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We analyze the time series of soft X-ray emission registered in the years
1974–2007 by the GOES spacecrafts. We show that in the periods of high
solar activity, namely 1977–1981, 1988–1992, 1999–2003 the maximum en-
ergy of soft X-ray solar flares exhibits both heavy tails and long-range de-
pendence. We investigate the presence of long-range dependence by means
of different self-similarity estimators. This analysis gives a promising start
to model the appearance of such solar events during solar maxima.

PACS numbers: 02.50.Fz, 05.40.Fb, 96.60.–j

1. Introduction

Understanding the long-term solar variability is one of the most impor-
tant problems in solar physics. Solar activity has clearly a periodic charac-
ter, but solar cycles (taken separately) are different in form, amplitude and
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length. Solar flare events are random in time and strength. Their predic-
tion is an actual problem as these disturbances can pose serious threats to
man-made spacecrafts, disrupt electronic communication channels and can
even set up huge electrical currents in power grids [1]. It is enough to re-
mind about serious problems with the spacecrafts GOES, Deutsche Telecom,
Telstars 401, etc. Satellite operators would be glad to escape the unhappy
surprise, and mission planners are compelled to take into account the future
space weather forecast. The cost to the airline industry arose as planes were
re-routed to lower altitudes, burning more fuel in force of atmospheric drag.
Now the space weather forecast has the considerable importance as well as
the weather forecast on the Earth.

As the geological records show, the Earth’s climate has always been
changing. The reasons for such changes, however, have always been sub-
ject to continuous discussions and are still not well understood. In addition
to natural climate changes the risk of human influence on climate is seri-
ously considered too. Any factor that alters the radiation received from the
Sun or lost to Space will affect climate. So, Mann, Bradley and Hughes [2]
have detected clearly a significant correlation between solar irradiance and
reconstructed Northern Hemisphere temperature. The statistics indicates
that during “Maunder Minimum” of solar activity the climate was especially
cold, but when the intensity of solar radiance again increased from early nine-
teenth century through to the mid-twentieth century, the period coincides
with the general warming. This, however, would either imply unrealistically
large variations in total solar irradiance or a higher climate sensitivity to
radiative forcing than normally accepted. Therefore other mechanisms have
to be invoked. The most promising candidate is a change in cloud forma-
tion because clouds have a very strong impact on the radiation balance and
because only little energy is needed to change their formation process. Ac-
cording to satellite records from 1979 to 1992, during solar minima, Earth
was 3% cloudier than at solar maxima [3]. One of the ways to influence cloud
formation might be through the cosmic ray flux that is strongly modulated
by the varying solar activity.

The aim of this paper is to present a statistical analysis of soft X-ray
(SXR) solar flare activity during the last three cycles (1974–2007 years).
The paper is organized as follows. The random features of solar activity is
outlined in Section 2. The data set is described in Section 3. In Section 4 we
present an essence of our statistical investigation of power statistics of SXR
flares. Interrelations among statistical flare parameters, such as tail index α
and self-similarity exponent H for X-ray flux and their evolution during
solar cycles, are analyzed. In the period of strong maxima the self-similarity
exponent is almost constant. This feature can be used for predicting the
power of SXR emission in future. Next we give a summary and discussion
of the main results. Finally, the conclusions are drawn in Section 5.
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2. Randomness in nature of solar activity

The solar 11-year cycle is driven by Sun’s magnetic field. The Sun’s mag-
netic field is produced by a hydromagnetic dynamo process underneath the
solar surface and is cyclic in nature. This fundamental theoretical idea was
established by Parker [4]. However, only within the last few years, theoreti-
cal models of the solar dynamo have become sophisticated enough to explain
deep-laid aspects of solar activity. So, recently Dikrati and Gilman [5] have
made an attempt of using a theoretical dynamo model to predict the strength
of the upcoming cycle 24. Their analysis is based on fairly regular processes
like the magnetic field advection and toroidal field generation by differential
rotation during the rising phase of a cycle from a minimum to a maxi-
mum. However Choudhuri, Chatterjee and Jiang [6] exposed shortcomings
of this study. The key problem in this dispute lies in the Babcock–Leighton
mechanism (dominant in the declining phase) for which involves randomness
(primary cause of solar cycle fluctuations) [7]. That is why, although active
regions appear in a latitude belt at a certain phase of the solar cycle, where
exactly within this belt the active regions appear seems random.

