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We study the first passage time (FPT) of a particle passing through a
subdiffusive membrane; the membrane separates the media where normal
diffusion occurs. The transport inside the membrane is described by the
subdiffusion equation with fractional time derivative. Outside the mem-
brane the normal diffusion equation is used. Starting with the solutions
of the equations, we find the probability density of FPT and discuss its
properties.

PACS numbers: 05.10.Gg, 02.50.Ey

1. Introduction

The First Passage Time (FPT) was used to characterize a diffusive trans-
port in various systems [1], for example, in population genetics (FPT is
identified with the time of fixation of gene in population) [2], in the trans-
port of DNA in subdiffusive media [3], in spreading of viruses [4], and in
the transport of polymers through membranes [5, 6]. FPT is defined as
the time t, which is needed to a particle, starting from x0, to reach ar-
bitrary chosen point x for the first time. Till now, the FPT probability
density function F (x, t;x0) was usually derived for homogeneous systems
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where normal diffusion or subdiffusion occurs [3, 7–11]. In this paper we
study the one-dimensional unbounded system containing a medium, where
the normal diffusion occurs, and a subdiffusive membrane. To describe the
transport process in the system we use the normal diffusion equation out-
side the membrane and the subdiffusion one with fractional time derivative.
We find the probability density of FPT of a particle passing through the
membrane in the long time limit. We also briefly discuss its properties.

2. