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In exhibition of many real market data we observe characteristic traps.
This behavior is especially noticeable for processes corresponding to stock
prices. Till now, such economic systems were analyzed in the following
manner: before the further investigation trap-data were removed or omit-
ted and then the conventional methods used. Unfortunately, for many ob-
servations this approach seems not to be reasonable therefore, we propose
an alternative attitude based on the subdiffusion models that demonstrate
such characteristic behavior and their corresponding probability distribu-
tion function (pdf) is described by the fractional Fokker—Planck equation.
In this paper we model market data using subdiffusion with a constant
force. We demonstrate properties of the considered systems and propose
estimation methods.

PACS numbers: 05.10.—a, 02.50.Ey, 02.70.—, 89.65.Gh

1. Introduction

Subdiffusion described by the fractional Fokker—Planck equation (FFPE)
plays an important role in statistical physics. It has found an application
in many areas like polymeric networks, porous systems, nuclear magnetic
resonance and transport on fractal objects [1-3]. The most recognizable
features of the subdiffusive dynamics are traps — periods when the test
particle stays motionless. In the general definition of the FFPE the frac-
tional derivative of the Riemann-Liouville type [4] oD}~ defined in (3)
is responsible for the power-law behavior of the mean square displacement,
namely (Y2(t)) o< t%,0 < a < 1, as well as for the heavy-tailed waiting times
in the corresponding CTRW scheme. Thus, the fractional derivative distin-
guishes the FFPE from the traditional Fokker—Planck equation, related to
the classical diffusion.

* Presented at the XXI Marian Smoluchowski Symposium on Statistical Physics Za-
kopane, Poland, September 13-18, 2008.

(1341)



1342 J. JANCZURA, A. WYLOMANSKA

In economics the most classical and still popular approach is the Black—
Scholes model based on the Brownian diffusion process. Although there are
many generalizations of this model (for instance [5-7]), most of them do
not capture important feature observed in market data, namely periods of
constant values. The idea of subdiffusion deals with this problem.

We present two examples of economic data exhibiting subdiffusive be-
havior. The first one comes from the Polish Stock Exchange, while the sec-
ond describes prices from the Nordic Exchange Baltic Market. Regarding
characteristics of considered data we choose the suitable fractional Fokker—
Planck equation with a constant force. The subordinated process defined
in (1) is the stochastic representation of the FFPE, [8,9] (similar relation
in case of space-dependent force is shown in [10]). The approach based on
the link between Langevin-type dynamics and the fractional Fokker—Planck
equation allows us to analyze many characteristics of such processes, such
as moments and quantile lines by using the Monte Carlo methods [10-13].
In the estimation procedure leading to an appropriate subdiffusion model
adequate to real data the most important issue is related to the estimation
of o parameter that is connected with fractional part in FFPE correspond-
ing to the analyzed process. On the other hand « is responsible for observed
traps in subordinated process. Therefore, the estimation procedure should
be based on trap-data. In this paper we attempt to use such approach to
estimate unknown parameter a.

2. Subdiffusion process with constant drift

The subordinated process is defined as follows [8]:

Y(t) = X(Sa(t)), (1)
where {S,(t)}+>01s inverse a-stable subordinator of {U,(7)}r>0 [14,15], i.e.
So(t) =inf{r > 0: Uy(7) > t} (2)

for a-stable nondecreasing Levy process {Uq(T)}r>0 |16] with the Laplace
transform F(e”"Wa()) = ¢=™" 0 < o < 1 and {X(7)},>0 satisfies the fol-
lowing stochastic differential equation with respect to the Brownian motion
{B(7)}r>o0:

dX(r) = Fdr +dB(T), X(0)=0,

with constant force F'. Moreover, B(7) and S,(t) are assumed to be inde-
pendent. The pdf of the process {Y (t)};>0 is given in [9] by the fractional
Fokker—Planck equation [8]:
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where the fractional derivative of the Riemann—Liouville type [4] is defined
as follows for f € C1([0,00)) and a € (0,1):

t

1 d
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0 f(#) Tla) di / f(s)ds (3)
0

Using the form of the solution of the process {Y () }+>0 [8] and methods of

calculating integrals of inverse subordinators [17] we obtain

1

et el W

V(1) = e 1%, (V2(0)) =

(a+1)
The same result might be shown using the recursive relation between the
moments proved in [9].

The explicit formulas for measures of dependence (covariance and cor-
relation functions) of the considered process with F' = 0 can be calculated
by using the fact that {Y'(¢)}+>0 in that case is a martingale with respect to
the o-field Gy defined in details in [18]. Namely, the theoretical covariance
function cov(t,s) = (Y(¢),Y (s)) — (Y (¢))(Y (s)) is as follows:

@

ﬁ for S S t
cov(t,s) = . (5)
m for s >t.

As we observe the covariance depends only on min{¢, s} what indicates that
increments of the analyzed process are non-stationary. The similar problem
is also considered in [19]. In that simple case the correlation function is
given by:

corr(t,s) =

cov(t, s) _ (min{t, s})o‘/2
V()Y (s)2)  \max{t, s}

The form of the subordinated process (1) describing subdiffusion in terms
of stochastic processes provides a powerful analysis tool, namely simulations
and Monte Carlo methods. For a detailed description of the simulation
procedure, see [20].

In Fig. 1 we present mean and variance of the considered subdiffusion
process obtained from Monte Carlo simulations with 10000 iterations. More-
over, in Fig. 2 we demonstrate the quantile lines and two sample trajectories
of the process {Y (¢)}+>0. The covariance based on the 1000 trajectories of
subordinated process with F' = 0, a = 0.7 and theoretical function cov(t, s)
given in formula (5) for fixed value of s = 5 is shown in Fig. 3. As we observe
the presented functions are constant for s > 5.
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Fig. 1. Mean (left panel) and variance (right panel) of the subdiffusion process with
F =0 and a = 0.9 obtained from Monte Carlo simulations with 10000 iterations.
The values are consistent with explicit formulas (4).

Quantile lines

t [day]

Fig. 2. Quantile lines and two sample trajectories of the subdiffusion process with
F =0 and o = 0.9 obtained from Monte Carlo simulations with 10000 iterations.
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Fig.3. The covariance based on the 1000 trajectories of the subordinated process
with ' = 0, a = 0.7 and corresponding the theoretical function cov(t, s) given in
formula (5) for fixed value of s = 5.

3. Estimation of the index «

In order to apply subdiffusion model (1) to real market data it is crucial
to give parameters estimation procedures. Here, we focus on the a-para-
meter estimation.

As we know, the specific traps in subdiffusion trajectories occur when
the time process S, (t) (2) is constant for some period. As S,(t) is the
inverse a-stable subordinator, the length of constant periods has a totally
skewed a-stable distribution. In Fig. 4 we illustrate relation between process
Sa(t) and U, (t). In order to find parameter o we calculate the sizes of traps
and treat them as independent and identically distributed (i.i.d.) a-stable
random variables. Parameter « is then estimated by using methods known
for a-stable distributions.

In our study we consider six methods of a—estimation. The first one,
Hill estimation method [21] is based on the assumption that the upper tail
of the distribution is of the form 1 — F(x) ~ 2~ (heavy tail behavior). If
Xy, X(2),- -+, X(n) are the order statistics of the analyzed sample from the
population with cumulative distribution function (cdf) F' such that Xy <
X2) < ... < X(n), then the Hill estimate based on the k largest statistics
is given by the following equation:

k -1
1 X(N-n

n=1

For the more detailed description of this method and it’s main features
see [22].
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U(1)

Fig. 4. The relation between the process U, (7) and it is inverse subordinator S, (t).
Observe that constant periods of S, (t) occur accordingly to the jumps of the process
Ua (7).