The other feature of solar activity is that there is a “magnetic persis-
tence” between the surface polar fields and spot-producing toroidal fields,
generating by differential rotation shearing [8]. This means that the Sun
retains a memory of its magnetic field for a long time (about 20 years or
so). The solar cycle prediction is similar to that employed in global at-
mospheric dynamics over the last decades. Such models predict changes in
certain global characteristics of a cycle, without attempting to reproduce
details that occur on smaller spatial scales and shorter time scales. The
interrelation between global characteristics and small scale processes is an
open problem, and meanwhile some effects of smaller scales are included in
a parametric form.

Thus, randomness plays an important role in solar activity. Probably,
the success of space weather forecast will rest on statistical methods. In
this paper, we are going to analyze the solar flare activity from the SXR
time series. We try to answer question, what are the characteristics of the
underlying process, without searching any correlations with clearly solar
parameters such as properties of spot growth, sunspot structure, magnetic
topology, etc.

3. X-ray flare observations

Solar activity includes flares, prominence eruptions, coronal mass ejec-
tions, solar energetic particles, various radio bursts, high-speed solar wind
streaming from coronal holes, etc. Solar flares are the most energetic and
violent events occurring in the solar atmosphere. The energy release in a
flare ranges from 1026 to 3 × 1032 ergs.
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Observations of solar flare phenomena in X-rays became possible in
the 1960s with the availability of space-borne instrumentation. Since 1974
broad-band SXR emission of the Sun has been measured almost continu-
ously by the meteorology satellites operated by National Oceanic and At-
mospheric Administration (NOAA) so as the Synchronous Meteorological
Satellite (SMS) and the Geostationary Operational Environment Satellite
(GOES). The first GOES was launched by NASA in 1975, and the GOES
series extends to the currently operational GOES 11 and GOES 12. From
1974 to 1986 the SXR records are obtained by at least one GOES-type
satellite; since 1983, data from two and even three co-operating GOES are
generally available. The X-ray sensor, part of the space environment monitor
system aboard GOES, consists of two ion chamber detectors, which provide
whole-sun X-ray fluxes in the 0.05–0.3 and 0.1–0.8 nm wavelength bands.

Solar SXR flares are classified according to their peak burst intensity
measured in the 0.1–0.8 nm wavelength band by GOES. The letters (A, B,
C, M, X) denote the order of magnitude of the peak flux on a logarithmic
scale, and the number following the letter gives the multiplicative factor,
i.e., An = n × 10−8, Bn = n × 10−7, Cn = n × 10−6, Mn = n × 10−5

and Xn = n × 10−4 W/m2. In general, n is given as a float number
with one decimal (prior to 1980, n was listed as an integer). Now the
data is widely available from the NOAA Space Environment Center site
(http://goes.ngdc.noaa.gov/data/avg/).

In the meantime a wealth of data has been accumulated, which makes
worthwhile re-investigating the temporal and spatial features of SXR flares
on a more extensive statistical basis. In particular, the distribution of the
X-ray flares (M ≥ 1) from 1987 to 1992 with respect to heliografic longitude
was studied in [9], where it is shown that the flares were not uniformly dis-
tributed in longitude. The temporal analysis of X-flare statistics presented
in [10–14] concerns basically the waiting-time distribution. In contrast, our
studies will be devoted to the energy statistics of SXR flares in time.

The preliminary analysis of SXR data shows that they are heavy-tailed,
namely the right tail of the empirical distribution function Fn(x) can be
approximated for large x by the power function x−α, where 0 < α < 2. The
estimation of the power-law tail index in such data has a long history in
statistics because of its practical importance [15–18]. However, the avail-
ability of huge amount of various data poses a set of new challenges for
estimating the tail index. Many data, including the time series of SXR solar
emission [19], are contaminated by different oscillations and noises compli-
cating their analysis [20–22]. Moreover, the presence of dependence can also
distort the results of different estimators of the Pareto-type tail index [23].
Therefore, the tail index should be tested as accurately as possible.
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4. Solar flare statistics

We concentrate our attention upon the temporal intervals when the solar
activity was strong (1977–1981, 1988–1992 and 1999–2003), see Fig. 1. Their
analysis is interesting because in such periods the strongest (and dangerous)
flares occur very often. Using the X-ray flare data from GOES satellite,
that contain information about time of appearance and energy of solar flares
(from ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR FLARES/XRAY_
FLARES), as an example, we consider the SXR time series from the 1st of
January 2000 to the 31st of December 2003. The time series is presented in
Fig. 2. We study the maximum energy emitted daily. This is in contrast
to [24], where energy values aggregated on a daily basis were studied.
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Fig. 1. Wolf numbers (characterizing solar activity) during the last solar cycles

1974–2006.

