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With modern experimental tools it is possible to track the motion of
single nanoparticles in real time, even in complex environments such as
biological cells. The quest is then to reliably evaluate the time series of in-
dividual trajectories. While this is straightforward for particles performing
normal Brownian motion, interesting subtleties occur in the case of anoma-
lously diffusing particles: it is no longer granted that the long time average
equals the ensemble average. We here discuss for two different models of
anomalous diffusion the detailed behaviour of time averaged mean squared
displacement and related quantities, and present possible criteria to anal-
yse single particle trajectories. An important finding is that although the
time average may suggest normal diffusion the actual process may in fact
be subdiffusive.

PACS numbers: 05.40.Fb, 02.50.–r, 87.10.Mn

1. Introduction

The idea to systematically measure individual trajectories of particles
in order to obtain information about their ensemble behaviour essentially
goes back to Einstein’s probabilistic interpretation of diffusion [1]. It was
put to much use in the determination of the Avogadro–Loschmidt number
in the beginning of the 20th century [2]. In fact single trajectories of small
granules in uniform gamboge emulsions obtained by fractional centrifuging
were recorded and analysed quantitatively by Jean Perrin in his seminal
work on the deduction of Avogadro’s constant. A few sample trajectories
from Perrin’s work are reproduced in Fig. 1.
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Fig. 1. Three trajectories obtained by tracing a small grain of putty at intervals

of 30 sec [3].

It was Nordlund who first devised a setup to obtain long time-resolved
trajectory of single particles using a moving photographic film [4]. An exam-
ple for such a trajectory of a small mercury sphere slowly falling in water is
shown in Fig. 2. The Brownian motion superimposed on the drift motion is
clearly visible. For each trajectory Nordlund then plotted the mean squared
displacement and fitted the diffusion constant. For one single trajectory the
result is reproduced in Fig. 3. This is definitely one of the first examples
of time averaging in single particle trajectories. In a similar setup with
a photographical film Kappler used the stochastic deflection of a small mir-
ror suspended on a long thread to produce single time series of the random
torsional movement [5]. This was the last of a long series of experiments to
determine Avogadro’s number from particle trajectories.

Fig. 2. Stroboscopic trajectory of a small mercury sphere slowly falling in water.

The stochastic motion superimposed on the drift produces the wave-like behaviour.

Reproduced from [4].
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Fig. 3. Mean squared displacement obtained from a single trajectory by Nordlund.

The unit of time on the horizontal axis is 1.481 seconds. Nordlund’s result for the

Avogadro number was remarkable: 5.91×1023, within 2% of the best current value [4].

In what follows we investigate long time averages for systems that deviate
from normal diffusion (Brownian motion), characterised by a linear time
dependence of the mean squared displacement. Instead we consider systems
displaying subdiffusion of the type

〈x2(t)〉 = 2Kαt
α , (1)

for 0 < α < 1. Here Kα of dimension cm2/secα is the generalised diffusion
coefficient. Such anomalous scaling of the mean squared displacement is
known from a rich variety of systems including amorphous semiconductors
[6], tracer spreading in underground aquifers [7], or diffusion on percolation
clusters [8]. Also on smaller scales such subdiffusion has been reported, see
the discussion below. Note that equation (1) is an ensemble average,

〈x2(t)〉 =

∞
∫

−∞

x2P (x, t) dx , (2)

where P (x, t)dx is the probability to find the particle in the infinitesmial
interval x, . . . , x+ dx at time t.

In the following we show that the behaviour of the long time average
of the mean squared displacement strongly depends on the actual dynam-
ics underlying the system. In particular we demonstrate that for systems
with diverging characteristic waiting times, connected to ageing phenom-
ena, the time-averaged mean squared displacement scales the same way as
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for Brownian motion, i.e., the actual subdiffusion cannot be recovered from
the time average. Implications of this phenomenon and potential controls
when analysing experimental data are discussed.

2. Time averaged mean squared displacement

With modern experimental tools single trajectories of particles down to
the nanoscale can be obtained, even in complex systems such as biological
cells [9–13]. Often the behaviour of the particles is then inferred from time
series analysis. A convenient measure is the time averaged mean squared
displacement

δ2(∆,T ) =

T−∆
∫

0

[x(t′ +∆) − x(t′)]2dt′

T −∆
. (3)

Here T is the overall measurement time, i.e., the length of the obtained
time series. ∆, often called the lag time, is the width of the time window
sliding across the time series. In an ergodic system the long-time average
will provide the same information as the ensemble average.

