, it reveals its true identity at or near the ground state
as we shall see below. Far from it, such as at high temperatures, the physical
meaning becomes blurred because of its relationship to the entropy.

In 1928 Sommerfeld [1] obtained the chemical potential of an ideal Fermi
gas as a low temperature expansion. Since that time, this work has been
a standard in almost all textbooks on quantum statistical mechanics. We
will briefly outline the basic idea since it will be our starting point.

It should be emphasized that Sommerfeld’s work on the thermodynamics
of a Fermi gas shows the importance of Fermi statistics. His results are
in perfect accord with thermodynamic principles, which as we know were
formulated before quantum mechanics.

The work itself does not explicitly contain log terms, but they are there
hidden. Sommerfeld’s idea applies to odd numbered d’s but not to even
numbered d’s, already suggesting its limitation. At the time of Sommer-
feld, it was probably deemed unimportant since only 3d would have been
considered relevant.

3. Sommerfeld’s method

There are N Fermi particles in a volume V in thermal equilibrium at
temperature T . We shall have in mind that N and V are both large but
the number density ρ = N/V remains finite. If these Fermi particles are
ideal, their energy (in units of ~ = 1) is εk = k2/2m, where m is the mass
of a Fermi particle like an electron. If they are neutrinos, εk = ck, where
c is the speed of light. We shall be concerned mostly with non-relativistic
behavior, but there will be an occasion to consider the thermodynamics of
a neutrino gas, which is also an ideal quantum gas.
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3.1. Fermi gas in 3d

For an ideal spinless Fermi gas in 3d

ρ =
1

V

∑

ε

n(ε) , (3.1)

where n(ε) is the Fermi function

n(ε) = 〈n̂(ε)〉 = {1 + z−1eβε}−1 , (3.2)

where z = exp βµ, the fugacity. Observe that since ρ, T and ε are all given,
the only unknown is µ (or z). Hence one can extract µ from 3.1 as a function
of these given quantities. It is a simple idea but the process is not simple
because of the presence of the Fermi function. For a review, see Ref. [2].

Since the energy levels are continuous at this limit, we may convert the
sum in (3.1) into an integral. After some re-arrangements, letting βε = x,
we obtain

ρ = λ−3

∞
∫

0

dxx1/2 n(x) , (3.3a)

where n(x) = {1 + e(−a+x)}−1 , (3.3b)

where a = βµ and λ = (2πβ/m)1/2 the thermal wavelength. The right-hand
side still cannot be integrated.

To approximately evaluate it, let us proceed as follows: with x1/2 =
2/3 d/dxx3/2 , we can put d/dx on the Fermi function by partial integration
and obtain

ρ = −2

3
λ−3

∞
∫

0

dxx3/2 d

dx
n(x) . (3.4)

In obtaining (3.4), we have used the fact that n(∞) = 0 for a positive energy
spectrum. Thus far everything is exact. But 3.4 is turned into a form more
amenable for approximation.

At the ground state (i.e. T = 0), the Fermi function is a step function:
n(x) = 1 if x ≤ x0 and n(x) = 0 if x > x0, where x0 = βεF, µ(T = 0) = εF,
where εF is the Fermi energy. Thus dn(x)/dx = −δ(x − x0). If the gas
were at near the ground state, n(x) would be very sharply peaked at about
x ≈ x0, still nearly a delta function. Hence for a product function like
f(x)dn/dx, f(x) gives weight only in the neighborhood of where dn/dx is
peaked and gives hardly any weight elsewhere.
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One may thus express f(x) by a Taylor expansion in the neighborhood
of x = a = βµ(T ), which should generate a low T expansion, provided
that f(x) is not a rational or meromorphic function. Also since dn/dx is
symmetric with respect to x = a, the resulting series should be even in T .

Near the ground state the convergence of the series would be fast. Far
away from the ground state the expansion would converge too slowly to be
useful. If one is interested in the low T behavior of µ, this is a great idea
due to Sommerfeld.

The left-hand side of (3.4) is basically x0 = βεF. For the right-hand side,
by expanding f = x3/2 about x = a, one can now solve it term by term and
obtain a series in powers of kT/µ. This series may be reverted by a standard
procedure to obtain the µ series in powers of kT/εF given below:

µ(T )

εF
= 1 − 1

2
ζ2

(

kT

εF

)2

− 9

8
ζ4

(

kT

εF

)4

− . . . , (3.5)

where ζ2 = π2/6, ζ4 = π4/90, which are the Riemann zeta functions.

It is a remarkable result, full of significance. Most obvious is that even
at room temperature the expansion should converge very fast. The εF’s for
metals are in the range of T = 105k. As T increases the expansion goes in
the direction of the classical result µ/kT = log(ρλ3) < 0.

More subtle is that µ decreases with T . By the second law,µ=(∂U/∂N)V,S

where U and S are the internal energy and entropy, respectively. It is the
energy required to add one more particle to a gas of N particles in a fixed
volume but without affecting the entropy S. If the gas is very near the
ground state, the entropy is nearly zero. For a gas near the ground state
and in a rigid box, µ is simply the energy for adding a particle. At the
ground state it is exactly the Fermi energy εF. At slightly above the ground
state, this energy is less. Why?

When a gas is at somewhat above its ground state, the Fermi function
no longer has a sharp edge. Near the εF it is rounded off such that now
n(εF) < 1. Thus a particle could be added below εF.

Losing the sharp edge at εF means that the gas will acquire entropy,
which can also be calculated with help from (3.5)

S

Nk
= 3 ζ2

(

kT

εF

)

− 9

2
ζ4

(

kT

εF

)3

− . . . . (3.6)

It is hardly necessary to point out that (3.6) fully satisfies the third law.
Nernst proposed the third law in 1906. The work of Sommerfeld, coming
more than 20 years later, has given a firm verification.
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3.2. Fermi gas in 1d

Sommerfeld’s method can easily be extended to the same spinless Fermi
gas in 1d. Recall that the basic idea was to expand f(ε) = ε3/2 in the
neighborhood of εF. If f = εd/2 and d is an odd positive integer, one can
always expand it in the neighborhood of µ for the corresponding d. It is no
more difficult to obtain µ(T ) in 1d given below:

µ(T )

εF
= 1 +

1

2
ζ2

(

kT

εF

)2

+
5

2
ζ4

(

kT

εF

)4

+ . . . , (3.7)

where by εF we mean the Fermi energy in 1d. The expansion looks different
from the expansion for 3d (3.5). Now µ increases with T , at least initially.
Ultimately it must decrease as it becomes classical. The significance of the
rise is not difficult to discern. At a small T the sharpness of the edge of
the Fermi function is lost. In 3d it meant that a particle could be added
at below εF. But in 1d it is prevented from doing so because its paths are
blocked by other excited particles. One would expect, therefore, that a gas
in 1d is less well ordered than in 3d. The entropy per particle per degree of
freedom must be greater in 1d than in 3d.

The entropy in 1d is

S

Nk
= ζ2

(

kT

εF

)

+ 2 ζ4

(

kT

εF

)3

+ . . . ,

= ζ2

(

kT

εF

)

{

1 +
4

15
ζ2

(

kT

εF

)2

+ . . .

}

. (3.8)

Let us compare the above with (3.6) but divided by d = 3:

S

3Nk
= ζ2

(

kT

εF

)

{

1 − 3

5
ζ2

(

kT

εF

)2

+ . . .

}

. (3.9)

The comparison suggests that the particles which are taken out of the Fermi
sea are more dispersed in 1d resulting in greater entropy than in 3d. This
observation seems supported by a recent numerical study of Grether et al. [3].
Note that it is not necessary to divide µ by d since it is expressed in terms
of εF, which depends on d itself.

3.3. Limitations of Sommerfeld’s method

Sommerfel’s work has dominated this subject for over a half century. To
our knowledge, the first attempts to improve the calculations were provided
by Barker [4] and Lee [5]. Theirs are more of a formal treatment still limited
to low temperatures.
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In spite of its great success, Sommerfeld’s method has limitations. We
have already noted that it cannot be applied to even numbered d’s. Perhaps
more fundamental is the apparent absence of logarithmic character in the
thermodynamic functions. They should have acquired it from the Fermi
function, an inverse function of z. In fact, it is present through the Riemann
zeta functions, the coefficients in the expansions for µ and S, which trace to
certain logarithmic integrals [6].

This insight suggests that Sommerfeld’s method is not a natural one. It
comes at a price of missing out on something perhaps larger or deeper. We
shall show that a natural approach leads to an unsuspected symmetry in the
statistical mechanics of ideal quantum gases.

4. Grand partition function

The grand partition function Q should be a most natural starting point
for obtaining the thermodynamics of a Fermi gas as of any other similar
ones. Q or log Q may be termed a thermodynamic source function, for if it
is known, one can obtain from it most of the thermodynamic functions by
simple operations.

4.1. Fermi gas

Let us start from this source function for a spinless Fermi gas:

Q = Tr zN̂ e−βH , (4.1)

where trace Tr is to be taken over Fermi states, N̂ is the number operator,
and z ≥ 0. Since the thermodynamic potential is given by log Q,

log Q =
∑

ε

log(1 + ze−βε) . (4.2)

By converting the sum into an integral, if d = 3 (for explicitness)

1

V
log Q = λ−3 1

Γ (3/2)

∞
∫

0

x1/2 log(1 + ze−x) dx . (4.3)

The integrand is logarithmic, so it is naturally enlogged. We do not try to
remove it. In fact, we make it “worse” by enlogging it more through the
substitution:

y = ze−x (4.4a)

or x = log z − log y . (4.4b)
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We obtain

1

V
log Q = λ−3 1

Γ (3/2)

z
∫

0

(log z − log y)1/2 log(1 + y)
dy

y
. (4.5)

We can “unworsen” it a little by partial integration once to obtain the final
form

1

V
log Q = λ−3 1

Γ (5/2)

z
∫

0

(log z − log y)3/2 dy

(1 + y)
. (4.6)

The log integral does not appear doable. Thus, we shall simply define it
a log integral −L(5/2;−z).

Although the above is for d = 3, the same procedure will work for any
integer d. We can replace 3 by d to arrive at a general form:

1

V
log Q = −λ−d L(d/2 + 1; −z) , (4.7)

where L is as yet an unsolved log integral, defined as:

L(d/2 + 1; −z) = − 1

Γ (d/2 + 1)

z
∫

0

(log z − log y)d/2 dy

(1 + y)
. (4.8)

There is one property we can obtain at once:

z
z

dz
L(d/2 + 1; −z) = L(d/2;−z) , (4.9)

which is a recurrence relation. Thus one can obtain a lower-order one by
differentiation once and a higher-order one by integration once.

4.2. Sommerfeld’s result for the density

Given (4.7) for log Q, we can recover the density obtained by Sommerfeld
as follows: Since Q = Q(z, β),

〈N̂〉 = z
∂

∂z
log Q

∣

∣

∣

∣

β

. (4.10)

By (4.7), holding β fixed,

ρ =
〈N̂ 〉
V

= z
∂

∂z

1

V
log Q = −λ−d L(d/2;−z) . (4.11)

If the right-hand side is expanded for d = 3 and z → ∞, Sommerfeld result
(3.5) is readily recovered.
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4.3. Bose gas

The grand partition function for an ideal Bose gas is

Q = Tr zN̂e−βH , (4.12)

where for a Bose gas, 0 ≤ z ≤ 1 since µ ≤ 0. Taking the trace for the Bose
states, we obtain

log Q = −
∑

ε

log(1 − ze−βε) . (4.13)

If the above is compared with the corresponding one for a Fermi gas (4.2),
we see that

log Q(zB) → − log Q(zF) if zB → −zF .

Immediately we sense that there must be some sort of symmetry connecting
the two fundamentally different quantum gases. Let us defer this possibility
to a later time. Taking advantage of this transformation, we can at once
write down log Q for a Bose gas in d dimensions as:

1

V
log Q = λ−d L(d/2 + 1; z) . (4.14)

4.4. Unification

We now introduce a new variable ζ defined on the interval (−∞, 1). Let

ζ =

{

zB if ζ > 0 ,
−zF if ζ < 0 .

(4.15)

In terms of a new variable ζ, a composite fugacity, log Q for both the
Fermi and Bose gases may be stated as:

1

V
log Q = λ−dsgn (ζ)L(d/2 + 1; ζ) . (4.16)

The implications of the unified formulation is clear: Fermi and Bose
gases are in the same family! The two are not unrelated, not as we have
been accustomed to think.

In 1964 May [7] proved that in 2d the specific heats of the two gases are
the same. At that time this work seemed to have been viewed an accident
or an anomaly. Nothing further followed and soon it was largely forgotten.
To this date almost everyone has continued to think that there could not be
any relationship between the two gases in any d.

It is our conjecture that had Sommerfeld not “delogged” the problem,
he might have seen this big picture. Had he discovered it, given his great
stature it might very well have altered the course of the statistical physics
of quantum gases. It was a missed opportunity.
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5. Log integrals L(s; t) and polylogs Lis(t)

It was realized that the log integrals defined by L(s; t) are not new func-
tions but are identical to the polylogs Lis(t), the simplest one being the
dilog due to Euler. There is already considerable knowledge on the analytic
properties of these functions. See Lewin [8].

Here we will give a very brief summary of these important but little
known functions. As with many good things, Euler was the inventor of the
dilogs. Several years later the English mathematician Landen expanded the
subject by inventing the trilogs. Despite the auspicious beginning the polylog
functions never seemed to have gained a wide interest. In physics or at
least in statistical physics the application was limited to expressing the Bose
function by a series expansion of the polylogs. What have prevented a wider
application? Is it possibly due to an aversion to logarithmic integrals?

5.1. Euler’s dilogs

The simplest of the polylogs are defined as:

Li2(t) = −
t

∫

0

log(1 − x)
dx

x
. (5.1)

Euler was able to show that the dilogs have a number of transformation
properties: 1. t → −t (duplication); 2. t → 1/t (inversion); 3. t → 1 − t
(reflection). He also obtained special values for t = 1, −1, 1/2, (

√
5 − 1)/2

(golden mean).
Suppose we define Li1(t) as:

Li1(t) = − log(1 − t) , t 6= 1 , (5.2)

then, (5.1) may be expressed as:

Li2(t) =

t
∫

0

Li1(x)
dx

x
. (5.3)

It implies that

t
d

dt
Li2(t) = Li1(t) , (5.4)

a recurrence relation that takes Li2 down to Li1. The same relation will take
Li3 to Li2 etc. Thus a general version of (5.4) is

t
d

dt
Lis+1(t) = Lis(t) . (5.5)
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In generating the recurrence relation, Li1 plays a pivotal role. To recognize
its importance and to bring it into the family of polylogs, we have dubbed
it the mono-log!

