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We discuss dual time evolution scenarios which, albeit running accord-
ing to the same real time clock, in each considered case may be mapped
among each other by means of a suitable analytic continuation in time
procedure. This dynamical duality is a generic feature of diffusion-type
processes. Technically that involves a familiar transformation from a non-
Hermitian Fokker–Planck operator to the Hermitian operator (e.g. Schrö-
dinger Hamiltonian), whose negative is known to generate a dynamical
semigroup. Under suitable restrictions upon the generator, the semigroup
admits an analytic continuation in time and ultimately yields dual motions.
We analyze an extension of the duality concept to Lévy flights, free and
with an external forcing, while presuming that the corresponding evolution
rule (fractional dynamical semigroup) is a dual counterpart of the quantum
motion (fractional unitary dynamics).

PACS numbers: 02.50.Ey, 05.20.–y, 05.40.Jc

1. Brownian motion inspirations

1.1. Diffusion-type processes and dynamical semigroups

The Langevin equation for a one-dimensional stochastic diffusion process
in an external conservative force field F = −(∇V ): ẋ = F (x) +

√
2Db(t),

where b(t) stands for the normalized white noise 〈b(t)〉 = 0, 〈b(t′)b(t)〉
= δ(t − t′), gives rise to the corresponding Fokker–Planck equation for the
probability density ρ(x, t):

∂tρ = D∆ρ−∇(Fρ) . (1)
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By means of a standard substitution ρ(x, t) = Ψ(x, t) exp[−V (x)/2D], [1],
we pass to a generalized diffusion equation for an auxiliary function Ψ(x, t):

∂tΨ = D∆Ψ − V(x)Ψ , (2)

where a compatibility condition V(x) = (1/2)[(F 2/2D) +∇F ] needs to be
respected. This transformation assigns the role of the dynamics generator
to the Hermitian (eventually self-adjoint) operator −Ĥ = D∆− V .

Under suitable restrictions upon V (x), −Ĥ becomes a legitimate gener-

ator of a contractive dynamical semigroup exp(−Ĥt), t ≥ 0. If additionally
the dynamical semigroup is amenable to an analytic continuation in time,
the contractive semigroup operator exp(−Ĥt) can be related with the uni-

tary operator exp(−iĤt) via so-called Wick rotation t → it. This duality
observation underlies our forthcoming discussion and generalizations to Lévy
flights framework.

1.2. Free propagation and its analytic continuation in time

The standard theory of Gaussian diffusion-type processes takes the
Wiener process as the “free noise” model, with the Laplacian as the “noise”
generator. It is an element of folk lore that the related dissipative semi-
group dynamics exp(tD∆) = exp(−tĤ0) (and thus the heat equation) can

be mapped into the unitary dynamics exp(itD∆) = exp(−itĤ0) (and thus
the free Schrödinger equation), by means of an analytic continuation in
time procedure, [2]. A parameter D may be interpreted dimensionally as
D = ~/2m, or D = kBT/mβ (Einstein’s fluctuation-dissipation statement).

Quite often, this mapping is represented by a formal it → t time trans-
formation of the free Schrödinger picture dynamics (one should be aware
that to execute a mapping for concrete solutions, a proper adjustment of
the time interval boundaries is necessary):

i∂tψ = −D△ψ −→ ∂tθ∗ = D△θ∗ , (3)

where the notation θ∗ for solutions of the heat equation has been adopted,
to stay in conformity with the forthcoming more general discussion, where
θ∗(x, t) needs not to be a probability density, [2–4].

The mapping is usually exemplified in terms of integral kernels g and k
as follows, c.f. also [5]:

ψ(x, t) =

∫

dx′g(x − x′, t)ψ(x′, 0) ,

g(x− x′, t) .
= k(x− x′, it) = (4πiDt)−1/2 exp

[

− (x− x′)2
4iDt

]

(4)
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and θ∗(x, t) =

∫

dx′k(x− x′, t)θ∗(x′, 0) ,

k(x− x′, t) .
= g(x− x′,−it) = (4πDt)1/2 exp

[

− (x− x′)2
4Dt

]

, (5)

where the initial t = 0 data need to be properly adjusted. Here, g(x−x′, t) is
an integral kernel of the unitary evolution operator: [exp(iDt∆)ψ](x, 0) =
ψ(x, t). The heat kernel k(x− x′, y) plays the same role with respect to the
contractive semigroup operator: [exp(Dt∆) θ∗](x, 0).

