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The Lamperti transformation of a self-similar process is a stationary
process. In particular, the fractional Brownian motion transforms to the
second order stationary Gaussian process. This process is represented as
a series of independent processes. The terms of this series are Ornstein–
Uhlenbeck processes if H < 1/2, and linear combinations of two dependent
Ornstein–Uhlenbeck processes whose two dimensional structure is Marko-
vian if H > 1/2. From the representation effective approximations of the
process are derived. The corresponding results for the fractional Brown-
ian motion are obtained by applying the inverse Lamperti transformation.
Implications for simulating the fractional Brownian motion are discussed.

PACS numbers: 02.50.Ey, 05.10.Gg, 87.10.Mn

1. Introduction

1.1. Fractional generalizations of Ornstein–Uhlenbeck process

The Ornstein–Uhlenbeck process has been introduced in [1] as the ve-
locity process of Brownian motion following a successful application of the
theory of stochastic processes in the explanation of this phenomenum. The
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progress was initiated by the ground breaking work of Einstein, Smolu-
chowski and Langevin that put foundation for the modern statistical me-
chanics, see [2–4]. The process is a solution to Langevin’s equation

dX = −λX + c1/2dB ,

where dB is a Gaussian noise (so B is the Wiener process that nowadays is
typically referred to as the Brownian motion). Recently, there is increasing
interest to consider the above equation with Brownian motion B replaced
by fractional Brownian motion. The resulting process could be thus natu-
rally called fractional Ornstein–Uhlenbeck process. However, there are at
least two different stochastic processes that can be called with this name.
For example the Lamperti transformation of fractional Brownian motion is
also occasionally referred to as the fractional Ornstein–Uhlenbeck process
(see [5–7]). We refer to [6, 8–10] for more discussion of so defined frac-
tional Ornstein–Uhlenbeck processes. We just note here that although in
the special case of H = 1/2 these processes coincide, in general they dif-
fer. For example, the covariance function of the properly defined solutions
to the Langevin equation has the asymptotics of increments of fBM given
by (3) and it can be used as an argument for using the name of fractional
Ornstein–Uhlenbeck processes. Therefore to avoid confusion of terminology,
we have opted for a more descriptive name: the Lamperti transformation
of fractional Brownian motion (Lt–fBm). We note also that in [11] the
Lt–fBm’s are termed as the stationary generators of fBm. Our main focus
in this work is the representation of the Lt–fBm and fBm and although these
representations can be used to analyze other versions of fractional type of
Ornstein–Uhlenbeck processes we do not consider this issue.

The relation between self-similar and stationary processes suggests the
theoretical utility of working with a self-similar process through its Lamperti
transform by applying to the latter well-developed methods for stationary
processes. Such an approach has been taken to obtain linear estimation of
self-similar processes in [8]. This paper utilizes the same approach to ob-
tain a convenient series representation of fractional Brownian motion. The
obtained series representation differ in their structure from the ones of [12]
or [13], where the representations are in terms of deterministic functions
with random independent coefficients. In contrast, the terms in our repre-
sentation are independent Markovian processes that are rescaled Brownian
motions in the case H < 1/2 or combinations of two dependent and rescaled
Brownian motions in the case H > 1/2.
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1.2. Fractional Brownian motion

Fractional Brownian motions are extensions of Brownian motion that
preserve homogeneity of increments, self-similarity and normality of distri-
butions — the properties that uniquely characterize them — but have more
complex dependence structure, including long-range dependence [see [14]].
These properties and the rich mathematical theory that is built upon them
incited a growing interest in applications of fractional Brownian motion to
stochastic modeling in hydrology, optics and theory of turbulence, finance,
and telecommunication networks [see, for example, [15, 16]]. Self-similarity
and dependence structure are the prominent features of all these models and
this work provides another look at both. We represent fractional Brownian
motion as series of independent self-similar processes that have simpler de-
pendence structure that is directly derived from the independent increments
of the standard Brownian motion. We arrive to this by studying and an-
alyzing stationary Gaussian processes that are obtained by the Lamperti
transformation of fractional Brownian motions. These processes are inter-
esting on their own terms and the obtained series representation “disects”
their dependence structure into simpler ones of the independent terms. Re-
sulting Gaussian approximations converge fast in the mean square error and
at the same time preserve the dependence rate.

Let us recall that a real valued Gaussian process {BH(t), t ≥ 0}, with
0 < H ≤ 1 is called fractional Brownian motion (fBm) if BH(0) = 0,
E(BH(t)) = 0 and

E(BH(t)BH(s)) =
σ2

2

(

t2H + s2H − (t − s)2H
)

, t, s > 0 . (1)

The fBm has stationary increments and is self-similar with self-similarity
(Hurst) parameter H (H-ss). Recall that a stochastic process {X(t), t ≥ 0}
is H-ss if for each a ≥ 0:

X(at)
d
= aHX(t), t ≥ 0 , (2)

in the sense that all the finite dimensional distributions of the two processes
are the same. In the special case of H = 1/2 the fBm reduces to the
classical Brownian motion. Another important property of fBm is that its
increments exhibit long-range dependence. We say that a discrete-time, zero
mean stationary process Zk, k ∈ Z+ exhibits long-range dependence if the
covariance function γ(k) = E(ZiZi+k) tends to zero so slowly that the series
∑∞

k=1 γ(k) diverges. In the case of the fBm, the increment process {Zk =
BH(k + 1) − BH(k), k ∈ Z+}, called the fractional Gaussian noise, exhibits
long-range dependence for H ∈ (1/2, 1), since its covariance function satisfies
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γ(k) ∼ σ2H(2H − 1)k2H−2 as k → ∞ . (3)

For more details we refer to [17], where a comprehensive survey of results
on the fBm is presented.

1.3. Lamperti transform

There is a one-to-one correspondence between H-ss processes and strictly
stationary processes through a nonlinear deterministic time-scale change
called the Lamperti transformation. More specifically, if {X(t), t ∈ R} is
a strictly stationary process and if for some H > 0, we let

Y (t) = tHX(log t), for t > 0 ; Y (0) = 0 ,

then {Y (t), t ≥ 0} is H-ss. Conversely, if {Y (t), t ≥ 0} is H-ss and if we let

X(t) = e−tHY (et) , t ∈ R ,

then {X(t), t ∈ R} is strictly stationary [see [14] for more on the theory of
self-similar processes]. We refer to X(t) as the Lamperti transform of Y (t).

Let {BH(t), t ≥ 0} be a fBm, which is H-ss. Then its Lamperti transform
{LH(t), t ∈ R} is a zero mean Gaussian strictly stationary process, and its
covariance is

RH(t, s) = σ2

(

cosh((t − s)H) − 22H−1 sinh2H

(

t − s

2

))

= σ2
(

cosh((t − s)H) − 2H−1| cosh(t − s) − 1|H
)

,

with the spectral density

SH(ω) =
σ2 sin(πH)Γ (2H + 1)|Γ (1 − H + iω)|2

2π|Γ (1
2 + iω)|2(H2 + ω2)

.

[See [8].] Following our terminology this stationary process is referred to as
the Lamperti transform of fBm (Lt–fBm). The rate of dependence measured
by RH(k) = RH(t, t + k) is exponential and proportional to e−k(H∧(1−H)).
We observe that the Lt–fBm does not inherit the dependence rate exhibited
by increments of the corresponding fBm. In particular, we do not have
long-range dependence of the Lt–fBm for any value of H. If H = 1/2, then
RH(t, s) = σ2 exp(−|t−s|/2), i.e., the covariance of the Ornstein–Uhlenbeck
(O–U) process.
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2. Series decomposition of Lt–fBm

2.1. Lt–fBm as a series of O–U processes

We call a stationary process X(t) a series of independent moving averages

Un(t) =

∞
∫

−∞

fn(s − t)dBn(s) ,

where fn(s) ∈ L2(R),
∑∞

n=1

∫∞
−∞ f2

n(s)ds < ∞ and Bn(s)’s are indepen-
dently scattered Gaussian measures controlled by the Lebesgue measure
(called from now on standard Brownian measures), if

X(t)
d
=

∞
∑

n=1

Un(t) , t > 0 .

Note that convergence of the above series is in the quadratic mean sense and
the resulting process is Gaussian with the covariance

RX(t) =
∞
∑

n=1

∞
∫

−∞

fn(s − t)fn(s)ds .

In particular, the variance is given by Var (X(t)) =
∑∞

n=1 Var (Un(t)) =
∑∞

n=1

∫∞
−∞ f2

n(s)ds.