We see that (5.5) is exactly the same as (4.9). Are the L functions the
same as the polylog functions Li?

5.2. New integral representation

In an attempt to evaluate the log Q for a Fermi gas we arrived at an
integral. Unable to obtain a closed form, we simply defined it as a log-
integral of the order of s + 1 in t, or L(s + 1; t):

L(s + 1; t) =
1

Γ (s + 1)

t
∫

0

(log t − log x)s
dx

(1 − x)
, s > −1 . (5.6)

If s = 0 in (5.6), we see at once that L(1, t) = − log(1 − t), which is Li1(t)
the monolog defined by (5.2). If s = 1 in (5.6), we see that, after one
partial integration, L(2, t) reduces exactly to the integral form for Li2(t) the
dialog of (5.1). In addition, L(1, t) and L(2, t) are related by exactly the
same form of a recurrence relation which relates Li1(t) and Li2(t). Since the
higher polylogs are all defined by the recurrence relation (5.5), see Ref. [8],
Eq. (6.2), it is sufficient to conclude that L(s, t) = Lis(t) for all applicable s
and t. For a more general and extended proof, see Ref. [9], Secs. II and III.
Thus, (5.6) may be said to be another integral representation of the polylog
function Lis(t).

5.3. Analytic properties

Since the two functions are the same, we can at once avail ourselves
of the known analytic properties of the polylogs. The most useful for the
quantum gases are as follows:

(i) For Lis(t), s and t are complex numbers although for our purposes it
is sufficient to take s a real number greater than or equal to zero.

(ii) Lis(t) is analytic everywhere save 1 ≤ Re t ≤ ∞. This strip is also
a branch cut with an end point singularity at t = 1.

(iii) Lis(t) is real on the real axis of t for the interval (−∞, 1). It is complex
on the branch cut, for the interval (1,∞).

(iv) Lis(t = 1)=ζs where if s 6= 1, ζs is the Riemann ζ function of order s.

(v) Since Lis(t) is analytic everywhere save on the branch cut, it is possible
to continue it to wherever designed.
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5.4. Thermodynamics by polylogs

We now express the unification in terms of the polylogs: For d > 0,

1

V
log Q(ζ; d) = λ−d sgn(ζ)Lid/2+1(ζ) , (5.7)

where ζ = zB if 0 < ζ < 1 and ζ = zF if −∞ < ζ < 0. The unification was
originally given for the density [9]. But this version is more general as the
grand partition function is the source function, not the density.

The grand partition function is real as it must be for the domain of the
composite fugacity. The domain is divided into the Fermi branch (−∞, 0)
and the Bose branch (0, 1). The two branches meet at the classical limit
ζ → ±0. It is a fixed point of the polylogs, therewith shedding log character.
See Ref. [9].

The end point ζ → −∞ corresponds to T = 0 for the Fermi gas. The
low-T expansions obtained by Sommerfeld is a consequence of the analyticity
of the polylogs in the neighborhood of ζ = −∞. The end point of the branch
cut ζ = 1 is a singularity of the polylogs. It is the underpinning of BEC.

5.5. Dimensionality d

The grand partition function Q depends on two independent variables
the composite fugacity ζ and dimensionality d. They are, respectively, the
argument and order of the polylogs. As shown above, the argument ζ de-
termines the denizen of a particular domain whether fermions or bosons.

For a fixed d, let ζ go from say ζ1 to ζ2 in the same domain. If ∆ζ = ζ2−ζ1

is small, the change in log Q should be slight. It is all about the analyticity
property.

The order d denotes the disposition of its denizen. If d is limited to
integers, the change in Q brought about by a change in d must be in accord
with a fixed density due to the thermodynamic limit (TL) having been taken
initially for a given d.

For the sake of explicitness, let us assume that TL were taken at 3d. Let
us fix ξ and suppress it since it is not at issue. Q(3d) is the thermodynamic
source function for a gas of N particles in volume V = L3. By an analytic
continuation of the polylogs in Q, we obtain Q(2d), now the source function
of a gas in area L2.

The process of analytic continuation does not “flatten” the original N
particles in a box of volume L3 into a sheet of area L2. Instead it is as if
it decomposes a box of volume L3 into L identical sheets of area L2. The
particles are confined to these sheets and are not free to move in or out of
their own sheet. For them these sheets are disconnected as if they belong
to different Hilbert spaces. Each sheet is a replication, represented by the
same source function Q(2d).
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A composite of L Q(2d)’s does not make one Q(3d). But a composite of
the areal density of L sheets is equal to the initial fixed value of the volume
density. This process may be compared with how one could calculate Q(d)
for each d (e.g. d = 2 or 3) separately. Each calculation would entail taking
TL also separately.

In the polylog formulation, d can be changed from one value to another
by analytic continuation. But since TL is initially set at a given d, the
density is fixed. It does not change when d changes. The process of analytic
continuation is accomplished by a decomposition of space as described above.

