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In the first part of this work the classical and statistical aspects of the
dynamics of an inextensible chain in three dimensions are investigated. In
the second part the special case of a chain admitting only fixed angles with
respect to the z-axis is studied using a path integral approach. It is shown
that it is possible to reduce this problem to a two-dimensional case, in a way
which is similar to the reduction of the statistical mechanics of a directed
polymer to the random walk of a two-dimensional particle.
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1. Introduction

In this report we investigate the dynamics of an inextensible three-
dimensional chain fluctuating in some medium at fixed temperature T . The
chain is considered as the continuous limit of a freely jointed chain, which
consists of a set of N − 1 rigid links of length a and N beads of mass m
attached at the joints between two consecutive segments. The formulation
of the dynamics of a chain with rigid constraints based on the stochastic
equation of Langevin has been extensively studied in a series of seminal
papers by Edwards and Goodyear [1–3]. Unfortunately, to deal with these
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constraints at the level of stochastic equations is a cumbersome task. Up
to recent times, most of the developments in the dynamics of a chain with
rigid constraints have been confined to numerical simulations, see for exam-
ple Refs. [4–6]. For this reason, we recently proposed an interdisciplinary
treatment to this problem combining methods of field theory and statistical
mechanics [7]. The strategy is to regard the change of the chain conforma-
tion as the motion of Brownian particles with constrained trajectories. The
framework of the calculations is that of path integrals. The constraints are
introduced by a procedure which is commonly applied in statistical mechan-
ics in order to enforce topological conditions on a system of linked polymers.
One ends up in this way with a field theory which is a generalized non-linear
sigma model (GNLσM). Recently, this path integral formulation has been
connected to the usual description of the dynamics of a chain as a diffusion
process [8]. The GNLσM may be applied to the cases of an isolated cold
chain or of a hot polymer in the vapor phase. Applications of the GNLσM
have been developed in Refs. [9, 10].

This work is organized as follows. In Sec. 2 the dynamics of a classical
chain is investigated in three dimensions. The kinetic energy of a discrete
chain with N − 1 segments is derived in cartesian and spherical coordi-
nates. Moreover, the limit to a continuous chain is performed. In Sec. 3 the
probability distribution function for an inextensible chain in a heat bath is
constructed using a path integral approach. Sec. 4 is dedicated to the dis-
cussion of the dynamics of a rigid chain in which the segments are allowed
to form only fixed angles with respect to the z-axis. Finally our conclusions
are drawn in Sec. 5.

2. Classical dynamics of a three-dimensional chain

with rigid constraints

Let us consider a chain of N − 1 segments PiPi−1 of fixed lengths li
(i = 2, . . . , N) embedded in a three-dimensional space. With the symbol l1
we denote the distance of the end point P1 from the origin of the coordinate
system. Additionally, there are small beads of mass mi attached at the joints
of the segments PiPi−1, where i = 1, . . . , N .

The above construction describes a freely jointed random chain, which is
one of the basic models used in polymer physics. Freely jointed means that
a given segment can take with equal probability any spatial orientation inde-
pendently of the orientations of the neighbouring segments. The position of
each segment PiPi−1 can be specified by giving the coordinates of its endings
Pi and Pi−1 in cartesian coordinates Pi(t) = [xi(t), yi(t), zi(t)]. However, in
the following it will be more convenient to use spherical coordinates:
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xi(t) =
i
∑

j=1

lj cosϕj(t) sin θj(t) (i = 1, . . . , N) ,

yi(t) =
i
∑

j=1

lj sinϕj(t) sin θj(t) (i = 1, . . . , N) ,

zi(t) =

i
∑

j=1

lj cos θj(t) (i = 1, . . . , N) . (1)

We will also neglect analytical complications connected with the inclusion
of interactions such as the hydrodynamic interaction and steric effects. In
this sense the chain is treated as a free one.

The dynamics of a such a chain can be regarded as the motion of a
system of coupled pendulums. For the sake of simplicity one of the ends
of the chain has been fixed in the origin, see Fig. 1. Apart from that, no
restrictions will be imposed on its motion. This implies that different parts
of the chain are allowed to penetrate one into the other. In this case the
chain is called a phantom chain.

Fig. 1. Three-dimensional conformation of a chain made of links and beads.