Example 1 A special case of moving averages are the classical Ornstein–
Uhlenbeck (O–U) processes which for α ∈ R, β > 0 can be expressed as the
following moving averages

U(t;α, β)
d
= α

∞
∫

t

eβ(t−s)dB(s)

d
= α

t
∫

−∞

e−β(t−s)dB(s) . (4)

The series X(t) =
∑∞

n=1 Un(t;αn, βn) of independent O–U processes is
well defined if the numerical series

∑∞
n=1 α2

n/βn is convergent. Moreover,
a stationary Gaussian process is uniquely identified as a series of the O–U
processes if its covariance has the form

R(t) =
∞
∑

n=1

α2
n

2βn
e−βn|t| . (5)
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If there is a minimal value β among βn’s then the rate of decay of co-
variance is proportional to e−βt. Further, we have the following

∞
∑

n=1

Un(t;αn, β)
d
= U(t;α, β) , (6)

where α2 =
∑∞

n=1 α2
n.

Note that the covariance function of the Lt–fBm, for t > 0 can be written
as

R(t) =
σ2

2

[

etH + e−tH −
(

et/2 − e−t/2
)2H

]

=
σ2

2

[

etH
(

1 + e−2tH −
(

1 − e−t
)2H

)]

=
σ2

2

[

etH

(

1 + e−2tH −
∞
∑

n=0

(

2H

n

)

(

−e−t
)n

)]

=
σ2

2

[

etH

(

1 + e−2tH − 1 −
∞
∑

n=1

(

2H

n

)

(

−e−t
)n

)]

=
σ2

2

[

e−tH +

∞
∑

n=1

(

2H

n

)

(−1)n−1e−t(n−H)

]

, (7)

where
(

α
n

) def
= α·(α−1)···(α−n+1)

n! for n ∈ N and
(

α
0

) def
= 1. For H ∈ (0, 1/2], the

terms in the above series are all positive so the Lt–fBm is a series of O–U
processes as specified in the following result.

Theorem 1 If H ∈ (0, 1/2] a Lt–fBm X(t) can be represented as the fol-
lowing series

X(t) =
∞
∑

n=1

Un(t;αn, βn) , t > 0 , (8)

where Un(t;αn, βn) are O–U processes with

α2
n = σ2(−1)n

(

2H

n − 1

)

(n − H − 1) , βn = |n − H − 1| .

Proof. Notice if H ∈ (0, 1/2], then
(

2H

n

)

(−1)n−1 =
2H(2H − 1) · · · (2H − n + 1)

n!
(−1)n−1

= 2H

(

1 − 2H + 1

2

)(

1 − 2H + 1

3

)

· · ·
(

1 − 2H + 1

n

)
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with all factors non-negative (positive if H < 1/2). Thus the result follows
from (5) and from the fact that

∞
∑

n=1

(−1)n−1

(

2H

n

)

= 1 < ∞.

Remark 1 It follows from the general theory of stochastic processes that the
convergence of the series is also uniform with probability one on any interval
[0, T ] [see [18, 19]].

Remark 2 The following simple recurrent relations are useful in numerical
computations of the coefficients in the above series

α2
1 = σ2H , α2

n+1 =

(

1 − H

n

)(

1 − H

n − H − 1

)

α2
n , n ≥ 1 ,

β1 = H , β2 = 1 − H , βn+1 = βn + 1 , n ≥ 2 .

We notice that the sequence of βn’s is increasing and thus the first term
in the representation (8) holds the rate of dependence of X(t), i.e., e−Hτ , the
rate for the second term is e−(1−H)τ , and the rate for each subsequent term is
decreasing by e−τ . We conclude that the initial terms of the representation
are representing most of the dependence structure of the Lt–fBm.

2.2. Series decomposition in the case H > 1/2

In the case H ∈ (1/2, 1), the terms in (7) for n ≥ 2 are negative and
thus a moving average series representation is less straightforward.

We start with a discussion of the structure of a pair of dependent
O–U processes. In what follows, vectors will be identified with one-column
matrices so

(x1, x2) ≡
[

x1

x2

]

.

Also without losing generality, the time parameters will be assumed all non-
negative.

Lemma 1 Let U(t) = (U(t; 1, β), U(t; 1, γβ)), β > 0, γ > 0 and U(t; 1, β)
is an O–U process defined by (1). Then the process U is stationary and its
covariance matrix function RU(h) = E

(

U(t)UT (t + h)
)

has, for h > 0, the
form

RU(h) =
e−βh

2β

[

1 2
1+γ e−(γ−1)βh

2
1+γ

1
γ e−(γ−1)βh

]

. (9)
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Moreover, U is a Markov process such that U(t + h) given U(t) = u0 can
be represented in distribution as the process in h > 0:

Uu0(h) = A(h)
(

u0 + B(h)Y (h)
)

, (10)

where A(h) and B(h) are non-random matrices given by

A(h) =

[

e−βh 0
0 e−γβh

]

,

B(h) =

[

1 0
2

1+γ
eβ(1+γ)h−1

e2βh−1
1

]

and the vector Gaussian process Y (h) = (Y1(h), Y2(h)) has for each fixed
h > 0 independent coordinates and is represented in distribution as

Y (h) =





h
∫

0

eβzdB(z),

h
∫

0

eβγz − 2

1 + γ

eβ(1+γ)h − 1

e2βh − 1
eβzdB(z)



 .

Proof. For h ≥ 0

E [U1(t + h)U2(t)] =

∞
∫

t+h

eβ(1+γ)t+βh−β(1+γ)sds =
1

β(1 + γ)
e−γβh . (11)

Similarly, we find that

E [U1(t)U2(t + h)] =
1

β(1 + γ)
e−βh . (12)

The formulas for E[U1(t + h)U1(t)] and E[U2(t + h)U2(t)] follow from (11)
and (12) for γ = 1.

The process U(t) can be equivalently represented as





t
∫

−∞

e−β(t−s)dB(s),

t
∫

−∞

e−βγ(t−s)dB(s)





which shows more naturally the dependence on its past and this represen-
tation is used throughout the rest of the proof.

The Markov property follows easily from independence of integrals with
respect to the independently scattered measure over disjoint sets and the
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following representation

U(t + h) =

[

e−βh 0
0 e−γβh

]





















t+h
∫

t

e−β(t−s)dB(s)

t+h
∫

t
e−γβ(t−s)dB(s)











+ U(t)











.

Then (10) can be derived from the above by applying orthogonalization to

the two variables
∫ h
0 eβsdB(s) and

∫ h
0 eγβsdB(s) and using the independence

of the vector Gaussian process

U(t, t + h) =





t+h
∫

t

e−β(t−s)dB(s),

t+h
∫

t

e−γβ(t−s)dB(s)





to U(t) = u0. This leads to the following equality in distribution











t+h
∫

t

e−β(t−s)dB(s)

t+h
∫

t

e−γβ(t−s)dB(s)











=

[

1 0
2

1+γ
eβ(1+γ)h−1

e2βh−1
1

]

Y (h) ,

where

Y (h) =





h
∫

0

eβzdB(z),

h
∫

0

eβγz − 2

1 + γ

eβ(1+γ)h − 1

e2βh − 1
eβzdB(z)



 .

This concludes the proof.

Example 2 Let us consider the following difference of the O–U processes
(1):

D(t;α, β, γ) = U(t;α, β) − U(t;α, γβ) , γ > 0 . (13)

Then this process is a stationary Gaussian moving average

D(t;α, β, γ) = α

∞
∫

t

eβ(t−s) − eγβ(t−s)dB(s)

and its covariance function follows directly from Lemma 1.
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Corollary 1 The covariance function of the process D(·;α, β, γ) defined in
(13) is given by

RD(t;α, β, γ) =
α2

2β
e−βt γ − 1

γ + 1

(

1 − 1

γ
e−β(γ−1)t

)

.

Proof. It is easy to notice that the covariance function will be of the form

RD(t;α, β, γ) = vT RU(t)v ,

where v = (α,−α).

In particular, VarD(t;α, β, γ) = α2

2β
(γ−1)2

γ(γ+1) . Consequently, the mixture of

such processes X(t) =
∑∞

n=1 Dn(t;αn, βn, γn) is well defined if

∞
∑

n=1

α2
n

βn(1 ∧ γn)
< ∞ . (14)

The next result shows that for H > 1/2 the Lt–fBm can be represented as
a series of moving averages that are differences of dependent O–U processes
as in (13).

Theorem 2 For H ∈ (1/2, 1) a Lt–fBm X(t) can be represented as the
following series of the moving averages:

X(t) =

∞
∑

n=1

Dn(t;αn,H, γn) +

∞
∑

n=1

D′
n(t;α′

n, 1 − H, γ′
n) , (15)

where Dn(t;αn,H, γn) and D′
n(t;α′

n, 1 − H, γ′
n), are mutually independent

differences of dependent O–U processes as defined in (13) with γn = n+1−H
H ,

γ′
n = n+1−H

1−H and

α2
n =

σ2

3 − 2H
(−1)n+1

(

2H

n + 1

)

(n + 1)(n + 1 − H)

n + 1 − 2H
,

α′
n
2

=
2σ2(1 − H)

3 − 2H
(−1)n+1

(

2H

n + 1

)

(n + 2 − 2H)(n + 1 − H)

n
.