The special choice of

ψ(x, 0) = (πα2)−1/4 exp

(

− x2

2α2

)

(6)

implies

ψ(x, t) =

(

α2

π

)1/4

(α2 + 2iDt)−1/2 exp

[

− x2

2(α2 + 2iDt)

]

(7)

and

θ∗(x, t)
.
= ψ(x,−it) =

(

α2

π

)1/4

(α2 + 2Dt)−1/2 exp

[

− x2

2(α2 + 2Dt)

]′

(8)

with θ∗(x, 0) = ψ(x, 0).
We note that ρ = |ψ|2 = ψψ∗ is a quantum mechanical probability

density on R for all times

ρ(x, t) =

[

α2

π(α4 + 4D2t2)

]1/2

exp

[

− α2x2

α4 + 4D2t2

]

. (9)

The real solution θ∗(x, t) of the heat equation is not a probability density
ρ(x, t) = θ∗(x, t)θ(x, t), unless multiplied by an appropriate real function
θ(x, t) which solves the time adjoint heat equation (that becomes an ill-
posed dynamical problem if considered carelessly).
Case 1: Since ρ(x, t) = [2π(α2 + 2Dt)]−1/2 exp[−x2/2(α2 + 2Dt)] actually
is an example of the free Brownian motion probability density for all t ≥ 0,
we infer

ρ(x, t) = (4πα2)1/4 θ∗(x, t)
.
= (θ θ∗)(x, t) , (10)

where θ(x, t) ≡ θ = (4πα2)1/4 is interpreted as a trivial (constant) so-
lution of the time adjoint heat equation ∂tθ = −D∆θ. We stress that
θ∗ = (4πα2)−1/4ρ ∼ ρ. This, looking redundant observation, will prove
quite useful in a more general framework to be introduced in below.
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Case 2: A complex conjugate ψ∗(x, t)=ψ(x,−t) of ψ(x, t), Eq. (7), solves the
time-adjoint Schrödinger equation i∂tψ

∗ =D∆ψ∗. Hence a time-symmetric
approach to the analytic continuation in time might look more compelling.
Indeed

θ(x, t)
.
=ψ∗(x, it)=

(

α2

π

)1/4

(α2−2Dt)−1/2 exp

[

− x2

2(α2−2Dt)

]

(11)

is a legitimate solution of the time-adjoint heat equation ∂tθ = −D∆θ as
long as t ∈ [−T/2,+T/2] where T = α2/D.

In the present case, both time adjoint equations set well defined Cauchy
problems (at least in the just defined time interval). The subtle point is
that the would-be “initial” data for the backward in time evolution, in fact
need to be the terminal data, given at the end-point T/2 of the considered
time-interval.

The only propagation tool, we have in hands, is the heat kernel (3): k(x−
x′, t→ t−t′) with t ≥ t′. There holds θ∗(x, t) =

∫

k(x−x′, t−t′) θ∗(x′, t′) dx′
and θ(x′, t′) =

∫

θ(x, t) k(x− x′, t− t′) dx for any t′ < t ∈ [−T/2,+T/2].
The original quantum mechanical probability density ρ = |ψ|2 = ψψ∗,

Eq. (7), is mapped into a Brownian bridge (pinned Brownian motion) prob-
ability density:

ρ(x,±it) .
= ρ(x, t)=(θθ∗)(x, t)=

[

α2

π(α4−4D2t2)

]1/2

exp

[

− α2x2

α4−4D2t2

]

.

(12)
The price paid for the time-symmetric appearance of this formula is a limita-
tion of the admissible time span to a finite time-interval of length T = α2/D.

Case 3: To make a direct comparison of Case 2 with the previous Case 1,
let us confine the time interval of Case 2 to [0,+T/2]. Now, a conditional
Brownian motion connects ρ(x, 0) = ρ(x, 0) = (α2π)−1/2 exp(−x2/α2) with
ρ(x, t → +T/2) of Eq. (10). Because of T = α2/D, as t → T/2, instead of
a regular function we arrive at the linear functional (generalized function),
here represented by the Dirac delta δ(x). Note that δ(x− x′) is a standard
initial t = 0 value of the heat kernel k(x− x′, t).

This behavior is faithfully reproduced by the time evolution of θ∗(x, t)
and θ(x, t) that compose ρ(x, t) = (θ∗ θ)(x, t) for t ∈ [0, T/2]. The initial
value of θ∗(x, 0) = ψ(x, 0), Eq. (6), is propagated forward in accordance with
Eq. (8) to θ∗(x, T/2) = (4πα2)−1/4 exp(−x2/4α2).

In parallel, θ(x, t) of (11) interpolates backwards between θ(x, T/2) ≡
(4πα2)1/4 δ(x) and θ(x, 0) = θ∗(x, 0). We have here employed an iden-
tity δ(ax) = (1/|a|)δ(x). Because of f(x)δ(x) ≡ f(0)δ(x), we arrive at
ρ(x, T/2) = (θ∗ θ)(x, T/2) ≡ δ(x).
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1.3. Schrödinger’s boundary data problem

The above discussion provides particular solutions to so-called Schrödin-
ger boundary data problem, under an assumption that a Markov stochastic
process which interpolates between two a priori given probability densities
ρ(x, 0) and ρ(x, T/2) can be modeled by means of the Gauss probability
law (e.g. in terms of the heat kernel). That incorporates the free Brownian
motion (Wiener process) and all its conditional variants, Brownian bridges
being included, [3, 4] and [6–8], c.f. also [2].

For our purposes the relevant information is that, if the interpolating
process is to display the Markov property, then it has to be specified by the
joint probability measure (A and B are Borel sets in R):

m(A,B) =

∫

A

dx

∫

B

dym(x, y) , (13)

where
∫

Rm(x, y)dy = ρ(x, 0), and
∫

Rm(x, y)dx = ρ(y, T/2). From the start,
we assign densities to all measures to be dealt with, and we assume the
functional form of the density m(x, y)

m(x, y) = f(x)k(x, 0, y, T/2)g(y) (14)

to involve two unknown functions f(x) and g(y) which are of the same sign
and nonzero, while k(x, s, y, t) is any bounded strictly positive (dynamical
semigroup) kernel defined for all times 0 ≤ s < t ≤ T/2. For each concrete
choice of the kernel, the above integral equations are known to determine
functions f(x), g(y) uniquely (up to constant factors).

By denoting θ∗(x, t) =
∫

f(z)k(z, 0, x, t)dz and θ(x, t) =
∫

k(x, t, z, T/2)
×g(z)dz it follows that

ρ(x, t) = θ(x, t)θ∗(x, t) =

∫

p(y, s, x, t)ρ(y, s) dy , (15)

p(y, s, x, t) =
k(y, s, x, t) θ(x, t)

θ(y, s)
,

for all 0 ≤ s < t ≤ T/2. The above p(y, s, x, t) is the transition probability
density of the pertinent Markov process that interpolates between ρ(x, 0)
and ρ(x, T/2). Cases 1 through 3 are particular examples of the above
reasoning, once k(x, s, y, t) is specified to be the heat kernel (3) and the
corresponding boundary density data are chosen. Clearly, θ∗(x, 0) = f(x)
while θ(x, T/2) = g(x).

We recall that in the case of free evolution, by setting θ(x, t) = θ ≡
const., as in Case 1, we effectively transform an integral kernel k of the
L1(R) norm-preserving semigroup into a transition probability density p of
the Markov stochastic process. Then θ∗ ∼ ρ.
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2. Free noise models:
Lévy flights and fractional (Lévy) semigroups

The Schrödinger boundary data problem is amenable to an immediate
generalization to infinitely divisible probability laws which induce contrac-
tive semigroups (and their kernels) for general Gaussian and non-Gaussian
noise models. They allow for various jump and jump-type stochastic pro-
cesses instead of a diffusion process.

A subclass of stable probability laws contains a subset that is associated
in the literature with the concept of Lévy flights. At this point let us invoke
a functional analytic lore, where contractive semigroup operators, their gen-
erators and the pertinent integral kernels can be directly deduced from the
Lévy–Khitchine formula, compare e.g. [8].