The analysis of the data shows that the tails of the underlying energy
distribution obey the power-law. This implies that the distribution belongs
to the domain of attraction of Lévy stable law with α equal to the tail
index. We applied Hill [25] and Meerschaert–Scheffler estimators [26] to find
the value of the tail index. The classic Hill estimator (HE) is known to
be asymptotically normal and consistent. Moreover, it is scale invariant.
However, it is not robust to shifting and contains a cutoff parameter that
is usually determined in a qualitative fashion. The Meerschaert–Scheffler
estimator (MSE) is consistent, shift and cutoff independent, and performs
in many situations better than the Hill estimator, but it is not invariant
to changes of the scale. In order to avoid problems with shift and scale
dependence we center the data by median, and then rescale by the median
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Fig. 2. Maximum energy-time series of solar flares during from 2000–01–01 to

2003–12–31.

of the absolute deviations from that center. This gives a consistent shift and
scale invariant estimator of the tail index [26]. The value of αMSE equals
1.0938 for the Meerschaert–Scheffler estimator, and reaches αHE = 1.1 for
the Hill estimator. We can see that the values are pretty much alike.

We also note that analysis presented in [24] extended the tail index study
on some cycles and spoke surely that the index tendency is kept at least
during three solar cycles. It also showed a clear correlation between solar
activity and both the self-similarity exponent and the tail index.

The self-similarity parameter H can be estimated by the finite impulse
response transformation (FIRT). The FIRT estimator involves an array of
coefficients made out of finite impulse response coefficients dFIRT(n, k). The
estimator HFIRT is obtained from a log-linear regression on the coefficients
and measuring the slope [27]. It is important that the estimator HFIRT is
unbiased for all 0 < α < 2, and for 1 < α < 2, under certain technical con-
ditions, the estimator is consistent and asymptotically normal. The method
applied for the original solar flare data is depicted in Fig. 3. We can see that
the values of the statistic form a line indicating presence of self-similarity.
We included a line indicating the best fit to the data, whose slope provides
the estimate of H. The FIRT method is considered to be one of the most
effective for detection of the self-similarity exponent for the data that statis-
tically resemble fractional Lévy stable or Brownian motions and fractional
autoregressive integrated moving average (FARIMA) models with finite and
infinite variance innovations [27].
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Fig. 3. Finite impulse response transformation (FIRT) for the solar flare data. The

estimator HFIRT is obtained by fitting a least-squares line to the values of the FIRT

coefficients on a log-linear scale. The points at the high end (marked by ‘x’) are

not used to fit the line, see [27]. The estimated slope of the line is HFIRT = 1.1951.

To estimate the self-similarity parameter H of a time series, we also use
the method based on the variance of residuals (VR) [28]. In this approach the
series is divided into blocks of size m, and within each block the partial sums
of the series are calculated. A least-squares line is fitted to the partial sums
within each block, and the sample variance of the residuals is computed.
The variance of residuals is proportional to m2H . This variance of residuals
is computed for each block, and the median is computed over the blocks.
A log–log plot versus m should follow a straight line with a slope of 2H. The
method applied for the original solar flare data is depicted in Fig. 4. We can
see that the values of the statistic form a straight line, which indicates the
presence of self-similarity. We included a line indicating the best fit to the
data, whose slope provides the estimate of 2H.