Proof. Let us start by noticing that γn > 1 and

max(α2
n, α′

n
2
) ≤ 16σ2(−1)n−1

(

2H − 1

n

)



Series Decomposition of Fractional Brownian Motion . . . 1405

thus by (14) both series of moving averages are well-defined and almost surely
convergent in the supremum norm over compact sets, [see [18] and [19]]. We
need to show that

RX(t) =

∞
∑

n=1

(

RDn(t) + RD′

n
(t)
)

. (16)

Notice also that the covariance function of X may be rewritten as

RX(t) =
σ2

2

[

e−Ht + 2He−(1−H)t +

∞
∑

n=1

(

2H

n + 1

)

(−1)ne−(n+1−H)t

]

. (17)

The third term in (17), may be written as

∞
∑

n=1

(

2H

n + 1

)

(−1)ne−(n+1−H)t

=

∞
∑

n=1

(

2H
n+1

)

(−1)n
(

1
2γn

− 1
γn+1

)

[(

1

2γn
− 1

γn + 1

)

e−(n+1−H)t

+

(

1

2
− 1

γn + 1

)

e−Ht −
(

1

2
− 1

γn + 1

)

e−Ht

]

=
∞
∑

n=1

( 2H
n+1

)

(−1)n

α2
n

H

(

1
2γn

− 1
γn+1

)

{

RDn(t) − α2
n

H

(

1

2
− 1

γn + 1

)

e−Ht

}

. (18)

By the same argument with αn, βn = H, γn replaced by α′
n, β′

n = 1−H and
γ′

n we obtain

∞
∑

n=1

(

2H

n + 1

)

(−1)ne−(n+1−H)t

=

∞
∑

n=1

(

2H
n+1

)

(−1)n

α′2
n

1−H

(

1
2γ′

n
− 1

γ′

n+1

)

{

RD′

n
(t) − α

′2
n

1 − H

(

1

2
− 1

γ′
n + 1

)

e−(1−H)t

}

.

(19)
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Now, consider the following expression

∞
∑

n=1

(

2H

n + 1

)

(−1)ne−(n+1−H)t

=
1

3 − 2H

∞
∑

n=1

(

2H
n+1

)

(−1)n

α2
n

H

(

1
2γn

− 1
γn+1

)

[

RDn(t) − α2
n

H

(

1

2
− 1

γn + 1

)

e−Ht

]

+
2(1 − H)

3 − 2H

∞
∑

n=1

( 2H
n+1

)

(−1)n

α′2
n

1−H

(

1
2γ′

n
− 1

γ′

n+1

)

×
[

RD′

n
(t) − α

′2
n

1 − H

(

1

2
− 1

γ′
n + 1

)

e−(1−H)t

]

. (20)

Substitution of αn, α′
n, γn and γ′

n in (20) and the following identities

∞
∑

n=1

(

2H

n + 1

)

(−1)n = −(2H − 1) ,

∞
∑

n=1

(

2H

n + 1

)

(−1)n(n + 1) = 2H

∞
∑

n=1

(−1)n
(

2H − 1

n

)

= −2H

gives us

∞
∑

n=1

(

2H

n + 1

)

(−1)ne−(n+1−H)t =
2

σ2

∞
∑

n=1

(

RDn(t) + RD′

n
(t)
)

−e−Ht − 2He−(1−H)t ,

which is equivalent to (16).

2.3. Approximations of Lt–fBm

We start with a discussion of the case H < 1/2. We have seen in
Subsection 2.1 that the Lt–fBm X(t) can be approximated by XN (t) =
∑N

n=1 Un(t;αn, βn), t > 0. Here we investigate how accuracy of this ap-
proximation depends on N . The O–U process U(t) = U(t;α, β), the only
one-dimensional stationary Gaussian and Markov process, has the transi-
tion distribution of U(t + h), h > 0, given past up to time t and U(t) = u0

represented as
Uu0(h) = e−βh(u0 + Y (h)) , (21)
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where Y (h) = α
∫ h
0 eβsdB(s). From that the simulation of U(t) at the

discrete time points 0 < t1 < · · · < tn is straightforward. Let hi = ti+1 − ti,
i=1, . . . , n−1 and z1, z2, . . . , zn be simulated values of independent standard

normal variables. Define u1 =
√

α2

2β z1 and, for i = 2, . . . , n, yi = σ(hi−1)zi,

where σ(hi) =
√

α2

2β (e2βhi − 1). By the recursive formula that follows from

(21), the values (u1, . . . , un) defined by

ui = e−βhi−1 (ui−1 + yi) , i = 2, · · · , n ,

constitute a sample from the distribution of (U(t1), . . . , U(tn)). Samples
generated using this algorithm evaluated at 500 equally spaced points over
the interval [0, 1] are presented in figure 1.
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Fig. 1. Trajectories of approximations XN , for H = 0.1, 0.3, 0.4 (from top to bot-

tom) at 500 equally spaced points. Left: approximations for N = 50 (thin line)

N = 150 (thick line); Right: the differences between approximation for N = 150

and the ones for: N = 50 (thin line) and N = 100 (thick line).
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We see that the accuracy of approximation is improving as H approaches
1/2 and generally is very good as the trajectories for N = 50 (thin line) and
N = 150 (thick line) are hardly distinguishable. A better insight into it can
be obtained by studying the mean square error of X(t) − XN (t). By the
hypergeometric Gauss identity (see the Appendix) we have

MSEN (H)
def
= E (X(t) − XN (t))2

=
σ2

2

∞
∑

n=N+1

(−1)n
(

2H

n − 1

)

=
σ2

2

∞
∑

k=0

(−1)k+N−1

(

2H

k + N

)

= (−1)N−1 σ2

2
2F1

[

N − 2H 1
N + 1

; 1

]

= (−1)N−1 σ2

2

(

2H − 1

N − 1

)

.

The dependence of the rate of convergence on the value of H < 1/2 can
be seen better from the following inequalities (see Lemma 4 of the Appendix)

(

1 − 2H

N

)N−2H (1 − 2H)2H

2N2H
≤ MSEN+1(H)

σ2

≤
(

1 − 2H

N

)N−2H (1 − 2H)2H−1

2(N + 1)2H
. (22)

Thus the rate of convergence is of the order of the power function N−2H .
This sort of dependence of the convergence rate on the Hurst parameter
should be expected as the smaller H, the more negatively correlated is the
underlying fractional Brownian motion, consequently, trajectories are more
variable and thus harder to approximate. In figure 2, we have plotted the
mean square error (MSE) for different values of H and N .

We turn now to the case of H > 1/2. First notice that the variances of
the Gaussian variables Y1(h) and Y2(h) in Lemma 1 are given by

σ2
1(h) =

1

2β
(e2βh − 1) =

eβh

β
sinh(βh) , (23)

σ2
2(h) =

1

2β

(

e2βγh − 1

γ
− 4

(1 + γ)2

(

eβ(1+γ)h − 1
)2

e2βh − 1

)

=
eβγh

β

(

sinh βγh

γ
− 4

(1 + γ)2
sinh2 β(1 + γ)h/2

sinhβh

)

. (24)
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Fig. 2. The mean square error MSEN (H) for H = 0.05, 0.1, 0.15, 0.2, 0.25 (left)

and 0.3, 0.35, 0.4, 0.45 (right), N = 1, . . . , 300. Larger MSE values correspond to

smaller H .

For arbitrarily chosen points t0 = 0 < t1 < · · · < tn we describe a method
of obtaining a sample (ui; i = 0, . . . , n) from the distribution of (U(ti); i =
0, . . . , n), where U(t) is the process of Lemma 1.

Let hi = ti − ti−1, i = 1, . . . , n. First generate a vector value u0 from
the two-dimensional Gaussian distribution with mean zero and covariance
matrix

1

β

[

1
2

1
1+γ

1
1+γ

1
2γ

]

.

Then let z11, . . . , z1n and z21, . . . , z2n be simulated values of mutually inde-
pendent standard normal variables. Define the vector values yi by

yi = (σ1(hi)z1i, σ2(hi)z2i) ,

i.e. obtain independent values from the distributions of Y (ti − ti−1), i =
1, . . . , n.