For a Brownian particle with a typical waiting time τ between successive
jumps the number of jumps will on average increase like 〈n(t)〉 = t/τ . The
variance of the step size of each jump on average is 〈δx2〉. The ensemble
average of the quantity (3) will therefore behave like

〈

δ2(∆,T )
〉

= 2K1∆ ∴ K1 ≡
〈δx2〉

2τ
, (4)

where we defined the diffusion constant K1. For a Brownian particle we
conclude that the time averaged mean squared displacement δ2 is completely
equivalent to the ensemble average

〈x2(t)〉 =

∞
∫

−∞

x2 P (x, t)dx = 2K1t , (5)

whereP (x, t)dx is again the probability to find the particle in the inter-
val x . . . x+dx at time t. Here we use natural boundary conditions P (|x|→
∞, t)=0 and initial condition P (x, 0) = δ(x). Note that fluctuations around
the ensemble average underlying relation (4) will be small for such a Brow-
nian system.

On a finite domain of size L the distance between successive positions
of the particle is bounded. Averaging over the equilibrium distribution of
variances [x(t′ + ∆) − x(t′)]2 in the integral of equation (3) we obtain the

quantity δ2 ∼ L2/12 (∆ ≫ L2/K1), the same result as for the ensemble
average 〈x2〉.
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2.1. Experimental evidence

A number of recent experiments report subdiffusion in single tracking ex-
periments. This is particularly important in the current quest to understand
transport in biological cells and related processes such as gene regulation.
Thus it was shown that adeno-associated viruses of radius ≈ 15nm in a cell
may perform subdiffusion with α = 0.5 . . . 0.9 [9]; fluorescently labelled mes-
senger RNA chains of length 3000 bases and diameter of some 50 nm subd-
iffuses with α ≈ 0.75 [10]; lipid granules of typical size of few hundred nm
exhibit α ≈ 0.75 . . . 0.85 [11–13]. An analysis imposing normal diffusion on
the tracking data of single cell nuclear organelles shows extreme fluctuations
as function of time along individual trajectories [14]. These findings are in
line with observations from fluorescence correlation spectroscopy for which
subdiffusion was observed for membrane protein motion (α ≈ 0.5 . . . 0.8) [15]
and dextrane polymers of various lengths in living cells and reconstituted
crowded environments (α ≈ 0.5 . . . 1) [16, 17].

In all these experiments the exact physical nature of the subdiffusion
is yet unknown, as well as the time scale over which the subdiffusion per-
sists. Additional information from single particle tracking experiments will
be very important to better understand this phenomenon. Below we discuss
two important stochastic models for subdiffusion and discuss what other
information may be useful.

We note that the nature of subdiffusion is known more precisely from
single tracking of submicron plastic beads in a reconstituted actin network
of typical mesh size ξ: the subdiffusion was shown to be associated with
a power-law waiting time distribution ψ(τ) ≃ τ−1−γ whose index γ varies
between close to zero, for a/ξ ≈ 1 and larger, up to one for a/ξ ≈ 0.3,
where a is the bead size [18]. For larger particles such as the lipid granules
the subdiffusion may therefore be connected to the viscoelasticity of the
medium, similar to the in vitro experiments of reference [18].

3. Single trajectory analysis for anomalous diffusion

We now return to our analysis of the quantity (3) for subdiffusive pro-
cesses. We distinguish continuous time random walk subdiffusion and an-
tipersistent fractional Brownian motion.

3.1. Ageing systems

In the continuous time random walk (CTRW) model, originally devised
to describe anomalous diffusion of charge carriers in amorphous semicon-
ductors [6], the waiting time τ between successive jumps becomes a random
variable. It is distributed with a probability density ψ(τ). This process can
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be interpreted as a particle successively falling into traps [19], whose depth
have a certain distribution. If the latter is exponential the distribution of
waiting times becomes long-tailed [6, 20]

ψ(τ) ∼
τ α

|Γ (−α)|τ1+α
, τ → ∞ , (6)

such that it does not possess a finite characteristic waiting time, a property
typical for ageing systems [21]. In equation (6) the correct dimension is
ensured by the scale factor τ . On an infinite domain the ensemble averaged
mean squared displacement takes on the form (1) where the generalised
diffusion coefficient is defined through Kα = 〈δx2〉/[2Γ (1 + α)τ α] [22].