The fact that the chain is attached at the origin of the coordinates cor-
responds to the condition P1 = (0, 0, 0) or, equivalently: l1 = l̇1 = 0. The
calculation of the kinetic energy of the system Kdisc(t) in spherical coordi-
nates is long but straightforward and gives as an upshot:
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Kdisc =
N
∑

n=1

n−1
∑

k=1

mn

2
l2n−k+1ϕ̇

2
n−k+1 sin2 θn−k+1+

N
∑

n=1

n−1
∑

k=1

mn

2
l2n−k+1θ̇

2
n−k+1

+

N
∑

n=1

n−1
∑

k=1

n−k
∑

i=2

mnliln−k+1

[

ϕ̇iϕ̇n−k+1 sin θi sin θn−k+1 cos (ϕn−k+1−ϕi)

+θ̇iϕ̇n−k+1 cos θi sin θn−k+1 sin (ϕi − ϕn−k+1)

+ϕ̇iθ̇n−k+1 sin θi cos θn−k+1 sin (ϕn−k+1 − ϕi)

+ θ̇iθ̇n−k+1 (cos θi cos θn−k+1 cos (ϕn−k+1−ϕi)+sin θi sin θn−k+1)
]

. (2)

To pass to the limit of a continuous chain we will use the rigorous procedure
described in [7], where the two-dimensional case was analyzed. In order to
do that, we assume that all segments have the same length and all beads
have the same masses:

li = a (i = 2, . . . , N) , mi =
M

L
a , (i = 1, . . . , N) , (3)

where M =
N
∑

i=1
mi and L are the total mass and the total length of the

chain respectively. The next step consists in performing the limit in which
the continuous system is recovered:

a −→ 0 , N −→ +∞ , Na = L . (4)

One can see from (4) that the product Na is fixed and gives the total length
of the chain. Exploiting Eqs. (2)–(4) it is possible to get the kinetic energy of
the continuous chain. Let us see for example how the recipe for performing
the continuous limit works in the case of the third term in (2):

N
∑

n=1

n−1
∑

k=1

n−k
∑

i=2

mnliln−k+1ϕ̇iϕ̇n−k+1 sin θi sin θn−k+1 cos(ϕn−k+1 − ϕi)

−→
M

L

N
∑

n=1

a

n−1
∑

k=1

a

n−k
∑

i=2

aϕ̇(t, si)ϕ̇(t, sn − sk + a)

× sin θ(t, si) sin θ(t, si − sk + a) cos(ϕ(t, si − sk + a)− ϕ(t, si))

a→0
=

M

L

L
∫

0

ds(L− s)

s
∫

0

dvϕ̇(t, v)ϕ̇(t, s) sin θ(t, v) sin θ(t, s)

× cos(ϕ(t, s) − ϕ(t, v)) . (5)
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In obtaining the last part of the above equation we have exploited the for-
mula

L
∫

0

ds

s
∫

0

duf(u) =

L
∫

0

ds(L− s)f(s) (6)

which is valid for any integrable function f(s). Applying the prescription of
Eq. (5) to the rest of the terms in Eq. (2), we get with the additional help
of Eq. (6) the full expression of the kinetic energy of the continuous chain:

K(t) =
M

L

L
∫

0

ds(L− s)

s
∫

0

dv
[

ϕ̇(t, v)ϕ̇(t, s) sin θ(t, v) sin θ(t, s)

× cos (ϕ(t, s)− ϕ(t, v))

+θ̇(t, v)ϕ̇(t, s) cos θ(t, v) sin θ(t, s) sin (ϕ(t, v) − ϕ(t, s))

+θ̇(t, s)ϕ̇(t, v) sin θ(t, v) cos θ(t, s) sin (ϕ(t, s)− ϕ(t, v))

+ θ̇(t, v)θ̇(t, s)
(

cos θ(t, v) cos θ(t, s) cos (ϕ(t, s)− ϕ(t, v))

+ sin θ(t, v) sin θ(t, s)
)]

. (7)

We would like to stress that the right-hand side of the derived equation
contains five terms, while the initial discrete formula of the kinetic energy of
Eq. (2) contained seven terms. This is due to the fact that the contributions

from Eq. (2) in which ϕ̇2
n−k+1 and θ̇2

n−k+1 are present disappear after taking
the continuous limit because they are proportional to a −→ 0.