Then define the value u1 that corresponds to value of U (t1) conditionally
on U(t0) = u0 as

u1 = A(h1) (u0 + B(h1)y1) ,

and by the recursion that follows from the Markov property

ui = A(hi) (ui−1 + B(hi)yi) , i = 2, . . . , n ,

where the matrices A(h), B(h) are defined in Lemma 1. Samples of U(ti),
generated using this algorithm are presented in figure 3. This time the
trajectories are over the interval [0, 10] to see better the difference in the
time dependence structures. In these graphs we have used the relation
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Fig. 3. Trajectories of U = (U1, U2) ( U1 — thin lines, U2 — thick lines); β =

0.6, 0.4, 0.9, 0.1 (from top to bottom), γn, n = 1, 10, 100 (from left to right).
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γn = (n + 1)/β − 1, if β ∈ (0.5, 1) and γn = n/β + 1, if β ∈ (0, 0.5) that is
valid for the terms of the representation (15). We observe that when n and
thus γn increases the correlation between coordinates of U (t;β, γ) = U(t)
decreases as does the value of the second coordinate relatively to the first
one. This can be also clearly seen in the correlation (9), where we also ob-
serve less dependence in time with β increasing from 0 to 1. For example,
the correlations for U1 evaluated at t = 1 for β = 0.1, 0.4, 0.6, 0.9 are roughly
equal to 0.9, 0.7, 0.6, 0.4, respectively.

The Lt–fBm is represented in (15) as a series of independent processes
that are obtained as differences of the coordinates U . Thus the partial sum
processes of this series

SN(t) =
N
∑

n=1

Dn(t;αn,H, γn) +
N
∑

n=1

D′
n(t;α′

n, 1 − H, γ′
n) (25)

can be used for approximating the Lt–fBm. The accuracy of approximation
can be measured by studying the mean square error MSEN (H) of X(t) −
SN (t). Proceeding in an analogous way as in the case H < 1/2 we obtain
the explicit value for this error [see also (A.7,A.8) in the Appendix]

MSEN (H) =

∞
∑

n=N+1

E(D2
n(t;αn,H, γn)) +

∞
∑

n=N+1

E(D
′2
n (t;α′

n, 1 − H, γ′
n))

=
σ2

3 − 2H

∞
∑

n=N+1

{

(−1)n−1

(

2H

n + 1

)

(n + 1)
2H + 1

2H
− 2(−1)n−1

(

2H

n + 1

)}

= σ2(−1)N
(

2H − 2

N

)

1 + 2H − 2(2H − 1)/(N + 1)

3 − 2H
.

The rate of approximation for H > 1/2 can be best examined through
the following inequalities that are simple consequences of Lemma 4 in the
Appendix

2(1 − H)
CH(N)

N2H−1
≤ MSEN (H)

σ2
≤ CH(N)

(N + 1)2H−1
, (26)

where

CH(N) =
(2 − 2H)2H−2

3 − 2H

(

1 + 2H − 4H − 2

N + 1

)(

1 − 2H − 1

N

)N+1−2H

is O(N) as N → ∞.
We note the power rate N1−2H of the approximation that is more ac-

curate the further H is from 1/2 (the classical O–U process). This rate of
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approximation can be improved by a certain modification of the approxima-
tion as described below.

The terms in the series representation (15) decrease in the mean square.
However, they are still characterized by the constant (in N) time depen-
dence rates: e−Ht for the first and e−(1−H)t for the second series. These
rates are due to the first coordinates of the corresponding vector Markov
processes Un and U ′

n, i.e., Un(t;αn,H) and U ′
n(t;α′

n, 1 − H). In the fol-
lowing result we present an approximation for which this time dependence
rate is removed from the remainder while simultaneously the rate of approx-
imation is improved. Here we use the notation of Theorem 2 as well as the
terminology and results for hypergeometric functions and series described in
the Appendix.

Theorem 3 Let us define

VN (t) =

∞
∑

n=N+1

Un(t;αn,H) ,

V ′
N (t) =

∞
∑

n=N+1

U ′
n(t;α′

n, 1 − H) ,

where Un and U ′
n are the O–U processes used in Theorem 2 to define Dn and

D′
n through (13). Then VN and V ′

N are independent O–U processes that are
also independent of SN given by (25). They are represented in distribution
as

VN (t)
d
= U(t; rN ,H) V ′

N (t)
d
= U(t; r′N , 1 − H) ,

where U is given by (1) and

r2
N = KH(N)H

(

2
N + 1

H − 1/2
+ 1 +

4H2

(N + 2)(N + 2 − 2H)2
fN,H(1)

)

,

r′N
2

= KH(N)H(2−2H)

(

N+1

H−1/2
+

2

H
−3+

(2−2H)2

(N+1)(N+2)
gN,H(1)

)

,

where

KH(N) =
σ2

3 − 2H
(−1)N

(

2H − 1

N + 1

)

,

fN,H(x) = 3F2

[

1 N + 2 − 2H N + 2 − 2H
N + 3 N + 3 − 2H

;x

]

,

gN,H(x) = 3F2

[

1 N + 1 N + 2 − 2H
N + 2 N + 3

;x

]

.
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The approximation XN = SN +VN +V ′
N of a Lt–fBm X has the mean square

error

MSEH(N) = KH(N)

(

3

2
+

2H

N+2

(

H

N+2−2H
fN,H(1)+

2−2H

N+1
gN,H(1)

))

and the covariance function of the approximation error X−XN is given by

RH(t;N) = KH(N)e−(N+2−H)t 2H

N + 2

×
(

3

2
hN,H(e−t) +

H

N + 2 − 2H
fN,H(e−t) +

2 − 2H

N + 1
gN,H(e−t)

)

,

where

hN,H(x) = 2F1

[

1 N + 2 − 2H
N + 3

;x

]

.

Proof. By (A.5), (A.7)–(A.10) in the Appendix we have r2
N =

∑∞
n=N+1 α2

n and r′N
2 =

∑∞
n=N+1 α′

n
2 thus it follows from (6) that VN and

V ′
N are O–U processes with the properties as stated.

Further we note that the approximation error is given by

XN − X =
∞
∑

n=N+1

Un(t;αn,Hγn) +
∞
∑

n=N+1

U ′
n(t;α′

n, (1 − H)γ′
n)

and consequently

MSEH(N) =
1

2

(

1

H

∞
∑

n=N+1

α2
n

γn
+

1

1 − H

∞
∑

n=N+1

α′
n
2

γ′
n

)

,

RH(t;N) =
1

2

(

1

H

∞
∑

n=N+1

α2
n

γn
e−Hγnt +

1

1 − H

∞
∑

n=N+1

α′
n
2

γ′
n

e−(1−H)γ′

n

)

.

The final formulas for MSEH(N) and RH(t;N) are following directly from
(A.6), (A.8)–(A.10) shown in the Appendix.

The above result can be utilized in numerical approximations of trajec-
tories of the Lt–fBm for H > 1/2 as the method of generating samples of the
terms of SN and independent O–U processes VN and V ′

N have been discussed
above. Let us only mention that the scales rN and r′N of VN and V ′

N , re-
spectively can be computed using the values of appropriate hypergeometric
functions or in the case of rN one can utilize the explicit formula (A.4). At
present we do not know how to obtain values of r′N without explicitly using
hypergeometric functions.
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Remark 3 The advantages of using XN instead of SN to approximate the
Lt–fBm are clear. It is seen from the formula for RH(t;N) in Theorem 3
that the error of approximation has the dependence in time rate in covariance
decreasing exponentially with N as is given by e−(N+2−H)t (as opposed to the
fixed rate e−(1−H)t of XN). Moreover, the mean square error MSEH(N) is
improved over the one for SN as it is seen from the following argument. Note
first that

3F2

[

1 N + 2 − 2H N + 2 − 2H
N + 3 N + 3 − 2H

; 1

]

< 3F2

[

1 N + 1 N + 2 − 2H
N + 2 N + 3

; 1

]

< 2F1

[

1 N + 1
N + 3

; 1

]

= N + 2 .

This leads, after some algebra, to

3
2KH(N) < MSEH(N) < 1

52KH(N) .

Since
(

2H−1
N+1

)

= 2H−1
N+1

(

2H−2
N

)

, we conclude that the MSE rate N−2H (a sig-

nificant improvement over (26)). Illustration of the mean square errors is
presented in figure 4, where we see that the approximation by XN is better
not only because of the asymptotics with respect to N but also by being exact
for each N for H in the neighborhood of 0.5.
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Fig. 4. Mean square error as the function H for XN (left) and for SN (right),

N = 50, 100, 150.

The results of simulations of XN = SN + VN + V ′
N for N = 50, 100, 150

and H = 0.6, 0.7, 0.8, 0.9 over the interval [0, 10] are presented in figure 5. We
see on the left hand side graphs that the trajectories for N = 50 and N = 150
are almost indistinguishable due to the thickness of the used lines and the
quality of the approximation. The differences between the approximations
are seen on the right hand side graphs.