Let us consider semigroup generators (Hamiltonians, up to dimensional

constants) of the form Ĥ = F (p̂), where p̂ = −i∇ stands for the momentum
operator (up to the disregarded ~ or 2mD factor) and for −∞ < k <
+∞, the function F = F (k) is real valued, bounded from below and locally
integrable. Then,

exp(−tĤ) =

+∞
∫

−∞

exp[−tF (k)] dE(k) , (16)

where t ≥ 0 and dE(k) is the spectral measure of p̂.
Because of

(E(k)f)(x) =
1√
2π

k
∫

−∞

exp(ipx)f̃(p) dp , (17)

where f̃ is the Fourier transform of f , we learn that

[exp(−tĤ)]f(x) =





+∞
∫

−∞

exp(−tF (k))dE(k)f



 (x)

=
1√
2π

+∞
∫

−∞

exp[−tF (k)]
d

dk





k
∫

−∞

exp(ipx)f̃(p)dp



 dk

=
1√
2π

+∞
∫

−∞

exp(−tF (k)) exp(ikx)f̃ (k)dk

=
[

exp(−tF (p))f̃(p)
]∨

(x) , (18)

where the superscript ∨ denotes the inverse Fourier transform.
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Let us set

kt =
1√
2π

[exp(−tF (p)]∨ . (19)

Then the action of exp(−tĤ) can be given in terms of a convolution (i.e. by
means of an integral kernel kt ≡ k(x− y, t) = k(y, 0, x, t)):

exp(−tĤ)f = [exp(−tF (p))f̃(p)]∨ = f ∗ kt , (20)

where

(f ∗ g)(x) :=

∫

R

g(x− z)f(z)dz . (21)

We shall restrict considerations only to thoseF (p)which give rise to positi-
vity preserving semigroups: if F (p) satisfies the celebrated Lévy–Khintchine
formula, then kt is a positive measure for all t ≥ 0. The most general case
refers to a combined contribution from three types of processes: determin-
istic, Gaussian, and the jump-type process.

We recall that a characteristic function of a random variable X com-
pletely determines a probability distribution of that variable. If this distribu-
tion admits a density we can write E[exp(ipX)] =

∫

R ρ(x) exp(ipx)dx which,
for infinitely divisible probability laws, gives rise to the Lévy–Khintchine for-
mula

E[exp(ipX)] = exp{iαp−(σ2/2)p2+

+∞
∫

−∞

[

exp(ipy)− 1− ipy

1+y2

]

ν(dy)} , (22)

where ν(dy) stands for the so-called Lévy measure. In terms of Markov
stochastic processes all that amounts to a decomposition of Xt into

Xt = αt+ σBt + Jt +Mt , (23)

where Bt stands for the free Brownian motion (Wiener process), Jt is a Pois-
son process while Mt is a general jump-type process (more technically, mar-
tingale with jumps).

By disregarding the deterministic and jump-type contributions in the
above, we are left with the Wiener process Xt = σBt. For a Gaussian ρ(x) =
(2πσ2)−1/2 exp(−x2/2σ2) we directly evaluate E[exp(ipx)] = exp(−σ2p2/2).

Let us set σ2 = 2Dt. We get E[exp(ipXt)] = exp(−tDp2) and subse-
quently, by employing p→ p̂ = −i∇, we arrive at the contractive semigroup
operator exp(tD∆) where the one-dimensional Laplacian ∆ = d2/dx2 has
been introduced. That amounts to choosing a special version of the previ-
ously introduced Hamiltonian Ĥ = F (p̂) = Dp̂2. Note that we can get read
of the constant D by rescaling the time parameter in the above.
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Presently, we shall concentrate on the integral part of the Lévy–Khintchine
formula, which is responsible for arbitrary stochastic jump features. By
disregarding the deterministic and Brownian motion entries we arrive at:

F (p) = −
+∞
∫

−∞

[

exp(ipy)− 1− ipy

1 + y2

]

ν(dy) , (24)

where ν(dy) stands for the appropriate Lévy measure. The corresponding
non-Gaussian Markov process is characterized by

E[exp(ipXt)] = exp[−tF (p)] (25)

with F (p), (22). Accordingly, the contractive semigroup generator may be

defined as follows: F (p̂) = Ĥ.

For concreteness we can mention some explicit examples of non-Gaussian
Markov semigroup generators. F (p) = γ|p|µ where µ < 2 and γ > 0 stands
for the intensity parameter of the Lévy process, upon p → p̂ = −i∇ gives
rise to a pseudo-differential operator Ĥ = γ∆µ/2 often named the fractional
Hamiltonian. Note that, by construction, it is a positive operator (quite
alike −D∆).