If d goes from 2 to 1, the picture is now obvious. The area L2 is decom-
posed into L disconnected lines. If d goes from 1 to 0, there are L disconnect
dots.

Given the analytic continuation property, it is sufficient to obtain Q(d)
once for one convenient value of d. One can then access Q(d) for any other
values of d including some for which a direct calculation for Q might pose
a challenge.

5.6. Polylogs and related functions

Since our work on unification by means of the polylogs, there have ap-
peared several papers studying the polylog function and connecting it to
other functions and models.

A partial list of more mathematically related papers are: A connection
is made to a blending function by Boyd [10], to polynomials by Schmidt
and Schnack [11]. Maximon [12] studies the polylog function of a complex
argument. Ciccariello [13,14] relates it Lerch’s function and Hallerberg et al.,
[15] to Ruelle function. Jodra [16] relates it to probability distributions in
the Bass model.

A partial list of more physically related and applied papers are: Use is
made of in relativistic thermodynamics by Blas and Pimentel [17], in entropic
currents by Blencowe and Koschnick [18], in solid state devices by Ulrich
and Barnes [19] and Ulrich et al. [20], in hot plasmas by Ayala et al. [21]
in interacting Bose gas by Li et al. [22], in Casimir effect by Tonchev [23],
in phase transitions in generalized statistics by Anghel [24], and in a Bose
gas in a harmonic potential by Kirsten and Toms [49].

6. Application of polylog formulation

The unified form of the grand partition function via the polylogs (5.7)
shows an appealing simplicity. But is it useful? Can it predict something
new as a result of this formulation? We shall first illustrate its usefulness
and then provide some unexpected consequences.
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6.1. Thermodynamics by polylogs

We re-state (5.7) below:

1

V
log Q(ξ, d) = λ−d sgn(ξ) Lid/2+1(ξ) , (6.1)

where ξ is the composite fugacity. We shall now generate standard thermo-
dynamic functions from the source function the grand partition function by
elementary operations.

(a) Number density ρ

N = 〈N̂〉 = z
∂

∂z
log Q|β ,= λ−dV sgn(ξ)Lid/2(ξ) , (6.2)

which is obtained by the recurrence relation (5.5). One may also write
the above result as

ρλd = sgn(ξ)Lid/2(ξ) . (6.3)

(b) Internal energy U

U =
−∂

∂β
log Q

∣

∣

∣

∣

ξ

(6.4a)

=
d

2
β−1 λ−dV sgn(ξ)Lid/2+1(ξ) . (6.4b)

Hence, β U =
d

2
log Q . (6.4c)

By (6.2),
β U

N
=

d

2

Lid/2+1(ξ)

Lid/2(ξ)
. (6.5)

(c) Pressure P
PV = β−1 log Q . (6.6)

Hence,

βPρ−1 =
Lid/2+1(ξ)

Lid/2(ξ)
. (6.7)

By comparing (6.6) with (6.4)

U =
d

2
PV . (6.8)
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(d) Entropy S
It is simplest to use the definition

S

Nk
= β

(

U

N
+

PV

N
− µ

)

= β

(

d

2
+ 1

)

PV

N
− µ . (6.9)

Hence,
S

Nk
=

(

d

2
+ 1

)

1

N
log Q − log |ξ| . (6.10)

We shall use these results to see how useful is the unified formulation.

6.2. Classical ideal gas

If |t| < 1, the polylogs (5.6) may be given an expansion in t as

Lis(t) =
∑

k=1

tk

ks
. (6.11)

For proof see [8,9]. Suppose t → 0, so that only the first term on the
right-hand side of (6.11) needs be kept:

Lis(t) = t . (6.12)

Now the right-hand side of (6.12) is independent of s = d/2 + 1, which thus
corresponds to the classical limit. But also observe that t = ζ is the fixed
point of the polylogs. The fixed point has no logarithmic character. If the
polylogs are represented by the fixed point, log Q sheds spin statistic and
turns itself over into one for Boltzmann statistics as shown below: Under
the classical limit, (6.1) becomes simply

λd

V
log Q = z (6.13)

for both the Bose and Fermi gasses. Thus, under the classical limit, µ → −∞
since z → 0. Eq. (6.13) directly yields ρλd = z and by (6.6), for example,
PV = NkT and all other familiar results of an idea classic gas.

6.3. Cosmic thermodynamics

In the early universe, the neutrinos are thought to have played an im-
portant role in its evolution. As the universe cooled and freely expanded,
the neutrinos also became decoupled from matter and thermalized in much
the same way as the photons. To study the neutrino contributions to the



Polylogarithms and Logarithmic Diversion in Statistical Mechanics 1293

cosmological evolution, the thermodynamic functions of a neutrino gas have
been calculated. We can show by use of the unified formulation that most
of it could have been avoided.

The unified formulation for the relativistic particles like the neutrino
requires a few adjustments: The order of the polylogs d/2 is replaced by d
and the thermal wavelength λ replaced by η defined by [25]

η = π1/2
~βc

{

Γ (1/2)

Γ (d/2 + 1/2)

}1/d

, (6.14)

where c is the speed of light. If d = 3, η = π2/3
~βc. The same form would

apply for particles with a linear dispersion relation (e.g. phonons, graphenes)
with c replaced by ν.