Series Decomposition of Fractional Brownian Motion . . . 1415

0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

2
Simulation of the process for H=0.6

0 2 4 6 8 10
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15
Difference of simulations  for  H=0.6

0 2 4 6 8 10
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Simulation of the process for H=0.7

0 2 4 6 8 10
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Difference of simulations  for  H=0.7

0 2 4 6 8 10
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Simulation of the process for H=0.8

0 2 4 6 8 10
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15
Difference of simulations  for  H=0.8

0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5
Simulation of the process for H=0.9

0 2 4 6 8 10
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15
Difference of simulations  for  H=0.9

Fig. 5. Trajectories of approximations XN , for H = 0.6, 0.7, 0.8, 0.9 (from top to

bottom) over [0, 10]. Left: approximations for N = 50 (thin line), N = 150 (thick

line); Right: the differences between approximation for N = 150 and the ones for

N = 50 (thin line) and N = 100 (thick line).



1416 A. Baxevani, K. Podgórski

3. Decomposition of fBm

3.1. fBm as a series of transformed Brownian motions

In the case H ≤ 1/2, the representation of Lt–fBm of Theorem 1 and
application of the inverse Lamperti transform (iLt) lead directly to the cor-
responding representation of fBm in terms of series of transformed Brownian
motions.

Theorem 4 For H ∈ (0, 1/2], a fBm Y (t) can be represented as the follow-
ing series

Y (t) = tH
∞
∑

n=1

αn√
2βn

Bn(t2βn)

tβn
, t > 0 ,

where Bn(t) are independent standard Brownian motions and α2
n, βn are

as in Theorem 1.

Proof.

We first notice that the fBm Y (t) is iLt of the Lt–fBm process X(t).
If H ∈ (0, 1

2 ], then according to Theorem 1, the Lt–fBm can be repre-
sented as a series of independent O–U processes. Thus

Y (t) = tHX(log t) =

∞
∑

n=1

tHUn(log t;αn, βn) , t > 0 , (27)

where Un(t;αn, βn) are independent O–U processes with αn, βn as given in
Theorem 1.

Moreover, the process t 7→ tHUn(log t;α, β) has the same distribution
as the Gaussian process t 7→ α√

2β
tH−βBn(t2β), where Bn(t) is a standard

Brownian motion and the result follows.

Remark 4 Let us define a sequence of Gaussian processes

Yn(t) =
αn√
2βn

tH−βnBn(t2βn) .

Then Yn(t) = tHUn(log t;αn, βn) and Yn’s are H-ss processes. They can be
represented as the following integrals with respect to independent standard
Brownian measures Bn’s

Yn(t) = αn

log t
∫

−∞

tH−βneβnxdBn(x) .
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Moreover, Yn’s are Markovian and the distribution of Yn(t) is zero mean

normal with variance α2
n

2βn
t2H and for s > t the distribution of Yn(s) given

Yn(t) = y is normal with the mean (s/t)H−βny and variance α2
n

2βn
s2H(1 −

(t/s)2βn). Therefore the representation of Theorem 4 can be viewed also as
the representation of the fBm as series of independent, H-ss, Markovian and
Gaussian processes.

3.2. Decomposition of fBm for H > 1/2

A similar approach through the iLt as used in the case H ≤ 1/2 leads
to series representation of fBm in terms of differences of dependent deter-
ministically transformed Brownian motions when H ∈ (1/2, 1). First, we
investigate the structure of a two dimensional vector of dependent standard
Brownian motions that will be used for this representation.

Lemma 2 Let B(t) = (B1(t), B2(t)) be the Gaussian vector process defined
through

B1(t) =
√

2βt · U
(

log t
1
2β ; 1, β

)

,

B2(t) =
√

2βγt · U
(

log t
1

2βγ ; 1, γβ
)

,

where an O–U process U is defined by (1). Then its covariance function for
s ≤ t is given by

RB(s, t) = E
(

B(s)BT (t)
)

=







s 2
√

γts
1+γ

(

sβγ∧tβ

sβγ∨tβ

)
1

2βγ

2
√

γts
1+γ

(

sβ∧tβγ

sβ∨tβγ

) 1
2β

s






.

Proof. Let Ũ(t) = (Ũ1(t), Ũ2(t)) be the Gaussian vector process defined
through

Ũ1(t) = U
(

log t
1
2β ; 1, β

)

,

Ũ2(t) = U
(

log t
1

2βγ ; 1, γβ
)

,

so

B(t) =

[ √
2βt 0
0

√
2βγt

]

Ũ(t) .

Then

RB(s, t) =

[ √
2βs 0
0

√
2βγs

]

E

(

Ũ(s)Ũ
T
(t)
)

[ √
2βt 0
0

√
2βγt

]

.
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The expectation E

(

Ũ (s)Ũ
T
(t)
)

can be obtained from Lemma 1 as follows.

Let first consider s ≤ t, sβ < tβγ and sβγ > tβ, then

E

(

Ũ (s)Ũ
T
(t)
)

=









R11

(

log(s
t )

− 1
2β

)

R21

(

log( s
1
2β

t
1

2βγ

)

)

R21

(

log( t
1
2β

s
1

2βγ

)

)

R22

(

log(s
t )

− 1
2βγ

)









=

[

1
2β

√

s
t

√
st

β(1+γ)s
− 1+γ

2

√
st

β(1+γ) t
− 1+γ

2
1

2βγ

√

s
t

]

,

where Rij(h) are the terms of RU(h) from Lemma 1. The case s ≤ t,
sβ < tβγ and sβγ ≤ tβ can be obtained in a similar manner. The final
conclusion then follows from multiplying appropriate matrices and using
the obvious properties of covariance matrix.

The series representation presented below uses the independent differences of
deterministically transformed Brownian motions as in Lemma 2 to represent
a fBm with H > 1/2.

Theorem 5 Let Y (t) be a fBm with the Hurst parameter H ∈ (1/2, 1).
Then it has the following representation in distribution

Y (t) = tH
∞
∑

n=1

(

αn√
2H

(

B1,n(t2H)

tH
− B2,n(t2Hγn)√

γn · tHγn

)

(28)

+
α′

n√
2H̄

(

B′
1,n(t2H̄)

tH̄
−

B′
2,n(t2H̄γ′

n)
√

γ′
n · tH̄γ′

n

))

,

where H̄ =1−H while Bn(t)=(B1,n(t), B2,n(t)) and B′
n(t)=(B′

1,n(t), B′
2,n(t))

are independent sequences of mutually independent vector Brownian motions
having the covariance structure given in Lemma 2 with the parameters βn

and β′
n replaced by H, H̄, respectively, while αn, γn and α′

n, γ′
n are given in

Theorem 2.

Proof. If H ∈ (1
2 , 1), then according to Theorem 2, the Lt–fBm can be

represented as a mixture of moving averages. Thus,

Y (t) = tHX(log t) =
∞
∑

n=1

tHDn(log t;αn,H, γn)+
∞
∑

n=1

tHD′
n(log t;α′

n, H̄, γ′
n),

(29)
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where Dn(t;αn,H, γn) and D′
n(t;α′

n, H̄, γ′
n) are mutually independent dif-

ferences of dependent O–U processes as defined in (13) with αn, α′
n, γn and

γ′
n as in Theorem 2.

Moreover, for each n the process

t 7→ tHDn(log t;αn,H, γn) = tHUn(log t;αn,H) − tHUn(log t;αn,Hγn)

= tHαn

(

Un(log t; 1,H) − Un(log t; 1,Hγn)
)

has the same distribution as the Gaussian process

∆n(t) = tHαn

(

B1,n(t2H)√
2H · tH

− B2,n(t2Hγn)√
2Hγn · tHγn

)

. (30)

The structure of Gaussian processes Bn(t) = (B1,n(t), B2,n(t)) and B′
n(t) =

(B′
1,n(t), B′

2,n(t)) is given in Lemma 2, with β taking the values H and H̄,

respectively, and the remaining parameters being αn, γn and α′
n, γ′

n, respec-
tively. Combining it with (29) we obtain (28).

Remark 5 The covariance of the processes ∆n(t) defined in (30) that ap-
pear as independent terms in the above representation is given for s > t
by

R∆(t, s) =
α2

n

2H
s2H

(

γn − 1

γn + 1
− 2

γn + 1

(

t

s

)H(1+γn)

+
1

γn

(

t

s

)H(1−γn)
)

.