The second considered method proposed in 23], the Pickands estimate,
similar as the Hill method, is based on the heavy-tail behavior. The formula
for the estimate that considers k largest order statistics is as follows:

X(N=k/a)) = X(v—|k/2)) > > -
X(N=|k/2)) — X(N=k)

aPickandS(k) = 10g2 (10g (

The third method of « estimation, the type of EVI estimate (Extreme Value
Index) [24] based on the k largest order statistics has the following form:

-1

~1
1 1 H) (k)

apvi(k) = | —Fx+1 -5 [ 1 - ——=3 ,
mvi(k) amin (k) 2 ( amin (k)2

where

Unfortunately, for the three proposed methods it is difficult to choose the
right value of k. In practice, the estimates are plotted against k and one
looks for the region where the plot levels off to identify the correct order
statistics [22]. Therefore, in our study for simulated data as well as for real
financial data as an estimate we give the range of obtained statistics.

The POT estimate (Peaks Over Threshold) of o parameter [23,25] is
based on the Pickands—Balkema—de Haan theorem that the conditional cdf

Fy(z) =P(X —u<z|X >u), u>0,z>0,
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where X has a-stable distribution, can be approximated by cdf of General-
ized Pareto Distribution (GPD) having the following form:

Galw) =1— (1+ 2)‘“.

In this method for a given sample X1, Xo,..., Xy we select a high threshold
u and denote N, as the number of exceedances above u. Moreover, we denote
Y, =X, —ufork=1,2,..., N, such that X; > u. Next, we fit GPD to the
excesses Y1,Yo,..., Yy, by using maximum likelihood method to estimate
the parameter a.

The next estimation method, the M-S estimate, is proposed by Meer-
schaert and Scheffler in [26]. It is defined for N observations X7, Xs,..., Xy
as follows

_ 2(y + log(N))
apM-S = N )
v+ log, :Zl(Xi —(X))?

where v = 0.5772 is the Euler’s constant, (X) — the sample mean and
log, () = max(0,log(z)). For data from heavy tail distribution these
asymptotics dependent on the tail index and not on the exact form of the
distribution [26].

In the last considered estimation method, PCF (Power Curve Fitting),
we assume that the given sample X7, Xo, ..., Xy is generated as a sequence
of i.i.d. random variables with heavy tail behavior with index «. In such
procedure we create the empirical cdf F' and apply the regression method,
namely to the function 1 — F'(z) we fit, by using least squares method, the
power function of the form ax™%. As a result we obtain the tail index a.

4. Applications

In order to demonstrate the presented estimation methods of a param-
eter let us first consider the simulated subdiffusion process with drift equal
to zero and a = 0.5. The sample trajectory is plotted in Fig 5. Because
the « parameter is responsible for traps observed in subordinated process
before the further analysis we calculate sizes of the observed traps. As we
mentioned before, the estimation procedures are based only on trap-data.
In Table I we demonstrate the obtained values of the estimates of the o pa-
rameter. As we observe the received values indicate the value of « close
to 0.5.

In the next step of our study we consider real data describing stock
prices of two companies: Polish Sanwil and Estonian Kalev. Analyzed data
are available on the web sites of the Polish Stock Exchange and the Nordic
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Fig. 5. Simulated trajectory of the subdiffusion process (1) with ' = 0 and o = 0.5.

TABLE I

The values of o estimates for simulated data.

a Hill Pickands EVI ~ POT M-S PCF
0.5 | (0.4,0.56) (0.480.5) (0.5,0.6) 047 0.5941 0.48