For a system governed by a waiting time distribution of the type (6) the
average number of jumps no longer grows linearly in time, but like 〈n(t)〉 ∼
tα/[τ αΓ (1 + α)]. This sublinear growth translates into the mean squared
displacement (1), for which one can define an effective time-dependent dif-
fusion constant 〈x2(t)〉 = 2K(t)t with K(t) = Kαt

α−1/Γ (1+α) that decays
over time.

Remarkably the following result is obtained for the time averaged mean
squared displacement (3)

〈

δ2(∆,T )
〉

∼ 2Kα
∆

T 1−α
= 2K(T )∆ . (7)

in the limit ∆ ≪ T [23, 24]. As function of the lag time the time averaged
mean squared displacement cannot be distinguished from the result (4) for
Brownian motion. The linearity in ∆ is indeed confirmed from simulations
in Fig. 4, in which results for different single trajectories are shown.

A striking feature of Fig. 4 is the scatter between different trajectories as
well as deviations from the linear behaviour in some of the trajectories. This
randomness of individual trajectories is due to the fact that the underlying
waiting time distribution has a diverging characteristic time scale. Similar
to the phenomenon of ageing the time average for the individual trajectories
is influenced by one or few extremely long waiting times that, due to the
scale-freeness, can be of the order of the entire measurement time. This
observation holds, no matter how long the observation time T is. In fact
for subdiffusive systems of the CTRW type it was shown that ergodicity is
no longer fulfilled [25]. As a consequence even a long time average is no
longer a fixed quantity but becomes a random variable [26, 27]. For the
single trajectory analysis this implies that the time averaged mean squared
displacement δ2 is random. Its distribution can be calculated, resulting in
the distribution [23]

φα(ξ) =
Γ (1 + α)1/α

αξ1+1/α
lα

(

Γ (1 + α)1/α

ξ1/α

)

, (8)
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Fig. 4. Simulations of different trajectories of the subdiffusive CTRW process with

anomalous diffusion exponent α = 0.75 and overall measurement time T = 108.

The dependence of the time averaged mean squared displacement is linear in ∆.

A distinct scatter between different, greyscale-coded (colour online) single trajec-

tories is observed. The full line is the average behaviour of the shown trajectories.

valid for long observation times T . In equation (8) we introduce the dimen-

sionless random variable ξ ≡ δ2/〈δ2〉. Here lα is a one-sided Lévy stable
law whose Laplace image is exp(−uα), see reference [23] for details. In the
special case α = 1/2 the distribution takes on the Gaussian form

φ1/2(ξ) =
2

π
exp

(

−
ξ2

π

)

, (9)

while in the Brownian limit α = 1 we recover the sharp δ result

φ1(ξ) = δ(ξ − 1) . (10)

The latter result is, therefore, equivalent to the known fact that normal
Brownian diffusion is ergodic, i.e., the (long) time average is identical to the
ensemble average.

For biased diffusion with a constant drift 〈δx〉 6= 0 the time averaged
mean displacement

δ(∆,T ) =

T−∆
∫

0

[x(t′ +∆) − x(t′)]dt′

T −∆
(11)
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is of interest. Indeed, using similar arguments it can be shown that for
∆≪ T the ensemble average of δ becomes

〈

δ(∆,T )
〉

∼
〈δx〉

τ α Γ (1 + α)

∆

T 1−α
, (12)

while the distribution of ξ = δ/〈δ〉 is again given by equation (8) [23]. Not
surprisingly, a similar result has recently been reported for a washboard
potential in presence of a drift [28], pointing at the generic character of our
result (8). We note that for the constant drift case a generalisation of the

Einstein relation of the form 〈δ〉F = F 〈δ2〉/[2kBT ] is revealed [23], relating
the time averages of the first moment under constant bias force F with the
time averaged mean squared displacement in absence of the bias.
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Fig. 5. Time averaged mean squared displacement for a lattice of size 62, for

T = 108 and α = 3/4 (colour online). See text.