In the above results we expressed the fractional Brownian motion in terms
of differences of dependent and deterministically transformed Brownian mo-
tions. Similarly as in the case H ≤ 1/2, this decomposition can be equiva-
lently represented using Gaussian and Markovian self-similar processes. The
main difference is that in the present case these processes are two dimen-
sional in values. In the following lemma their general structure is described.

Lemma 3 Let Γ (t) = (Γ1(t),Γ2(t)) be the vector Gaussian process defined
for β > 0 and γ > 0 through

Γ1(t) =
B1(t

2β)√
2β

,

Γ2(t) = tβ(1−γ) B2(t
2βγ)√

2βγ
,
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where B1 and B2 are as in Lemma 2. Then Γ (t) is a β-ss two dimensional
Gaussian process that has covariance matrix given for s > t by

RΓ (t, s) =
s2β

2β

[

(

t
s

)2β 2
1+γ

(

t
s

)β(γ+1)

2
1+γ

(

t
s

)2β 1
γ

(

t
s

)β(γ+1)

]

.

Moreover, Γ is a Markov process such that for s > t the distribution of Γ (s)
given that Γ (t) = γ is bivariate normal with mean

µ(γ) =

[

1 0

0
(

s
t

)β(1−γ)

]

γ

and covariance

Σ =
s2β

2β





1 −
(

t
s

)2β 2
1+γ

(

1 −
(

t
s

)β(1+γ)
)

2
1+γ

(

1 −
(

t
s

)β(1+γ)
)

1
γ

(

1 −
(

t
s

)2βγ
)



 .

Proof. Note that Γ (t) = tβU(log t), where U is the stationary process
defined in Lemma 1 and self-similarity follows from the properties of the
Lamperti transform. Moreover since U has been Markovian and the loga-
rithmic time change preserves the Markov property, it is enough to carry out
standard algebra to obtain the means and covariances of the distributions.

To this end observe the following relation between the covariances of U
and Γ :

RΓ (t, s) = tβsβRU

(

log
t

s

)

.

This formula for RΓ follows easily from the formula for RU of Lemma 1.
Next assume that s > t and notice that the Markovian structure of U

gives the following structure for the conditional distribution of Γ (s) given
that Γ (t) = γ:

sβA
(

log
s

t

)(

t−βγ + B
(

log
s

t

)

Y
(

log
s

t

))

,

where A, B and Y are defined in Lemma 1. To see the formula for variance
and the mean of conditional distribution note the following relations between
matrices that can be checked by direct algebra

A
def
= A

(

log
s

t

)

=

[

(

t
s

)β
0

0
(

t
s

)βγ

]

,

B
def
= B

(

log
s

t

)

=





1 0

2
1+γ

( s
t )

β(1+γ)−1

( s
t )

2β−1
1



 ,

Σ = AB

[

σ2
1 0
0 σ2

2

]

BT AT ,
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where σ2
1 and σ2

2 are variances of the independent coordinates of Y
(

log s
t

)

.
It follows from (23) in Section 2 that

σ2
1 =

1

2β

(

(s

t

)2β
− 1

)

,

σ2
2 =

1

2β







1

γ

(

(s

t

)2βγ
− 1

)

− 4

(1 + γ)2

(

(

s
t

)β(1+γ) − 1
)2

(

s
t

)2β − 1






.

The rest of the proof follows from straightforward matrix algebra.

Remark 6 For any β-ss process X(t), the process X ′(t) = tβ
′−βX(t) is

β′-ss. In particular, considering the process Γ
′(t) = tβ

′−β
Γ (t), ere Γ is as

in Lemma 3, it is easy to argue that it is Gaussian, Markovian, and the
corresponding parameters are as follows

RΓ
′(t, s) = (ts)β

′−βRΓ (t, s) ,

µ′(γ) = (s/t)β
′−βµ(γ) ,

Σ
′ = s2β′−2β

Σ .

Remark 7 Using the representation from Example 2, the process of differ-
ences ∆(t) = Γ1(t) − Γ2(t) can be also written as

∆(t) =

log t
∫

−∞

eβs − tβ(1−γ)eγβsdB(s),

where B is a standard Brownian measure.

In order to formulate the result that summarizes our discussion of the series
representations of fractional Brownian motion, we need the following nota-
tion. Let us fix H ∈ (1/2, 1), α ∈ R, and γ > 0. The H-ss process Γ defined
in Lemma 3 with β = H is denoted as Γ (t; γ). Additionally, if Γ from
Lemma 3 has β = H̄ = 1 − H, then the H-ss process Γ

′(t) = t2H−1
Γ (t) is

denoted as Γ
′(t; γ). With this notation we can write the decomposition of

fBm as a series of H-ss, Gaussian, and Markovian processes.

Proposition 1 Let H ∈ (1/2, 1), and αn, α′
n, γn, γ′

n are defined in The-
orem 2. Let Γn(t; γn) and Γ

′
n(t; γ′

n) be mutually independent sequences of
independent, Gaussian and Markovian processes as defined above. Then

Y (t) =
∞
∑

n=1

αnΓn(t; γn) +
∞
∑

n=1

α′
nΓ

′
n(t; γ′

n)
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is an H-ss bivariate Gaussian process and the fBm Y (t) with the Hurst index
H can be represented as

Y (t) = vT Y (t) ,

where v = (1,−1).

Proof. The result is a direct consequence of Theorem 5 and Lemma 3.

Remark 8 Using Remark 7 we can also write

Y (t) =

∞
∑

n=1

αn

log t
∫

−∞

eHs − tH(1−γn)eγnHsdBn(s)

+

∞
∑

n=1

α′
n

log t
∫

−∞

tH−H̄eH̄s − tH−H̄γ′

neγ′

nH̄sdB′
n(s) ,

where Bn and B′
n are mutually independent standard Brownian measures.

3.3. Approximations of fBm

The series representation of Lt–fBm can provide effective approximations
of fBm that can be utilized, for example, in simulations. The results are
direct consequences of the previously discussed simulations of Lt–fBm, so
we limit ourselves to their very brief overview. For simplicity of notation in
this section we assume that the scale parameter σ is equal to one. Let us
start with the case of H < 1/2 that is simpler.

By Theorem 4, the fBm Y (t) can be approximated by the partial sum

SN (t) =
∑N

n=1 Y (t). Simulation of the Yn(t) process at the discrete time
points 0 < t1 < · · · < tm is straightforward since the process is Gaussian
and Markov (see Remark 4).

Indeed, for a sample (y1, · · · , ym) from the distribution of random vector
(Yn(t1), · · · , Yn(tm)), let y1 be simulated as a normal variable with mean zero

and variance α2
n

2βn
t2H
1 . Then by recursive formula the values (y2, · · · , ym) are

simulated from the distributions

N

(

(

ti
ti−1

)H−βn

yi−1,
α2

n

2βn
t2H
i

(

1 −
(

ti−1

ti

)2βn

))

, i = 2, . . . ,m .

Samples generated using this algorithm evaluated at 500 equally spaced
points over the interval [0, 1] are presented in figure 6.
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Fig. 6. Trajectories of approximations XN , for H = 0.1, 0.3, 0.4 evaluated at 500

equally spaced points of [0, 1]. Left: approximations for N = 50 (thin line), N =

150 (thick line); Right: the differences between approximation for N = 150 and

the ones for N = 50 (thin line) and N = 100 (thick line).

Using the results of Subsection 2.3 we can obtain a straightforward as-
sessment of the MSE of Y (t) − SN (t). By the representation

Y (t) = tHX(log(t)) ,

where the process X(t) is the Lt–fBm and the MSE formula for the Lt–fBm
is given in Section 2.3 we have

MSEN (t;H)
def
= E (Y (t) − SN (t))2

= E
(

tH(X(log(t)) − XN (log(t)))
)2

= t2H(−1)N−1 σ2

2

(

2H − 1

N − 1

)

.
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Thus for fixed t, the rate of convergence of the MSE is of the order of the
power function N−2H . The MSE for t = 2 can be seen in figure 7.
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Fig. 7. The mean square error MSEN,t(H) for H = 0.05, 0.1, 0.15, 0.2, 0.25 (left)

and 0.3, 0.35, 0.4, 0.45 (right), N = 1, . . . , 300 and t = 2. Larger MSE values

correspond to smaller H .

While the case H ≤ 1/2 has been straightforward, the structure of the
two dimensional Brownian motions in the case H > 1/2 must be taken into
account to effectively express the terms of series representation. It has been
seen in Subsection 2.3 that an effective approximation is of the form

YN (t) =
N
∑

n=1

αnvT
Γn(t; γn) +

N
∑

n=1

α′
nvT

Γ
′
n(t; γ′

n)

+
r2
N

2H
B(t2H) +

r′N
2

2(1 − H)
B′(t2−2H) ,

where all the terms are mutually independent, Γn and Γ
′
n are generated

using their Markovian structure as described below, B, B′ are standard
Brownian motions, and all other constants are defined either in Theorem 2
or in Theorem 3.