For future convenience, we give also the expression of the kinetic energy
in cartesian coordinates:

Kdisc =
N
∑

i=2

mi

2

(

ẋ2
i + ẏ2

i + ż2
i

)

, (8)

where xi, yi and zi have been defined in Eq. (1). The sum over i starts from
2 because one end of the chain coincides with the origin of the axes, so that
l1 = 0. Of course, due to the condition that each segment has a fixed length
li, Eq. (8) must be completed by the following constraints:

(xi − xi−1)
2 + (yi − yi−1)

2 + (zi − zi−1)
2 = l2i (i = 2, . . . , N) . (9)

At this point we have thus two choices. Either we keep the kinetic
energy in the simple form of Eq. (8) at the price of having to deal with the
constraints (9), or we solve those constraints using the spherical coordinates
li, θi, ϕi of Eq. (1). In the latter case, the kinetic energy of Eq. (7) is both
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nonlocal and nonlinear and thus is difficult to be treated. In the continuous
limit, the situation does not change substantially.

We end up this section performing the continuous limit of the kinetic
energy of Eq. (8) and of the constraints (9). Following the prescriptions
given in Eqs. (3)–(4), we obtain:

L =
M

2L

L
∫

0

dsṘ
2
(t, s) (10)

and
R

′2 = 1 , (11)

where we have introduced the vector notation:

R = [x(t, s), y(t, s), z(t, s)] (12)

to describe the position on the chain. In polymer physics R is called the
bond vector. In Eq. (10) and Eq. (11) we have put Ṙ ≡ ∂R

∂t
and R

′ ≡ ∂R

∂s
.

The compatibility of the description in cartesian coordinates with that in
spherical coordinates can be verified by introducing the fields θ(t, s), ϕ(t, s)
connected with the cartesian fields x(t, s), y(t, s), z(t, s) by the relations

x(t, s) =

s
∫

0

du cosϕ(t, u) sin θ(t, u) , (13)

y(t, s) =

s
∫

0

du sinϕ(t, u) sin θ(t, u) , (14)

z(t, s) =

s
∫

0

du cos θ(t, u) . (15)

If one performs the substitutions of Eqs. (13)–(15) in the kinetic energy (10)
and makes use of the formula (6), one arrives exactly at the expression of the
kinetic energy (7). Thus, Eq. (7) and Eq. (10) together with the constraint
(11) are equivalent.

3. Dynamics of a chain immersed in a heat bath

In this section the path integral formulation of an inextensible chain in
the contact with a heat reservoir at temperature T is provided. According
to the construction presented in Sec. 2, the conformation of the chain is
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treated as the limit case of a system of N beads connected by N − 1 links
of fixed length a. In the discrete case the positions of the beads are given
by a set of three-dimensional cartesian vectors Rn(t), (n = 2, . . . , N), while
the conformation of the continuous chain at a given instant t is described
by the vector field R(t, s), s being the arc-length. Furthermore, the chain is
inextensible and thus has constant length L = Na.

In order to describe the thermodynamic fluctuations of the chain, we
regard it as a system of N Brownian particles of mass m whose trajectories
satisfy the constraints of Eq. (9). These constraints enforce the condition
that the total length of the links connecting the beads should be equal to a.
It is possible to rewrite Eq. (9) in the more compact form:

|Rn(t)−Rn−1(t)|
2

a2
= 1 (n = 2, . . . , N) . (16)

We also require that at the initial and final times t = 0 and t = tf the position
of n-th particle is respectively given by Rn(0) = R0,n and Rn(tf) = Rf,n

for n = 2, . . . , N .
In other words, the primary task of this section is to analyze the dynam-

ics of a system which consists in the constrained random walk of the beads
composing the chain. The main difficulty in performing analytical calcula-
tions are obviously the constraints. Starting like in the Rouse model from
an approach to the problem based on the Langevin equation to describe
the motion of a polymer in a solution [11], the treatment of the constraints
becomes awkward. For this reason we will use an interdisciplinary strategy,
which combines the techniques of field theory with those used in the statis-
tical mechanics of polymers with topological constraints. The starting point
of the presented framework is to specify the probability distribution function
ΨN expressed in a path integral form. ΨN contains the physical information
about the system. To be more specific, it measures the probability that the
chain after a given time tf passes from an initial configuration R0,n to a final
configuration Rf,n.