How does the time averaged mean squared displacement evolve in a finite
system? One would expect that for short times the linear growth in ∆
should hold while for longer times effects of the boundaries are seen. This
is demonstrated in Fig. 5. There the parameters were chosen such that the
resulting figure strongly resembles the experimental data from reference [10].
It becomes obvious from the data that the turnover from the proportionality
∼ ∆ to a new regime appears like a power-law of slope 0.75. The exact
form of the turnover and the behaviour for longer ∆ are currently under
investigation [29].
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In Fig. 6 we show numerical results for the time averaged mean squared
displacement as function of ∆ on a finite domain. Here, we also include a
truncation of the waiting time distribution ψ(τ) for long τ in the form of

a tempered distribution. It is seen that without truncation the quantity δ2

does not reach the stationary value of the ensemble average, but continues to
grow. When the truncation is introduced the diffusion eventually turns over
to normal diffusion for sufficiently long times (because of the boundaries),
and Brownian behaviour is recovered. In particular we see that all curves in
Fig. 6 turn over to the constant plateau determined by the interval length.
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Fig. 6. Time averaged mean squared displacement as function of lag time ∆ on

a finite domain. The dashed lines are results for the CTRW waiting time distri-

bution ψ(τ) ≃ τα/τ1+α while the full lines include a truncation of the power-law

behaviour such that for longer times Brownian behaviour is recovered, and a well-

defined plateau value reached. See our forthcoming paper [29] for details.

3.2. Fractional Brownian motion

The CTRW model is widely used to model anomalous diffusion phenom-
ena. However, it is by far not the only stochastic model producing anomalous
behaviours of the form (1). We here mention fractional Brownian motion,
the famed stochastic process introduced by Mandelbrot and van Ness [31],
according to whose definition fractional Brownian motion for a given Hurst
parameter 0 < H < 1 is given by

BH(t) =
1

Γ (H + 1/2)

×





t
∫

0

(t−τ)H−1/2dB(τ)

0
∫

−∞

[

(t−τ)H−1/2−(−τ)H−1/2
]

dB(τ)



 . (13)

Here the integrator B corresponds to ordinary Brownian motion.
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Fractional Brownian motion is a self-similar Gaussian process whose in-
crements are stationary [31]. Its covariance follows the form

〈x(t1)x(t2)〉 = DH

(

t2H
1 + t2H

2 − |t1 − t2|
2H
)

, t1 , t2 > 0 , (14)

such that the mean squared displacement is of the form (1) with α = 2H
and Kα replaced by DH = Γ (1− 2H) cos(πH)/[2πH]. Fractional Brownian
motion therefore covers the whole range of anomalous diffusion including
subdiffusion H < 1/2, normal diffusion H = 1/2, superdiffusion (1/2 <
H < 1) and ballistic motion (H = 1). In the latter the particle constantly
moves in one given direction. The resulting trajectory of fractional Brownian
motion is distinguished by a fractal dimension df = 1/H [32]. That means
that for subdiffusion this process has a trajectory that is more space-filling
than both ordinary Brownian motion and CTRW subdiffusion.

Sometimes also different processes are subsumed under the notion of
fractional Brownian motion. These are stochastic differential equations with
power-law memory kernel (fractional Langevin equations) [33, 34].

Due to its stationarity we would expect fractional Brownian motion to
be ergodic in the sense that the long time average and the ensemble mean
coincide. Indeed it can be demonstrated that the ensemble average of the
time averaged mean squared displacement becomes [33]

〈

δ2(∆,T )
〉

= 2DH∆
2H . (15)

Its equivalence 〈δ2〉 = 〈x2〉 to the ensemble averaged mean squared displace-
ment indeed corroborates ergodicity. However, the analysis in reference [33]
shows that (i) the convergence to ergodicity is slow and, somewhat sur-
prisingly, (ii) the convergence as function of time shows a critical point at
H = 3/4. More explicitly, defining the normalised variance

V =

〈

(

δ2(∆,T )
)2
〉

−
〈

δ2(∆,T )
〉2

〈

δ2(∆,T )
〉2

, (16)

it turns out that [33]

V ∼ k(H)















∆/T , 0 < H < 3/4

∆(log T )/T , H = 3/4

(∆/T )4−4H , 3/4 < H < 1

. (17)
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The coefficient k(H) shows a non-smooth transition at H = 3/4 with a di-
vergence on reaching H = 3/4 both from below and above, as shown in
Fig. 7. At H = 3/4 the finite value k(H) = 9/16 = 0.5625 is found. Finally,
we note that in the ballistic limit H = 1 ergodicity is broken, as naively
expected for a particle that does not change direction.
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Fig. 7. Behaviour of the prefactor k(H) from equation (17) as function of the Hurst

coefficient H . Note the finite value H = 3/4.

4. Data analysis

Given actual data in the form of time series from single particle tracking,
how can one decide which process is underlying the dynamics? We here list
a number of properties that may be investigated.

4.1. Trajectories

The trajectories obviously contain more information than the mean
squared displacement. In particular one can measure the waiting time distri-
bution from stalling events in the trajectories. For pronounced subdiffusive
processes with power-law waiting time distribution immobilisation events
should be observed, i.e., for certain time spans neither coordinate should
show significant variation, see, for instance, the trajectories shown in refer-
ence [18]. Due to the scale-free nature of CTRW subdiffusion these immo-
bilisations should span multiple time scales. If such events occur they are
indicative of the nature of the process. Absence of such features in shorter
time series cannot necessarily rule out the CTRW dynamics, in particular
for α closer to one very distinct immobilisation are relatively rare events and
possibly require long time series.
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From the trajectory additional criteria can be inferred. Thus one can
check the temporal statistics for a particle coordinate x remaining above or
below a certain threshold value xt. If the process is non-stationary one would
expect a weak ergodicity breaking for the long time averaged probability of
being above or below xt, i.e., this time average becomes a random variable.

4.2. Variation of the measurement time

As derived above the time averaged results distinctly depend on the
overall measurement time T . Thus CTRW subdiffusion displays an effective
diffusion constant entering the time averaged mean squared displacement,
see equation (7). This K(T ) decays with increasing T as a power-law, re-
flecting the ageing of the system. Fractional Brownian motion’s convergence
to ergodicity includes a T -dependence in the normalised variance V in equa-
tion (17). If it is possible to vary T significantly it could provide very useful
information.

4.3. Scatter

Naturally, finite time series for single particle trajectories show scatter.
For ergodic processes this scatter will decay as function of the measurement
time T , i.e., the longer the time average is running the more the result
converges to the ensemble behaviour. The variance of the scatter will tend
to vanish over time. In contrast, for a process with diverging time scale the
scatter is strong and persists over the entire measurement time T , no matter
how long T is chosen (as long as it is shorter than an eventual truncation
time of the power-law). As it stands the scatter is possibly one of the most
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Fig. 8. Simulation of individual trajectories for fractional Brownian motion for an

interval of length 10 and Hurst exponent H = 1/4. The run time was 4096. Note

that the scatter becomes more pronounced with increasing ∆. For longer ∆ (not

shown here) a plateau is reached, however, closer to T the data become significantly

more noisy.
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significant parameters available from single particle tracking. Numerical
studies suggest that very pronounced scatter would be expected from CTRW
subdiffusion while fractional Brownian motion-type dynamics show much
less scatter, a typical result is shown in Fig. 8.

Of course, one cannot exclude that (part of) the scatter in the experi-
mental data may be due to spatial inhomogeneities, in particular, in systems
as complex as biological cells. Recent studies on lipid granules in living cells
suggest that at least the anomalous diffusion exponent is independent of the
location of the granule in the cell [13]. However, more experimental data are
necessary to tell whether the scatter is predominantly a dynamic feature,
or not.

4.4. Ergodicity parameter

A convenient measure for the breaking of ergodicity is the parameter

EB = lim
T→∞

〈(

δ2
)2 〉

−
〈

δ2
〉2

〈δ2〉2
=

2Γ (1 + α)2

Γ (1 + 2α)
− 1 , (18)

where the right hand side holds for the CTRW subdiffusion model. The
parameter EB varies from EB = 1 for α → 0 monotonically to EB = 0 for
the Brownian limit α = 1. In the special case α = 1/2 one finds EB =
π/2 − 1 ≈ 0.57, while for α = 0.75, EB≈ 0.27. Simulations analysis shows
that the EB parameter is a reliable parameter, however, convergence may
be slow [23].

For fractional Brownian motion the normalised variance V from equation
(17) can also be defined as a measure for ergodicity breaking. For finite
measurement times its value is non-zero, decaying slowly. Variation of the
overall measurement time T may, therefore, decide whether the ergodicity
breaking parameter attains the constant value expected for a non-stationary
process, or decays to zero as expected for fractional Brownian motion-type
processes.