To obtain a sample on the grid t0 = 0 < t1 < · · · < tI−1 < tI , one can
generate independently samples from the standard normal distribution: zi,
z′i, and the bivariate samples: γn,i, γ ′

n,i, i = 1, . . . , I, n ∈ 1, . . . , N that are

defined recursively as described next. First, γn,1 and γ ′
n,1 are drawn from

the zero mean normal bivariate distributions with the covariances

t2H
1

2H

[

1 2
1+γn

2
1+γn

1
γn

]

,
t2H
1

2(1 − H)

[

1 2
1+γ′

n
2

1+γ′

n

1
γ′

n

]

,
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respectively. en γn,i, γ ′
n,i, i = 2, . . . , n, are obtained recursively

γn,i =

[

1 0

0
(

ti
ti−1

)H(1−γn)

]

γn,i−1 + xn,i ,

γ ′
n,i =

[

1 0

0
(

ti
ti−1

)1−2H−(1−H)γ′

n

]

γ ′
n,i−1 + x′

n,i ,

where xn,i’s and x′
n,i are samples from the zero mean bivariate normal dis-

tributions with covariances

t2H
i

2H









1 −
(

ti−1

ti

)2H
2

1+γn

(

1 −
(

ti−1

ti

)H(1+γn)
)

2
1+γn

(

1 −
(

ti−1

ti

)H(1+γn)
)

1
γn

(

1 −
(

ti−1

ti

)2Hγn

)









,

t2H
i

2(1−H)









1 −
(

ti−1

ti

)2(1−H)
2

1+γ′

n

(

1 −
(

ti−1

ti

)(1−H)(1+γ′

n)
)

2
1+γ′

n

(

1 −
(

ti−1

ti

)(1−H)(1+γ′

n)
)

1
γ′

n

(

1 −
(

ti−1

ti

)2(1−H)γ′

n

)









,

respectively. Then a sample trajectory of fBm at ti is obtained as

yi =

N
∑

n=1

αnvT γn,i +

N
∑

n=1

α′
nvT γ ′

n,i

+
r2
N

2H

i
∑

k=1

(t2H
k − t2H

k−1)
1/2zk +

r′2N
2(1 − H)

i
∑

k=1

(t2−2H
k − t2−2H

k−1 )1/2z′k .

Examples of trajectories generated by this method are seen in figure 8.
We have also an explicit form of the MSE of the above approximation
following easily from Theorem 3

MSEN (t;H) = t2H σ2(−1)N

3 − 2H

(

2H − 1

N + 1

)

×
(

3

2
+

2H

N + 2

(

2H̄

N + 1
3F2

[

1 N + 1 N + 2H̄
N + 2 N + 3

; 1

]

+
H

N + 2H̄
3F2

[

1 N + 2H̄ N + 2H̄
N + 3 N + 3 − 2H

; 1

]))

,

where H̄ = 1 − H.
The graph illustrating the above error is presented in figure 9.
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Fig. 8. Trajectories of approximations YN , for H = 0.6, 0.7, 0.8, 0.9 (from top to

bottom) over [0, 10]. Left: approximations for N = 50 (thin line), N = 150 (thick

line); Right: the differences between approximation for N = 150 and the ones for

N = 50 (thin line) and N = 100 (thick line).
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Fig. 9. The mean square error MSEN,t(H) for H = 0.55, 0.6, 0.65, 0.7, 0.75 (left)

and 0.8, 0.85, 0.9, 0.95 (right), N = 30, . . . , 300 and t = 2. Larger MSE values

correspond to smaller H .

4. Long-range dependence

Beside having simple Markovian and Gaussian structure, the subsequent
self-similar components in our series decomposition of the fBm exhibit also
decreasing rates of time dependence with the first term having the rate
equal to the fBm rate. In this sense, it can be roughly said that the time
dependence of the fBm is represented by the first term in the decomposition.
It maybe particularly interesting (although slightly more complex) for the
long range dependence of the case H > 1/2 as it may reduce studying the
more complex fractional Brownian motion to the simpler deterministically
transformed regular Brownian motion. Here we list several simple results
that illustrate this feature of the presented series decomposition.

There are many possible ways of measuring the dependence rate for
stochastic processes. For stationary processes is measured by the rate of de-
cay of covariance function and in particular, a stationary sequence is declared
to have long-range dependence if its covariance function is not summable.
This terminology is carried over to homogeneous increment processes, where
long-range dependence is defined through long-range dependence of the (sta-
tionary) process of increments. Alternative although related definitions of
the long-range dependence for non-stationary and non-homogeneous incre-
ment processes has been discussed in the literature [see for example [20]].
Here we would like to point on the fairly simple dependence properties of the
components in the discussed decompositions leaving a more thorough study
for future research. Namely, we consider the autocorrelation functions of the
processes.
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For the fractional Brownian motion Y (t), the correlation

ρY (t, h) = Cov (Y (t), Y (t + h))/
√

Var (Y (t))Var (Y (t + s))

has the following tail behavior for fixed t > 0 and h → ∞:

ρY (t, h) ∼
{

1
2

(

t
h

)H
: H ∈ (0, 1/2] ,

1
4H

(

t
h

)1−H
: H ∈ (1/2, 1) .

For H ≤ 1/2, the terms of the decomposition have the correlation func-
tion given by

ρYn(t, h) =

(

1 +
h

t

)−βn

,

where βn = |n − H − 1| and thus the rate is the slowest for the first term,
i.e.

ρY1(t, h) ∼
(

t

h

)H

,

which is the same as for the fBm Y (t).
For H > 1/2, the picture is slightly more complex. As it was discussed

in Section 2, it is not enough to consider simply the terms in the series
decomposition and in order to remove the longer rate of dependence from
the error of approximations of the fBm one has to consider

YN (t) = tH(SN (log t) + VN (log t) + V ′
N (log t)) .

For the error EN = Y −YN of approximation, the correlation can be directly
computed and its rate for large h is summarized in the following result.

Proposition 2 For each N ∈ N and t > 0 the autocorrelation ρEN
(t, h) has

the asymptotic for h → ∞ given by

ρEN
(t, h) ∼ A(N ;H)

(

t

h

)N+2−H

,

where

A(N ;H) =

2H
(

3(N+1)(N+2H̄)+2H(N+1)+4H̄(N+2H̄)
)

3(N+1)(N+2)(N+2H̄)+4HN(N+1)fN,H(1)+8HH̄(N+2H̄)gN,H(1)
,

where H̄ = 1 − H. Moreover, the autocorrelation ρYN
(t, h) of the approxi-

mation YN is asymptotically given by

ρYN
(t, h) ∼ B(N ;H)

(

t

H

)1−H

,
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where

B(N ;H) =

∑N
n=1

α′

n

2(1−H)
γ′

n−1
γ′

n+1 +
r′N

2

2(1−H)

∑N
n=1

αn

2H
(γn−1)2

γn(γn+1) + rN
2

2H +
∑N

n=1
α′

n

2(1−H)
(γ′

n−1)2

γ′

n(γ′

n+1) +
r′
N

2

2(1−H)

.

Proof. The result is a combination of tedious but straightforward calcula-
tions of covariances that for ρEN

uses formulas given in Theorem 3, while
in computation of the asymptotic for ρYN

uses independence of the approx-
imation terms and the covariance formula of Corollary 1.

In the above result, we see that the errors of the subsequent approxima-
tions have correlation of the decreasing order 1/hN+2−H in h that is lower
that the one corresponding to the fBm which is 1/h1−H . Thus we may
conclude that the long range dependence of the fBm Y , for H > 1/2, is
represented well by the approximation YN which has the same rate 1/h1−H

as the decay of autocorrelation. It should be also noticed that this low rate
of decay is only represented by

Y ′
N =

N
∑

n=1

α′
nvT

Γ
′
n(t; γ′

n) + r′N
2
B′(t2−2H)/(2 − 2H) ,

while the time dependence of the other terms is shorter as it is of a higher
order.

The authors would like to thank Igor Rychlik for pointing out the
Ornstein–Uhlenbeck covariances in the decomposition of the covariance of
the Lt–fBm — this remark eventually led us to the presented representation
of the fBm, as well as Patrik Albin for valuable discussion.

Appendix A

In this appendix, we have collected some technical facts about the co-
efficients of the series representations that have been used throughout the
paper.

Lemma 4 For A ∈ (0, 1) define

aN = (−1)N
(

A − 1

N

)

.
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Then the following inequalities hold

(1 − A)A(1 − A/N)N−A

NA
≤ aN <

(1 − A)A−1(1 − A/N)N−A

(N + 1)A
.