Exchange Baltic Market, see [27,28]. In Fig. 6 we demonstrate logarithmic
prices of the considered assets. Similar as in simulated data we observe here
the trap behavior, therefore we propose to use the subdiffusion process (1).
In the analyzed logarithmic prices we do not observe any trend thus we
suggest to consider the subdiffusion process with force equal to zero. Here,
the constant periods of stock prices occur when the liquidity of the assets
is low. It is common for emerging markets or for small company’s stocks.
Because each transaction on the market brings additional cost, investors
usually do not pay much attention to small fluctuations of stock prices. Thus,
if the price does not change more than 0.1, we treat it as a constant. The
time periods of the considered stock prices are as follows: for Sanwil — from
3/10/2005 to 25/09/2008; for Kalev — from 12/02/1998 to 19/09/2008.
According to the estimation procedure described at the beginning of this
section first we calculate sizes of the traps. However, due to the lack of
continuous data — we consider only daily prices — the obtained values
are only that exceeding the time between quotations. Thus, the estimation
procedures base only on this realizations of a-stable random variables that
are above threshold equal to 1 and characterize only it is tail behavior.
However, each of the described estimates can be calibrated for using only
tail observations. The Hill, the Pickands as well as the EVI procedure is



Subdynamics of Financial Data From Fractional Fokker—Planck . . . 1349

log(price) [log(PLN)]

. . . . . . .
24-04-2002 20-11-2002 30-06-2003 7-01-2004 8-07-2004 30-11-2004 22-04-2005
date

0.7

06

S
@

log(price) [log(EUR)]

o
w

0.2

. . . . .
26-06-2007 4-09-2007 13-11-2007 29-01-2008 10-04-2008 20-06-2008 2-09-2008
date

Fig. 6. Logarithmic daily prices of the Sanwil (upper panel) and the Kalev stocks
(lower panel). Notice similar properties as observed in the simulated subdiffusion
process, see Fig. 5. We also identify trap behavior, however constant periods are
shorter than for simulation with a = 0.5. It suggests higher parameter «, what is
consistent with the estimation results.

based only on the k last order statistics, so they are appropriate for the
considered data sets. The POT estimate requires only the observations that
exceed some threshold u, so for our study we choose u = 1. Also the PCF
method can be calibrated to the analyzed data set by fitting the estimated
non scaled part of the empirical distribution to the function ax™* + b. Only
one from presented estimation methods, the M—S estimate, requires not only
tail observations. In spite of this in order to demonstrate its behavior for
such kind of data we take into consideration the values of the estimate.
Notice the obtained M-S estimates are close to values of another statistics
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for three considered sets of data (including simulated data). In Table 1T we
present the obtained values of the o parameter estimates. For real data we
calculate the a as the mean of POT, M-S and PCF statistics and then we
check if the obtained values are included in the range of the Hill, Pickands
and EVI estimates. Therefore, for Sanwil stock prices we obtain & = 0.64
and for Kalev we get & = 0.86.

TABLE II

The values of o estimates for two kinds of considered data.

Stock’s name Hill Pickands EVI POT M-S PCF

Sanwil (0.4,0.9) (0.8,1.4) (0.6,0.9) 059 071 0.62
Kalev (0.5,0.86) (0.6,1) (0.8,0.9) 0.89 088 0.81

5. Conclusions

Many studies have shown that subdiffusion processes allow for modeling
different kinds of phenomena when the diffusion systems for the observa-
tions seem not to be reasonable. The list of observed processes that exhibit
subdiffusive dynamics is extensive and still growing [1-3]. We also observe
such special behavior in financial data, especially in stock prices, when in
some periods of time quotations exhibit small deviations or are simply on
the same level.

In this paper we considered financial data in context of subdiffusion pro-
cess. Such process with constant drift defined in (1) is proposed as a model
describing logarithmic daily stock prices. We present the form of the solu-
tion of such subordinated system and also the explicit formulas for first and
second moments as well as the covariance and correlation. The analyzed
model exhibit certain deviations from the classical Brownian linear time-
dependence of the centered second moment. This behavior is demonstrated
by using the Monte Carlo method that is based on the link between subd-
iffusion and FFPE [10-13]. Moreover, we refer to the FFPE that describes
the pdf of the considered process.

In this article we proposed a new approach concerning the application
of the subdiffusion process to market data. This issue is still missing and,
therefore, we overcome this gap by proposing estimation techniques what can
be a starting point to prediction of such systems. The analyzed approach
can be used in various fields connected with market concerns, such as pricing
financial instruments and issues of financial engineering.
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