4.5. First passage statistics

Information can also be obtained from the analysis of the first passage
behaviour in a particle trace, we refer to the detailed discussion in refer-
ence [35].

With sufficiently long time series it is possible to discriminate diffusive
mechanisms from the distribution of first passage times, see the discussion
in a forthcoming paper [36].
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4.6. Maximum statistics

An alternative approach to the single trajectory analysis is to calculate
the mean maximal excursion. Is Psup(x0, t) the probability density that the
maximal distance from the starting point reached by the particle from time
0 until t, then we calculate the mean-max variance

m
2 ≡

∞
∫

0

x2
0Psup(x0, t)dx0 . (19)

A detailed investigation of this and related quantities will be presented in
a forthcoming paper [36]. Preliminary investigations show that the maxi-
mum statistics allows better estimates of the dynamic parameters than reg-
ular moments.

Another way to examine the data by maximum statistics is to determine
the probability that the trajectory within a given time stays within a shell
of radius x0t

α/2, that is growing with time. In Fig. 9 we show an analysis
of actual experimental data with relatively short trajectories (1000 steps).
Averaging over a modest number of trajectories produces a remarkably good
data collapse, see reference [36] for details.
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Fig. 9. Plot of one over the probability that the trajectory still is within a shell

of growing radius x0t
α/2, as function of scaled time tα/2. Data points are from

single particle tracking experiments in a crowding agent [36]. The plot shows three

subsets with 293, 243 and 234 trajectories, respectively. The longest trajectories

have 1000 steps.
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5. Conclusions

Single particle tracking is developing towards a standard tool to probe
local physical properties of complex systems. As it delivers the complete
or, at least, projected trajectory of an individual particle, the information
content of the obtained time series is potentially higher than from other
experiments such as fluorescence correlation. One challenge is to extract this
information, and relate this to the underlying physical mechanisms governing
the transport behaviour. This, in turn, requires knowledge on the statistical
behaviour connected with given stochastic processes. Here we analysed some
important quantities in the continuous time random walk model and for
fractional Brownian motion.

For CTRW subdiffusion even a long time average remains a random
quantity, no matter how long the measurement time T is chosen. This is
intimately connected to the non-stationary behaviour and ageing properties
due to the divergence of the characteristic waiting time. We showed that al-
though random the time averaged quantities have a distribution, and can be
characterised by certain quantities such as the time averaged mean squared
displacement and its scatter, or the ergodicity breaking parameter.

Fractional Brownian motion is stationary and ergodic, its time averages
are identical to the ensemble quantities. However, the approach to ergodicity
in a given trajectory is slow.

We discussed various options to analyse single particle trajectories. While
for sufficiently long time series these quantities should allow one to distin-
guish between different stochastic mechanisms such as subdiffusion in the
CTRW or fractional Brownian motion frameworks, short time series will pos-
sibly not allow clearcut statements. Thus, for the example of the data from
reference [10] it would be appealing to say that the power-law behaviour
is real and due to a fractional Brownian motion-type dynamics instead of
a turnover behaviour that only looks like a power-law. However, the signifi-
cant scatter of the anomalous diffusion constant would rather point towards
the CTRW interpretation involving ageing. In similar experiments the vari-
ation of the overall measurement time T is desirable to be able to distinguish
different mechanisms. These questions are quite fundamental in our under-
standing of nonequilibrium phenomena in complex systems.

A final comment on the issue of non-stationarity is in order. Systems
such as biological cells are changing incessantly. They grow, feed, divide,
and in this consume energy provided by food. On a molecular level small
molecules such as water or salts are constantly exchanged on the inter and
intracellular level, and biopolymers such as proteins, RNA, DNA, or cy-
toskeletal fibres are constantly being produced or decay. While this allows
quick equilibration of, e.g., hydrostatic or osmotic pressure with the envi-
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ronment there is no necessity for a cell to be completely stationary. In fact
non-stationary behaviour may in some cases even be beneficial.

We thank Joseph Klafter, Michael Lomholt, Friedrich Simmel, Igor
Sokolov, and Irwin Zaid for useful discussions. We also acknowledge fund-
ing from the Deutsche Forschungsgemeinschaft (DFG). Eli Barkai thanks
the Israel Science Foundation for support.
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