The self-similarity exponent H is related to the notion of long-memory
(or long-range dependence) [29]. The typical way of defining long memory
in the time domain is in terms of the rate of decay of the covariance func-
tion. If the autocovariance function r(n) tends to 0 so slowly that the sum∑

∞

n=0
|r(n)| diverges, we say that in this case the process exhibits long-range

dependence. This is true, e.g., for the increment process of any H-self similar
process with stationary increments with finite second moment and H > 1/2.
The major difficulty occurs, when one tries to employ this definition to the
processes with infinite second moment, e.g. heavy-tailed ones. Since in this
case for α < 2 the covariance is not defined, one needs to find an alternate
measure of dependence, e.g. the codifference τ(n) which equals the covari-
ance when α = 2 [20] and is well defined for Lévy stable processes. We say
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Fig. 4. Variance of residuals (VR) method for the solar flare data. The estimator

HVR is obtained by fitting a least-squares line to the median of the sample variance

of residuals within blocks of size m on a log–log scale. The points at the very low

and high ends (marked by ‘x’) are not used to fit the line, see [28]. The estimated

slope of the line is 2HVR = 2.3402.

that a stationary Lévy stable process has long memory if its codifference
satisfies

∑
∞

n=0
|τ(n)| = ∞. By analogy with the case α = 2, we say that the

process has long-range dependence when H > 1/α. The classical example
of a Lévy stable process with long memory is the fractional autoregressive
integrated moving average (FARIMA) time series [30].

For the finite variance cases, the interpretation of the FIRT and VR
estimators is very similar to the Hurst exponent. If only short-range corre-
lations (or no correlations at all) exist in the studied series, then HFIRT =
HVR = 1/2. If there is a correlation then HFIRT = HVR 6= 1/2. Moreover, if
the estimator HFIRT = HVR is greater than 1/2, the time series is persistent
and if HFIRT = HVR < 1/2 then the time series is not persistent. However,
the estimators give an information on memory and not on distribution of
the process.

To recover both the self-similarity exponent H and the tail index α ap-
plying an arbitrary H estimator we can use the BMW2 computer test [29],
based on analysis of both the original and surrogate data. The surrogate
data are obtained here by a random shuffling of the original data positions,
which breaks both short- and long-range dependence. If the original data set
is Gaussian [29], then the values of the estimator should change to 1/2 for
the surrogate data independently on the initial values. If, however, the data
belongs to the domain of attraction of α-stable distribution for α < 2 [29],
then the values of the estimator should change to 1/α for the surrogate data
independently on the initial values. Let us notice, that the test provides also
a double-check of the values of the tail index obtained earlier with the help
of Hill and Meerschaert–Scheffler estimators.
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The FIRT and VR estimators for the shuffled data are depicted in Figs. 5
and 6, respectively. Therefore, the corresponding estimates for the param-
eter 1/α are: 1/αFIRT = HFIRT = 0.9736 and 1/αVR = HVR = 0.9395.
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Fig. 5. Finite impulse response transformation (FIRT) for the shuffled solar flare

data. The estimator HFIRT is obtained by fitting a least-squares line to the values

of the FIRT coefficients on a log-linear scale. The points at the high end (marked

by ‘x’) are not used to fit the line, see [27]. The estimated slope of the line is

HFIRT = 0.9736.
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Fig. 6. Variance of residuals (VR) method for the shuffled solar flare data. The

estimator HVR is obtained by fitting a least-squares line to the median of the

sample variance of residuals within blocks of size m on a log–log scale. The points

at the very low and high ends (marked by ‘x’) are not used to fit the line, see [28].

The estimated slope of the line is 2HVR = 1.8790.
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We observe that the estimators are not far to the ones estimated by means of
the Hill and Meerschaert–Scheffler estimators: 1/αHE = 0.9091, 1/αMSE =
0.9142.

5. Conclusions

In this paper we have shown that the maximum energy of solar SXR
time series exhibits both heavy-tailed and long-range dependence effects.
The first creates a random number of strong bursts on a background, and
the second forms their persistence between each other. Comparing the values
of the different estimators for the original data series and for the shuffled
data we have estimated the self-similarity exponent H and the tail index α.
For the moment, we cannot answer the question why H and α have such
values, but we hope that launching new space-based systems and installing
big astronomical instruments on the far side of the Moon will be very useful
for the X-ray study of flaring stars. Probably, this will allow one to get new
X-ray data (long-term time series) for these stars to compare their H and α
with the solar parameters found for the Sun.

Our findings help one to construct a statistical model for the solar SXR
activity. FARIMA model driven by Pareto noise for the analysis of solar SXR
data was analyzed in [24]. The FARIMA approach seems plausible because
it offers a lot of flexibility in modeling heavy tails, long- and short-range
dependences. This is especially important in the case, when it is difficult to
propose any clear physical model.
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