Thus (6.1) now reads:

1

V
log Q(ξ, d) = η−d sgn(ξ) Lid+1(ξ) , (6.15)

where ξ is the same composite fugacity.
The neutrinos are massless Fermi particles. Lately experimental evidence

seems to suggest that the neutrinos are not massless [26]. Should a neutrino
have a mass, it could not but be very small. If very small, it should have
little practical consequences for thermodynamics. Thus we shall continue to
assume that the neutrinos are massless.

Subject to this assumption, for the neutrinos we take ξ = −1. For
photons, which are massless Bose particles, ξ = 1.

By the unified grand partition function (6.15), the thermodynamics of
a neutrino gas is simply related to the thermodynamics of a photon gas by
the structural relationship of Li4(−1)/Li4(1) = 7/8. If V is the same,

log Q(neutrino) = k log Q(photon) , (6.16)

where k = 1/2(7/8), where 1/2 comes from a polarization ratio between
two massless particles [25]. Note that the unified grand partition function
is without degeneracy factors due to e.g. spin for the sake of structural
simplicity.

Hence, for the energy density u = U/N ,

u(neutrino) = k u(photon) . (6.17)

The specific heat and the entropy are all simply related by the factor k.
The neutrino thermodynamics is the same as what one would see in a black
body scaled by k. The unified formulation obviates the need for a separate
study for a neutrino gas given the knowledge of the black body radiation.
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6.4. Thermodynamic equivalence in 2d

Returning to the non-relativistic version, let d = 2 in (6.1). For ξ = −zF

and ξ = zB, where zF and zB are the fugacities, respectively, for Fermi and
Bose gases, we obtain:

1

V
log Q(zF) = −λ−2Li2(−zF) , (6.18)

1

V
log Q(zB) = λ−2Li2(zB) , (6.19)

where V = L2 the area.
The grand partition functions are in dilogs. Could they be related

through some properties of the dilogs? If so, the two ideal gases would
be thermodynamically related. One could hardly expect such a relationship
to exist between the gases of different statistics.

For the dilogs, there is a special relation due to Landen: If x and y are
real numbers and are related by

y =
−x

(1 − x)
, (6.20)

Li2(x) = −Li2(y) − 1
2{Li1(y)}2 . (6.21)

An elementary proof of Landen’s relation is given by us [27].
Let x = zB and y = −zF. Then,

1

V
log Q(zB) =

1

V
log Q(zF) − 1

2λ−2{Li1(−zF)}2 . (6.22)

By (6.3), setting d = 2 therein,

ρλ2 = −Li1(−zF) . (6.23)

The left-hand side of (6.23) is βεF, εF the Fermi energy in 2d, which is twice
the ground state energy per particle (UF

0 /N) of a spinless Fermi gas in 2d:
UF

0 /N = 1/2εF. This gives β UF
0 /V for the second term on the right-hand

side of (6.22). Thus,

log Q(zB) = log Q(zF) − β UF
0 . (6.24)

By (6.4a) or (6.4c), we obtain

U(zB) = U(zF) − UF
0 . (6.25)
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The above means that the constant-volume specific heats of the two gases are
identically the same at all T , a remarkable result first obtained by May [7]
in 1964 but without any physical insight. Also observe that U(zB) ≥ 0 .

Our result (6.25) was obtained by use of Landen’s relation of x and y.
See (6.20). It is premised on letting x = zB and y = −xF, seemingly an
arbitrary choice, which would connect the two unrelated variables zB and zF

by (6.20). What physical conditions could yield such a special relationship?
To obtain possible physical conditions, let

ρB λ2
B = ρF λ2

F . (6.26)

Then, by (6.3) setting d = 2,

Li1(zB) = −Li1(−zB) . (6.27)

Since Li1(t) = − log(1 − t), we obtain at once,

zF =
zB

(1 − zB)
, (6.28a)

or zB =
zF

(1 + zF)
. (6.28b)

Eq. (6.28a) corresponds exactly to (6.20) with x = zB and y = −zF. Thus
the equivalence (6.25) can exist by the physical condition of (6.26). The
simplest way to satisfy it is to take ρB = ρF and λB = λF. If in addition,
mB = mF, it would mean that TB = TF. It would thus mean that the
equivalence (6.25) would hold at any temperature.

The resulting relation (6.28a) or (6.28b) implies a special relationship
for the chemical potentials. From (6.28b),

µB = µF − β−1 log(1 + zF) . (6.29)

As to the second term on the right-hand side, log(1 + zF) = −Li1(−zF) =
ρλ2 = βεF. Hence,

µB = µF − εF . (6.30)

This is a unique relationship that underlies the thermodynamic equivalence
in 2d. Observe that µF ≤ εF in 2d. Hence, µB ≤ 0. But U(zB) ≥ 0.