The corresponding jump-type dynamics is interpreted in terms of Lévy
flights. In particular

F (p) = γ|p| → Ĥ = F (p̂) = γ|∇| .= γ(|∆|)1/2 (26)

refers to the Cauchy process.

Since we know that the probability density of the free Brownian motion
is a solution of the Fokker–Planck (here, simply — heat) equation

∂tρ = D∆ρ (27)

it is instructive to set in comparison the pseudo-differential Fokker–Planck
equation which corresponds to the fractional Hamiltonian and the fractional
semigroup exp(−tĤ) = exp(−γ|∆|µ/2)

∂tρ = −γ|∆|µ/2ρ . (28)

As mentioned in the discussion of Case 1, instead of ρ in the above we can
insert θ∗ ∼ ρ, while remembering that θ ≡ const.



Lévy Flights, Dynamical Duality and Fractional Quantum Mechanics 1361

3. Free fractional Schrödinger equation

Fractional Hamiltonians Ĥ = γ|∆|µ/2 with µ < 2 and γ > 0 are self-
adjoint operators in suitable L2(R) domains. They are also positive opera-
tors, so that the respective fractional semigroups are holomorphic, i.e. we
can replace the time parameter t by a complex one σ = t+ is, t > 0 so that

exp(−σĤ) =

∫

R

exp(−σF (k)) dE(k) . (29)

Its action is defined by

[exp(−σĤ)]f =
[

(f̃ exp(−σF )
]∨

= f ∗ kσ . (30)

Here, the integral kernel reads kσ = 1/
√

2π [exp(−σF )]∨. Since Ĥ is

self adjoint, the limit t ↓ 0 leaves us with the unitary group exp(−isĤ),

acting in the same way: [exp(−isĤ)]f = [f̃ exp(−isF )]∨, except that now
kis := 1/

√
2π[exp(−isF )]∨ in general is not a probability measure.

In view of unitarity, the unit ball in L2 is an invariant of the dynamics.
Hence probability densities, in a standard form ρ = ψ∗ ψ can be associated
with solutions of the free fractional (pseudodiferential) Schrödinger equa-
tions:

i∂tψ(x, t) = γ|∆|µ/2ψ(x, t) (31)

with initial data ψ(x, 0). Attempts towards formulating the fractional quan-
tum mechanics can be found in Refs. [8, 11–13].

All that amounts to an analytic continuation in time, in close affinity
with the Gaussian pattern (1):

i∂tψ = γ|∆|µ/2ψ ←→ ∂tθ
∗ = −γ|∆|µ/2θ∗ . (32)

We assume that θ∗ ∼ ρ and thence the corresponding θ ≡ const.
Stable stochastic processes and their quantum counterparts are plagued

by a common disease: it is extremely hard, if possible at all, to produce
insightful analytic solutions. To get a flavor of intricacies to be faced and the
level of technical difficulties, we shall reproduce some observations in regard
to the Cauchy dynamical semigroup and its unitary (quantum) partner. For
convenience we scale out a parameter γ.

For the Cauchy process, whose generator is |∇|, we deal with a proba-
bilistic classics:

ρ(x, t) =
1

π

t

t2 + x2
=⇒ k(y, s, x, t) =

1

π

t− s
(t− s)2 + (x− y)2 . (33)



1362 P. Garbaczewski

where 0<s<t. We have 〈exp[ipX(t)]〉 :=
∫

R

exp(ipx)ρ(x, t) dx=exp[−tF (p)]

= exp(−|p|t) and

ρ(x, t) =

∫

R

k(y, s, x, t) ρ(y, s) dy (34)

for all t > s ≥ 0. We recall that lim t↓0
t

π(x2+t2)
≡ δ(x).

The characteristic function of k(y, s, x, t) for y, s fixed, reads exp[ipy
−|p|(t− s)], and the Lévy measure needed to evaluate the Lévy–Khintchine
integral reads:

ν0(dy) := lim
t↓0

[

1

t
k(0, 0, y, t)

]

dy =
dy

πy2
. (35)

To pass to a dual Cauchy–Schrödinger dynamics, we need to perform
an analytic continuation in time. We deal with a holomorphic fractional
semigroup exp(−σt|∇|), σ = t + is, (27). It is clear that exp(−t|∇|) and
exp(−is|∇|) have a common, identity operator limit as t ↓ 0 and s ≡ t ↓ 0.