Proof 1 Note that aN is positive and take bN = log aN . Then we have

bN =

N
∑

k=1

ln(1 − A/k)

= −
∞
∑

i=1

Ai

i

N
∑

k=1

k−i .

Since
N+1
∫

1

x−idx <

N
∑

k=1

k−i ≤ 1 +

N
∫

1

x−idx (A.1)

we obtain

bN < −A ln(N + 1) −
∞
∑

i=2

Ai

i(i − 1)

(

1 − (N + 1)−i+1
)

= ln
1

(N + 1)A
− A

( ∞
∑

i=1

Ai

i(i + 1)
−

∞
∑

i=1

(A/(N + 1))i

i(i + 1)

)

.

We note the following identity for x ∈ (−1, 1):

−
∞
∑

i=1

xi

i(i + 1)
= −

∞
∑

i=1

xi

i
+

( ∞
∑

i=2

xi

i

)

/x

= ln(1 − x) − ln(1 − x)1/x − 1

= ln(1 − x)1−1/x − 1 .

This leads to

bN < ln
1

(N + 1)A
+ ln(1 − A)A−1 − ln(1 − A/N)A−N

= ln
(1 − A)A−1(1 − A/N)N−A

(N + 1)A
,

which proves the upper bound for aN . In a similar manner, by using the
lower bound in (A.1), we obtain
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bN ≥ −A(1 + ln N) −
∞
∑

i=2

Ai

i

(

1 +
1 − N−i+1

i − 1

)

= ln(1 − A) + ln
1

NA
−

∞
∑

i=2

Ai

i(i − 1)
+ N

∞
∑

i=2

(A/N)i

i(i − 2)

= ln
1 − A

NA
− A

( ∞
∑

i=1

Ai

i(i + 1)
−

∞
∑

i=1

(A/N)i

i(i + 1)

)

= ln
1 − A

NA
+ ln(1 − A)A−1 + ln(1 − A/N)N−A

= ln
(1 − A)A(1 − A/N)N−A

NA
.

Next, we introduce hypergeometric series and functions and present some
identities that were used in the proofs of Section 2.

A hypergeometric series
∑

k≥0 tk is one in which t0 = 1 and the ratio of
two consecutive terms is a rational function of the summation index k, i.e.,
in which

tk+1

tk
=

P (k)

Q(k)
,

where P and Q are polynomials in k.
In the ratio P (k)/Q(k) of consecutive terms let us consider the polyno-

mials P and Q that are completely factored

tk+1

tk
=

P (k)

Q(k)
=

(k + a1)(k + a2) · · · (k + ap)

(k + b1)(k + b2) · · · (k + bq)(k + 1)
x ,

where x is a constant. For t0 = 1, the hypergeometric series (function)
whose terms are the t′ks,
ie, the series

∑

k≥0 tkx
k, is denoted by

pFq

[

a1 a2 · · · ap

b1 b2 · · · bq
;x

]

.

The ai’s and the bi’s are called, respectively, the upper and lower parameters
of the series. The bi’s are not permitted to be nonpositive integers or the
series will obviously not make sense.

Gauss´ 2F1 identity. If b is a non-positive integer or c − a − b has
positive real part, then
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2F1

[

a b
c

; 1

]

=
Γ (c − a − b)Γ (c)

Γ (c − a)Γ (c − b)
,

where Γ (z) =
∫∞
0 tz−1e−tdt.

We have also the following hypergeometric series identities

2F1

[

A A
1 + A

; 1

]

= Γ (1 − A)Γ (1 + A)

=
πA

sin(πA)
(A.2)

3F2

[

−1 + A − 1 + A 1 + A/2
A/2 A

; 1

]

=
Γ (2 − A)Γ (A)(2 − A)

A

=
π(A − 1)(A − 2)

A sin πA
. (A.3)

For more on hypergeometric series see [21] and [22].

There are several relations satisfied by the coefficients α2
n and α′

n
2 that

can be expressed in terms of hypergeometric series. Here we list those that
are important for analysis of the discussed series representations. First note
that

α2
n − α′

n
2 ≥ σ2

3 − 2H
(−1)n+1

(

2H

n + 1

)

(n + 1 − H)

×
(

n + 1

n + 1 − 2H
− n + 2 − 2H

n

)

=
2σ2(2H − 1)

3 − 2H
(−1)n+1

(

2H

n + 1

)

(n + 1 − H)2

n(n + 1 − 2H)

> 0 .

The following recurrent formulas prove to be useful for simulations and anal-
ysis of approximations

α2
1 = σ2 H(2H − 1)(2 − H)

(3 − 2H)(1 − H)
,

α2
n+1 = α2

n

(n + 1 − 2H)2(n + 2 − H)

(n + 1)(n + 1 − H)(n + 2 − 2H)
,

α′
1
2

= 2(1 − H)2(3 − 2H)α2
1 ,
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α′
n+1

2
= α′

n
2 n(n + 1 − 2H)(n + 2 − H)(n + 3 − 2H)

(n + 1 − H)(n + 2 − 2H)(n + 1)(n + 2)
,

γ1 =
2

H
− 1 , γn+1 = γn +

1

H
,

γ′
1 = 1 +

1

H̄
, γ′

n+1 = γ′
n +

1

H̄
.

Thus the following power series can be represented as hyperbolical series

∞
∑

n=1

α2
nxn

=
2σ2H(1 − H)

(3 − 2H)(2H − 1)

(

3F2

[

1 − 2H 1 − 2H 2 − H
1 − H 2 − 2H

;x

]

− 1

)

,

∞
∑

n=1

α′
n
2
xn

= 2σ2H(1−H)(2−H)(2H−1) · x · 5F4

[

1 1 2 − 2H 3 − H 4 − 2H
2 3 2 − H 3 − 2H

;x

]

.

In particular, by (A.3) we have

∞
∑

n=1

α2
n =

2σ2H(1 − H)

(3 − 2H)(2H − 1)

(

H

1 − H
Γ (2H)Γ (2(1 − H)) − 1

)

=
2σ2H(1 − H)

(3 − 2H)(2H − 1)

(

H(2H − 1)

(1 − H) sin(2π(1 − H))
− 1

)

. (A.4)

We have not been able to find an explicit formula for
∑∞

n=1 α′
n
2, however let

us note the following upper bounds for the reminder of this series

∞
∑

n=N+1

α′
n
2 ≤ 2σ2

3 − 2H

(

H(1 − H)

2H − 1

(

H(2H − 1)

(1 − H) sin(2π(1 − H))
− 1

)

−(2H − 1)

∞
∑

n=N+1

(−1)n+1

(

2H

n + 1

)

(n + 1 − H)2

n(n + 1 − 2H)

)

−
N
∑

n=1

α2
n.

Let us note the following relations

α2
n =

σ2

3−2H
(−1)n+1

(

2H

n + 1

)(

n + 1 + H +
2H2

n + 1 − 2H

)

,

α′
n
2

=
2σ2(1−H)

3−2H
(−1)n+1

(

2H

n+1

)(

n + 3(1−H) +
2(1−H)2

n

)

, (A.5)
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α2
n

γn
=

σ2H

3 − 2H
(−1)n+1

(

2H

n + 1

)(

1 +
2H

n + 1 − 2H

)

,

α′
n
2

γ′
n

=
2σ2(1 − H)

3 − 2H
(−1)n+1

(

2H

n + 1

)(

1 +
2 − 2H

n

)

. (A.6)

By the Gauss identity we have

∞
∑

n=N+1

(−1)n+1

(

2H

n + 1

)

(n + 1) = (−1)N
(

2H

N + 2

)

×(N + 2)2F1

[

1 N + 2 − 2H
N + 2

; 1

]

= 2H(−1)N
(

2H − 2

N

)

, (A.7)

∞
∑

n=N+1

(−1)n+1

(

2H

n + 1

)

= (−1)N
(

2H

N + 2

)

2F1

[

1 N + 2 − 2H
N + 3

; 1

]

= (−1)N
(

2H − 1

N + 1

)

. (A.8)

Additionally,

∞
∑

n=N+1

(−1)n+1

(

2H

n + 1

)

1

n + 1 − 2H
= (−1)N

(

2H

N + 2

)

1

N + 2 − 2H

×3F2

[

1 N + 2 − 2H N + 2 − 2H
N + 3 N + 3 − 2H

; 1

]

, (A.9)

∞
∑

n=N+1

(−1)n+1

(

2H

n + 1

)

1

n
= (−1)N

(

2H

N + 2

)

1

N + 1

×3F2

[

1 N + 1 N + 2 − 2H
N + 2 N + 3

; 1

]

. (A.10)

The above relations lead directly to the explicit formulas presented in
Theorem 3.
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