Since µ = µ(T, P ), it is like a differential surface, projected from the
plane of T and P . The slope of the curvature of this surface along a given
direction, T -axis or P -axis, has a meaning according to the Gibbs–Duhem
equation [28]:

S

N
= − ∂µ

∂T

∣

∣

∣

P
. (6.31)
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and

ρ−1 =
∂µ

∂P

∣

∣

∣

T
. (6.32)

In this geometrical picture, (6.30) says that the two surfaces, one for Bose
and the other for Fermi, are everywhere separated by a fixed distance of εF.

If (6.30) is applied to (6.31), we immediately obtain that the two en-
tropies per particle are the same. If (6.32) is applied, we recover the condi-
tion that the two densities are the same. One can also obtain the equality of
the two entropies per particle by (6.10) for d = 2 by using (6.24) and (6.30).

In this way we have established a thermodynamic equivalence between
the two gases of different statistics [27]. As far as we know, no one has
ever suggested such a possibility since the dawn of the statistical mechanics
of quantum gases. Our work has generated considerable attention [29–45],
[50–52].

7. Physics in null dimension

As stated earlier at some lengths (see Sec. 5.5), the grand partition
function Q(ξ; d) by polylogs has meant that d may take on any values.
When d = 2 (see Sec. 6.4), it resulted in something new, a thermodynamic
equivalence existing only in 2d. When d = 1, there emerge some other
features in the thermodynamic behavior. But they are more or less not out
of the ordinary.

What if we let d = 0? To do statistical mechanics in null dimension
by conventional methods would not be easy. It can be done easily by the
polylog formalism since, by analytic continuation, we can reach d = 0.

In null dimension there is an important physical principle to consider: the
uncertainty principle (UP). While somewhat quiescent in finite dimensions,
it acts a dominant factor in null dimension.

7.1. Uncertainty principle and µ-singularity

If d → 0, V = Ld = 1. There is no length scale. The volume of null
dimension is unity, which refers to a point or a dot. For a particle placed in
it, there can be no uncertainty in position: As d → 0, ∆x → ±0. By UP,
∆p → ±∞. In addition, ∆t(time) → ±0 and ∆ε(energy) → ±∞ .

If ∆ε → ±∞, ∆U → ±∞ since ∆U → ∑

∆ε n(ε). By the second law,
µ = ∆U/∆N |V,S. If S can be held fixed such as near the ground state
where it is nearly zero, we can conclude that becomes µ → ±∞ as d → 0.
For a Fermi gas near the ground state, µ > 0. For a Bose gas, µ ≤ 0.
Hence, as d → 0, µ(F ) → +∞ and µ(B) → −∞. They become singular
in null dimension. When µ becomes singular, the temperature T becomes
irrelevant. It is a quantum phenomenon with no classical analog [5].
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If µ(F ) = ∞, n(F ) = 1, where n(F ) means the Fermi function. If
µ(B) = −∞, n(B) = 0 where n(B) is the Bose function. That n(F ) = 1 at
any T is merely a re-statement of the Pauli principle (PP) in the coordinate
space: there may be one spinless Fermi particle in a dot space and no more.
It is comparable to the action of PP in the momentum space in e.g. the 1s
state of the H atom.

Why Bose particles cannot be confined to a dot, i.e. n(B) = 0, is harder
to understand. An analogy might be of some help here. For a classical gas,
µ → −∞ if T → ∞. When T is very large, a particle becomes too energetic
to be confined in a finite volume.

7.2. Grand partition function for Fermi gas

Let us now see what the grand partition formalism will give us. Let in
(6.1) d = 0 and ξ = −zF in (6.1). Since V = 1,

log Q = −Li1(−zF) = log(1 + zF) . (7.1)

Hence, N/V = N ≡ n is obtained from (7.1) as:

n = z
∂

∂z
log Q =

zF

1 + zF
. (7.2)

The above is also obtained from (6.2) or (6.3) by Li0(−x) = −x/(1 + x).
The left-hand side is a pure number, which cannot depend on T . The only
way this requirement can be satisfied is if zF → ∞, or µF → ∞, precisely
the same result obtained by UP. See Sec.7.1. If zF = ∞, n = 1, also given
by the Fermi function when µF = ∞. See Ref. [46].

If, in the thermodynamic functions given in Sec. 6.1, we set d = 0,
zF = ∞, N = 1 and V = 1, Fermi “thermodynamics” in null dimension
follows:

By (6.4c),

βU = lim
zF→∞, d→∞

d

2
log zF = ∞ . (7.3)

For a proof, see Ref [46]. This seems to be the limit of blue-shift of the
energy in size reduction [46].

By (6.6),
βP = log zF = ∞ (7.4)

evidently related to the energy behavior.
By (6.10),

S

k
= log(1 + zF) − log zF =

1

zF
− . . . . (7.5)
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The entropy vanishes since one Fermi particle in null dimension gives a per-
fectly ordered configurational state.