An analytic continuation of the Cauchy kernel by means of (28) gives
rise to:

kt(x)=
1

π

t

x2 + t2
−→gs(x)

.
=kis(x)=

1

2
[δ(x−s)+δ(x+s)]+

1

π
P is

x2−s2 , (36)

where P indicates that a convolution of the integral kernel with any function
should be considered as a principal value of an improper integral, [8]. This
should be compared with an almost trivial outcome of the previous mapping
(2)→ (3). Here, we employ the usual notation for the Dirac delta functionals,
and the new time label s is a remnant of the limiting procedure t ↓ 0 in
σ = t+ is.

The function denoted by is/π(x2 − s2) comes from the inverse Fourier
transform of −i/(

√
2π) sgn(p) sin(sp). Because of

[sgn(p)]∨ = i

√

2

π
P

(

1

x

)

, (37)

where P( 1
x) stands for the functional defined in terms of a principal value of

the integral. Using the notation δ±s for the Dirac delta functional δ(x∓ s):

[sin(sp)]∨ = i

√

π

2
(δs − δ−s) (38)

we realize that
1

π

is

x2 − s2 =
i

2π
(δs − δ−s) ∗ P

(

1

x

)

(39)
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is given in terms of the implicit convolution of two generalized functions.
Obviously, a propagation of an initial function ψ0(x) to time t > 0:

ψ(x, t) =

∫

R

g(x− x′, t)ψ0(x
′) dx′ (40)

gives a solution of the fractional (Cauchy) Schrödinger equation
i∂tψ = −|∇|ψ.

In comparison with the Gaussian case of Sec. 1, one important difference
must be emphasized. The improper integrals, which appear while evaluating
various convolutions, need to be handled by means of their principal value.
Therefore, a simple it → t transformation recipe no longer works on the
level of integral kernels and respective ψ and θ∗ functions.

One explicit example is provided by the incongruence of (31) and (34)
with respect to the formal t → −it mapping. Another is provided by con-
sidering specific solutions of pseudo-differential equations (30).

To that end, let us consider θ∗0(x) = (2/π)1/21/(1 + x2), together with
θ = (2π)−1/2. Then, θ θ∗(x, 0) = 1/(π(1 + x2)) is an L(R) normalized
Cauchy density, while θ∗0(x) itself is the L2(R) normalized function. Clearly:

θ∗(x, t) = [exp(−t|∇|)θ∗0](x) =

∫

k(y, 0, x, t)θ∗(y, 0)dy

=

(

2

π

)1/2 1 + t

x2 + (1 + t)2
(41)

while the corresponding ψ(x, t) with ψ0(x) = θ∗0(x) reads (for details see
e.g. [8]):

ψ(x, s) = [exp(−is|∇|)ψ0](x)

=
1

2
[ψ0(x+ s)+ψ0(x− s)]+

i

2
[(x−s)ψ0(x−s)−(x+s)ψ0(x+s)] . (42)

4. Dynamical duality in external potentials:
fractional Schrödinger semigroups and Lévy flights

4.1. Schrödinger semigroups for Smoluchowski processes

Considerations of Sec. 1, where the free quantum dynamics and free
Brownian motion were considered as dual dynamical scenarios, can be gen-
eralized to an externally perturbed dynamics, [2]. Namely, one knows that
the Schrödinger equation for a quantum particle in an external potential
V (x), and the generalized heat equation are connected by analytic contin-
uation in time, known to take the Feynman–Kac (holomorphic semigroup)
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kernel into the Green function of the corresponding quantum mechanical
problem

i∂tψ = −D∆ψ + Vψ ←→ ∂tθ∗ = D∆θ∗ − Vθ∗ . (43)

Here V .
= V (x)/2mD.

For V = V (x), x ∈ R, bounded from below, the generator Ĥ = −2mD2△
+V is essentially self adjoint on a natural dense subset of L2, and the ker-
nel k(x, s, y, t) = [exp[−(t− s)Ĥ]](x, y) of the related dynamical semigroup

exp(−tĤ) is strictly positive. The quantum unitary dynamics exp(−iĤt)
is an obvious result of the analytic continuation in time of a dynamical
semigroup.