Before we construct the probability function for the chain with rigid
constraints, let’s see how the path integral of a single free Brownian particle
looks like. In order to do this we assume that at the time t = 0 the particle
finds itself at the initial point R0 and starts to perform a random walk. As
it is well known, the probability ψ(tf ;Rf ,R0) that, after the time tf the
particle arrives at a given point Rf , satisfies the diffusion equation

∂ψ

∂tf
= D

∂2ψ

∂R
2 , (17)

where D is the diffusion constant. The boundary condition at tf = 0 is
chosen in such a way that ψ(0,Rf ;R0) = δ(Rf − R0). The solution ψ of
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(17) can be expressed in the form of a path integral

ψ(tf ,Rf ;R0) = A

R(tf )=Rf
∫

R(0)=R0

DR(t) exp



−

tf
∫

0

Ṙ
2
(t)

4D
dt



 , (18)

where A is a normalization factor. We note that the diffusion constant D
appearing in Eq. (18) satisfies the relation D = kTτ

m
, where k is the Boltz-

mann constant, T is the temperature of heat bath and τ is the relaxation
time that characterizes the rate of decay of the drift velocity of the particle.

The above prescription can easily be generalized to a system of N non-
interacting Brownian particles. It this case the probability that the n-th
particle starting from the point R0,n arrives at the point Rf,n is given by

ψN =
N
∏

n=1






A

Rn(tf )=Rf,n
∫

Rn(0)=R0,n

DRn(t)






exp



−
1

2kTτ

N
∑

n=1

tf
∫

0

m

2
Ṙ

2
n(t)dt



 . (19)

In addition, the form of the path integral on the right hand side of Eq. (19)
displays the connection with the partition function of a set of N free particles

in quantum mechanics where the functional AN =
N
∑

n=1

∫ tf
0

m
2 Ṙn(t)dt repre-

sents the action of the system. The well known duality between quantum
mechanics and Brownian motions allows to treat the factor

κ = 2kTτ (20)

as the quantity which plays the role of the Planck’s constant. Indeed, one
may show that the uncertainties in the position and momentum of a Brown-
ian particle due to the frequent collisions with the molecules in the solutions
satisfy an analog of the Heisenberg uncertainty relations: ∆p∆r ∼ κ [12].

Going back to the dynamics of an inextensible chain, the only difference
with respect to a system of free particles is that the bond vector Rn(t)
satisfies the additional constraints (16) restricting the trajectories of motion.
To implement them in the dynamics of noninteracting Brownian particles we
add a product of functional delta functions in the path integral (19) which
imposes the desired conditions (16):

ΨN = C







N
∏

n=1

Rn(tf )=Rf,n
∫

Rn(0)=R0,n

DRn(t)






e
−

M
4kBTτL

PN
n=1

a
R tf
0

dtṘ
2

n(t)

×
N
∏

n=2

δ

(

|Rn(t)−Rn−1(t)|
2

a2
− 1

)

, (21)
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where C is an irrelevant factor and the mass of a single particle present in
Eq. (19) has been replaced according to the equation m = M

L
a. The above

procedure to fix the constraints in a path integral has been applied in the
statistical mechanics of entangled polymers [13–15].
The next step consists in performing the continuous limit (4) in (21) [16]:

Ψ =

R(tf ,s)=Rf(s)
∫

R(0,s)=R0(s)

DR(t, s)e−
1

2kTτ

R tf
0

dt M
2L

R L

0
dsṘ

2
(t,s)δ(R′2(t, s)− 1) . (22)

The result of Eq. (22) defines a model which is closely related to the non-
linear sigma model (NLσM) used in high energy physics [17], solid state
physics [18] and disordered systems [19]. For this reason it has been called
generalized nonlinear sigma model (GNLσM). The most striking difference
between these two models lays in the constraints, which in the case of the
NLσM are of the form R

2 = 1, while in the GNLσM they have been replaced
by the nonholonomic condition (11).

To conclude this section, let us note that it is possible to show that the
generating functional of the correlation functions of the GNLσM coincides
with the generating functional of the correlation functions of the solutions
of a constrained Langevin equation [8].

4. Dynamics of an inextensible chain with constant bending angle

The approach presented in Sec. 2 in order to treat the dynamics of ran-
dom chains has some interesting variants which we would like to discuss in
this section. To this purpose, we choose the formulation in which the posi-
tions of the ends of the segments composing the chain are given in cartesian
coordinates. As we have already seen, in this way the expression of the ki-
netic energy Kdisc is given by (8) and must be completed by the constraints
(9). From now on we assume as before that all segments have the same fixed
length ln = a, but we require additionally that:

(zn − zn−1)
2 = b2 ≤ a2 . (23)

This implies that the projection of each segment onto the z-axis has length
±b, so that the segments are bound to form with the z−axis the fixed angles
α1 = α or α2 = (π − α) defined by the relations:

cosα1 = +
b

a
, cosα2 = −

b

a
. (24)

Clearly, in both cases the constraints (9) and (23) may be rewritten as
follows:

(xn − xn−1)
2

b2
+

(yn − yn−1)
2

b2
=

1

cos2 α
− 1 (n = 2, . . . , N) , (25)
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where α may be either α1 or α2. In the following we will suppose that
only the angle α = α1 is allowed, so that the chain cannot make turns in
the z-direction. An example of a conformation of a chain satisfying these
assumptions is given in Fig. 2.

Fig. 2. Example of motion of a chain whose segments are constrained to form a
fixed angle α with the z-axis. In the figure α = 30◦.

The constraints (25) are eliminated using the spherical coordinates of
Eq. (1) after setting the angles θn formed by the segments with the z-axis
equal to α:

xn(t) =

n
∑

i=1

li cosϕi(t) sinα , (26)

yn(t) =

n
∑

i=1

li sinϕi(t) sinα , (27)

zn(t) =
n
∑

i=1

li cosα = na cosα . (28)

As we see from the above equation, each segment is left only with the free-
dom of rotations around the z-direction, corresponding to the angles ϕi(t).
Moreover, the total length of the chain is always L = Na, but now also the
total height h of the trajectory along the z-axis is fixed:

h = Nb . (29)

At this point, we pass to the continuous limit, this time taking as parameter
describing the trajectory of the chain the variable z instead of the arc-length
s. Due to the last of Eqs. (28), the z-components of the velocities are always
zero:

żn(t) = 0 . (30)
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As a consequence, we are left with something similar to a two-dimensional
problem. The difference from a real two-dimensional problem, which could
be obtained by putting θj = π/2 (j = 1, . . . , N) in Eq. (1), is that the equa-
tions describing the position of a bead in two dimensions, namely xi(t) =
∑N

j=1 lj cosϕj(t) and yi(t) =
∑N

j=1 lj sinϕj(t), have been replaced by

Eqs. (26) and (27). Moreover, the constraints have a slightly different form.
Following the same procedure presented in Sec. 2, we find after a few calcu-
lations the expression of the kinetic energy in the continuous limit:

Kα = tan2 α
M

2h

h
∫

0

dz

z
∫

0

dz1

z1
∫

0

dz2

×ϕ̇(t, z − z1)ϕ̇(t, z2) cos(ϕ(t, z − z1)− ϕ(t, z2)) (31)

and of the constraint (25):

(∂zx)
2 + (∂zy)

2 = tan2 α . (32)

It is also not difficult to show that the probability distribution Ψα is given
in cartesian coordinates by:

Ψα =

∫

Dx(t, z)Dy(t, z) exp

{

−
Aα

κ

}

δ((∂zx)
2 + (∂zy)

2 − tan2 α) , (33)

where

Aα =
M

2h

tf
∫

0

dt

h
∫

0

dz
[

ẋ2(t, z) + ẏ2(t, z)
]

. (34)

At this point we discuss briefly the case in which both angles π−α and
α are allowed. In this situation, the trajectory of the chain may have turns.
An example of motion of this kind is given in Fig. 3.

Fig. 3. Example of motion of a chain whose segments are constrained to form fixed
angles α or π − α with the z-axis. In the figure α = 30◦. Turning points are
emphasized by means of shaded beads.
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The constraints (9) and (23) remain unchanged, but the coordinate z
cannot be chosen as a valid parameter of the trajectory of the chain and one
has to come back to the arc-length s. The most serious problem is the fact
that the variables zn(t) are not continuous functions of the time, since the
length zn(t)−zn−1(t) is allowed to jump discretely between the two discrete
values +b and −b, corresponding to the angles α and π − α respectively. It
is therefore difficult to define the components żn of the velocities of the ends
of the segments and thus their contribution to the kinetic energy. Let us
note that this problem affects only the z degrees of freedom. The degrees of
freedom xn(t) and yn(t) of the chain remain continuous functions of t despite
the jumps of the zn’s. This fact can be easily verified looking at the definition
of xn(t) and yn(t) in Eqs. (26) and (27). Since sin(π − α) = sinα, both the
xn(t)’s and yn(t)’s are not affected by the jumps of the angle α←→ π − α.
As a consequence, the problems with the z variable can easily be solved if
the chain has no interactions in which the z variable is involved. In this case,
in fact, the degrees of freedom connected to the motion along the z-direction
are decoupled from the other degrees of freedom and may be neglected.

As a consequence, we assume that the interactions are z-independent,
so that the difficulties related to the motion along the z-direction disappear
and once again the problem reduces to that that of a two-dimensional chain.
Since the constraints are always those of Eqs. (9) and (23), one may proceed
as in the case of fixed angle α. As a result, one finds that the final probability
distribution is of the form:

Ψα,π−α = C

∫

Dx(t, s)Dy(t, s)

× exp

{

−
Aα,π−α

κ

}

δ((∂sx)
2 + (∂sy)

2 − tan2 α) , (35)

where

Aα,π−α =
M

2L

tf
∫

0

dt

L
∫

0

ds
[

ẋ2(t, s) + ẏ2(t, s)
]

(36)

and C is a constant containing the result of the integration over the decoupled
z degrees of freedom. With respect to the previous case, let us note that in
Eqs. (35) and (36) z has been replaced by the arc-length s as the parameter
of the trajectory of the chain. Correspondingly, the total chain length L
appears in the action instead of the height h.
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5. Conclusions

In this work the dynamics of an inextensible freely jointed chain con-
sisting of links and beads in three dimensions has been discussed both from
the classical and statistical point of view. In Sec. 2 we have mainly concen-
trated ourselves on the computation of the kinetic energy in cartesian and
spherical coordinates for the discrete and continuous chain. In Sec. 3 we
have derived the probability function of the chain Ψ using a path integral
framework and the fact that the fluctuations of the chain can be regarded
as those of a system of Brownian particles with an additional constraint
condition imposed on their trajectories. The probability function Ψ of this
system is equivalent to the partition function of a generalized nonlinear σ
model. The analogy of the GNLσM with the NLσM suggests the possibility
of applying techniques and results coming from the NLσM to the GNLσM.
For example, it is known that the NLσM is renormalizable in two dimen-
sions and also that it has interesting features because it is analytically free
and has a dynamically generated mass gap [20]. The similarity with NLσM
seems also to suggest that there is no symmetry breaking in the underlying
O(d) symmetry of the GNLσM, where d denotes the dimension of the vector
field R(t, s). One should however be careful when extending the results of
the NLσM to the GNLσM. For example if d = 2, one may use polar field
coordinates to express the vector field R(t, s). If one does that the NLσM
becomes a free field theory in the angle variable [21]. This is not true in
the case of the GNLσM which in polar coordinates exhibits a nonlinear and
complicated dependence on the angle degree of freedom. Moreover, it is not
straightforward to apply techniques like the effective potential method which
is useful to investigate possible phase transitions in the NLσM. The reason is
that in this method it is performed an expansion around field configurations
minimalizing the action which are constant. Configurations of this kind cor-
respond in the GNLσM to the situation in which the chain has collapsed to
a point and thus are nonphysical. Finally in Sec. 4 a three-dimensional chain
admitting only fixed angles with respect to the z-axis has been discussed. It
has been shown that it is possible to reduce the problem to two dimensions,
in a way which is similar to the reduction of the statistical mechanics of a
directed polymer to the random walk of a two-dimensional particle [22]. Our
approach is valid only if the chain has no turning points. If there are turn-
ing points the kinetic energy is not well defined, because the variable z(t, s)
is no longer a continuous function and thus its time derivative becomes a
distribution. One way for adding to our treatment turning points as those
of Fig. 3 is to replace the variable z with a stochastic variable which is al-
lowed to take only discrete values. Another way is to look at turning points
as points in which the chain bounces against an invisible obstacle. A field
theory describing a one-dimensional chain with such kind of constraints has
been already derived in Refs. [23].
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