One might wonder what has happened to the thermodynamic limit when
0d is reached by analytic continuation. To answer this question, let us be-
gin with 1d: There are N particles (N large number) in the volume of L
(L large length) such as to allow the thermodynamic limit. When d goes
down to 0, the overall system is still 1d-like but it now consists of N dis-
connected dots, each of which contains just 1 Fermi particle. Thus the total
number of particles is still preserved. As noted earlier in Sec. 5.5, it is
analogous to e.g. 2d → 1d, when the area becomes decomposed into L
disconnected lines.

7.3. Meaning of µ singularity

In grand ensemble theory the chemical potential acts a control on the
flow of particles into or out of a system. It is measured from the zero of
energy. It is like the zero of energy for the electron in the H atom, where
the zero is the ionization level if seen from one of its bound states.

A Fermi particle cannot enter into a Fermi gas at the zero of energy
owing to the Pauli principle (PP). As a result, µ has to be positive until
it goes classical. A particle may enter or leave only at the energy value
matching µ(µ = εF if T = 0). It is like a ceiling through which particles
may enter or leave, not through the floor, which is at the zero of energy.

A Fermi particle may not leave through the floor because of the stability
of a Fermi gas. Suppose one were to remove the particle at the floor having
energy ε = 0. As a result, the one immediately above it with ε = ∆ε would
move down. The same process would bring the next one down and it would
continue until the highest one falling to ε = εF − ∆ε. The total energy
required to achieve it is exactly the ground state energy U0 = d/(d+2)NεF.
The energy would be just εF if simply the one at ε = εF were removed,
yielding an identical configuration. Removing a particle at the floor is much
like trying to remove an object at the base weighted down.

As there is no PP to contend with for a Bose gas, the bosonic µ is
different. It is non-positive, measured from the afore mentioned zero of
energy. When µ = 0, where BEC can occur, Bose particles may enter or
leave at no cost of energy (in contrast to the price of εF to be paid by Fermi
particles if at T = 0). For Bose particles, their ceiling is at the zero of
energy.

When µ has a negative value (say µ = −ε0, ε0 > 0), it is as if this value
(−ε0 ) sets the floor for Bose particles. To remove a Bose particle, it has to
be raised from this floor to its ceiling, the zero of energy. (It is much like
ionizing the H atom in a bound state at −ε0.)
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It is the same if a Bose particle is to enter at the zero of energy. It has to
give up the energy −ε0 (as measured from the zero of the energy) to reach
the floor from the ceiling. It is much like a free electron being captured by
a hydrogen nucleus.

Let us now see how this picture explains the behavior of µ when d → 0.
For fermions, a dot contains but 1 particle. Thus, assuming that the entropy
remains zero,

µF = U(2) − U(1) = ∞ . (7.6)

The ceiling is infinitely high. Another Fermi particle may not enter a dot
already occupied. As we said, it is just PP at work. The same high ceiling
also acts to confine a particle already within, preventing its escape.

For bosons, a dot cannot contain any particles. Hence there is no mean-
ingful thermodynamics e.g. U(0) = 0. But one can still define µ as:

µB = U(1) − U(0) = −∞ . (7.7)

The bosonic floor is infinitely deep. This is why a dot cannot contain any
bosonic particles. As d → 0, the bosonic floor seemingly drops out of sight
into a bottomless pit. It is like the ground state of the H atom going from
−13.6 eV to −∞ eV. There would not be enough energy to ionize such an H
atom. When d → 0, the Bose particles go into their own black hole, which
gives the appearance of having escaped and unconfinable.

8. Concluding remarks

When the pioneering work of Sommerfeld is viewed from today’s per-
spectives, certain limitations are apparent. They prevent from being gen-
eralizable. Hence it is difficult to gain a deeper insight into the statistical
thermodynamics of quantum gases.

The problem is inherently logarithmic. Apart from the fact that, it is
log Q, not Q itself, which ties into thermodynamics. More deeply, both the
Fermi and Bose functions are inverse functions of the fugacity z, implying
logarithmic in character. The polylog formulation of log Q is a reflection
of this character. Indeed at the classical limit, the polylogs are replaced
by their fix point, losing the log character entirely. At the classical limit,
both the Fermi and Bose functions are no longer an inverse function of the
fugacity. The power of the polylogs seems almost limitless even in prosaic
analysis [47, 48].

The polylog formulation of the grand partition function is sufficiently
general to yield several special solutions. Of particular interest is the exis-
tence of thermodynamic equivalence in 2d. It has already provided consid-
erable stimulation and perhaps there will be more to come yet. The physics
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of null dimension presents some unusual features, still to be experimentally
verified. In all the following lines may capture the spirit of this work:

When something goes inversely,
Logs cannot be far away.

Logs are strange math,
They have their own rules.

When they are embraced,
Logs can brighten an unseen side.

I wish to thank Prof. Manuel de Llano for his interest in my work
presented here. A portion of the work was accomplished while I was a visi-
tor at the Korea Institute for Advanced Study, Seoul, South Korea. I thank
Prof. H. Park, vice director of the Institute, for his kind and warm support.
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