Assumptions concerning the admissible potential may be relaxed. The
necessary demands are that Ĥ is self-adjoint and bounded from below. Then
the respective dynamical semigroup is holomorphic.

The key role of an integral kernel of the dynamical semigroup operator
has been elucidated in formulas (11)–(13), where an explicit form of a tran-
sition probability density of the Markov diffusion process was given. We
have determined as well the time development of θ∗(x, t) and θ(x, t), so that
ρ(x, t) = (θθ∗)(x, t) is a probability density of the pertinent process.

If we a priori consider θ(x, t) in the functional form θ(x, t)
.
= expΦ(x, t),

so that θ∗(x, t)
.
= ρ(x, t) exp[−Φ(x)], and properly define the forward drift

b(x, t)
.
= 2D∇Φ(x, t) in the pertinent Fokker–Planck equation:

∂tρ = D∆ρ−∇(b ρ) (44)

we can recast a diffusion problem in terms of a pair of time adjoint general-
ized heat equations

∂tθ∗ = D∆θ∗ − Vθ∗ (45)

and

∂tθ = −D∆θ + Vθ , (46)

i.e. as the Schrödinger boundary data problem, where an interpolating
stochastic process is uniquely determined by a continuous and positive
Feynman–Kac kernel of the Schrödinger semigroup exp(−tĤ), where Ĥ =
−D∆+ V.

If our departure point is the Fokker–Planck (or Langevin) equation with
the a priori prescribed potential function Φ(x, t) for the forward drift b(x, t),
then the backward equation (44) becomes an identity from which V directly
follows, in terms of Φ and its derivatives, [6, 7]:

V(x, t) =

[

∂tΦ +
1

2

(

b2

2D
+∇b

)]

. (47)
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For the time-independent drift potential, which is the case for standard
Smoluchowski diffusion processes, we get (c.f. also [1], where the transfor-
mation of the Fokker–Planck equations (42) into an associated Hermitian
problem (43) is described in detail):

V(x) =

[

1

2

(

b2

2D
+∇b

)]

. (48)

Notice that Φ(x) is defined up to an additive constant.
To give an example of a pedestrian reasoning based on the above pro-

cedure in case of a concrete Smoluchowski diffusion processes, let us begin
from the Langevin equation for the one-dimensional stochastic process in
the external conservative force field F (x) = −(∇V )(x) (to keep in touch
with the previous notations, note that Φ ≡ −V ):

dx

dt
= F (x) +

√
2DB(t) , (49)

where B(t) stands for the normalized white noise: 〈B(t)〉 = 0, 〈B(t′)B(t)〉 =
δ(t− t′).

The corresponding Fokker–Planck equation for the probability density
ρ(x, t) reads:

∂tρ = D∆ρ−∇(Fρ) (50)

and by means of a substitution ρ(x, t) = θ∗(x, t) exp[−V (x)/2D], [1], can be
transformed into the generalized diffusion equation for an auxiliary function
θ∗(x, t):

∂tθ∗ = D∆θ∗ − Vθ∗ , (51)

where the consistency condition (reconciling the functional form of V with
this for F )

V =
1

2

(

F 2

2D
+∇F

)

(52)

directly comes from the time-adjoint equation

∂tθ ≡ 0 = −D∆θ + Vθ (53)

with θ(x) = exp[−V (x)/2D].
For the Ornstein–Uhlenbeck process b(x) = F (x) = −κx and accordingly

V(x) =
κ2x2

4D
− κ

2
(54)

is an explicit functional form of the potential V, present in previous formulas
(41)–(44).
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4.2. Fractional semigroups and perturbed Lévy flights

External perturbations in the additive form:

i∂tψ(x, t) = γ|∆|µ/2ψ(x, t) + V(x)ψ(x, t) , (55)

were considered in the framework of fractional quantum mechanics, [11–13],
c.f. also [8, 9]. With the dual dynamics concept in mind, Eq. (30), we
expect that an analytic continuation in time (if admitted) takes us from the
fractional Schrödinger equation to the fractional analog of the generalized
diffusion equation:

∂tθ
∗ = −γ|∆|µ/2θ∗ − Vθ∗ . (56)

The time-adjoint equation has the form

∂tθ = γ|∆|µ/2θ + Vθ . (57)

We shall be particularly interested in the time-independent θ(x, t) ≡ θ(x),
an assumption affine to that involved in the passage from (46)–(48).

Hermitian fractional problems of the form (48) and/or (49) have also
been studied in Refs. [14–16]. However, the major (albeit implicit, never
openly stated) assumption of Refs. [14–16] was to consider the so-called step
Lévy process instead of the jump-type Lévy process proper.

This amounts to introducing a lower bound on the length of admis-
sible jumps: arbitrarily small jumps are then excluded. That allows to
by-pass a serious technical obstacle. Indeed, for a pseudo-differential opera-
tor γ∆µ/2, the action on a function from its domain can be greatly simplified
by disregarding jumps of length not exceeding a fixed ǫ > 0, see e.g.
Refs. [8, 9]:

γ|∆|µ/2f)(x) = −
∫

R

[

f(x+ y)− f(x)− y∇f(x)

1 + y2

]

ν(dy)

⇓

γ|∆|µ/2
ǫ f)(x) = −

∫

|y|>ǫ

[f(x+ y)− f(x)]ν(dy) . (58)

Compare e.g. Eq. (2) in [15] and Eq. (6) in [16].
As a side comment, let us point out that the principal integral value

issues of Sec. 3 would not arise in our previous discussion of Cauchy flights
and their generators, if arbitrarily small jumps were eliminated from the
start. Nonetheless, if the ǫ ↓ 0 limit is under control, the step process can be
considered as a meaningful approximation of the fully-fledged (perturbed)
jump-type Lévy process. This approximation problem has been investigated
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in detail, in the construction of the perturbed Cauchy process, governed by
the Hermitian dynamical problem (53), with the input (55), under suitable
restrictions on the behavior of V, [9].

Let us come back to time-adjoint fractional equations (54) and (55).
We have ρ(x, t) = (θ θ∗)(x, t) and employ the trial ansatz of Sec. 4.2:

θ(x, t) ≡ θ(x) = exp[Φ(x)] ,

θ∗(x, t) = ρ(x, t) exp[−Φ(x)] . (59)

Accordingly (55) implies, compare e.g. [14] for an independent argument:

V = −γ exp(−Φ)|∆|µ/2 exp(Φ) (60)

to be compared with Eq. (8) in Ref. [15]. In view of (54) we have

∂tρ = θ∂tθ
∗ = −γ exp(φ)[|∆|µ/2 exp(−Φ)ρ] + Vρ .

= −∇j . (61)

Langevin-style description of perturbed Lévy flights (deterministic com-
ponent plus the Lévy noise contribution) are known, [17–19], to generate
fractional Fokker–Planck equations of the form

∂tρ = −∇(F ρ)− γ|∆|µ/2ρ
.
= −∇j . (62)

Thus we face problems which are left unsettled at the present stage of our
investigation:
(i) May the stochastic processes driving (59) and/or (61) coincide under any
circumstances, or basically not at all?
(ii) Give an insightful/useful definition of the probability current j(x, t) in
both considered cases, while remembering that for fractional derivatives the
composition rule for consecutive (Riesz) derivatives typically breaks down.

Both problems (i) and (ii) have an immediate resolution in the case of
diffusion-type processes, where by departing from the Langevin equation
one infers Fokker–Planck and continuity equations. In turn, these equa-
tions can be alternatively derived by means of the Schrödinger boundary
data problem, provided its integral kernel stems from the Schrödinger semi-
group, both in the free and perturbed cases. The stochastic diffusion process
(corresponding to that associated with the Langevin equation) is then re-
constructed as well. Thence, the Schrödinger loop gets closed.

While passing to Lévy processes, we have demonstrated that, with suit-
able reservations, this Schrödinger “loop” can be completed in the case of
free Lévy flights. However, the “loop” remains incomplete (neither definitely
proved or disproved) for perturbed Lévy flights.
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At this point we should mention clear indications [14] that, once dis-
cussing Lévy flights, we actually encounter two different classes of processes
with incompatible dynamical properties. One class is related to the Langevin
equation, another — termed topological — relies on the “potential land-
scape” provided by the effective potential V(x). An extended discussion of
the latter problem has been postponed to the forthcoming paper, c.f. [23].

Partial support from the Laboratory for Physical Foundations of Infor-
mation Processing is gratefully acknowledged.
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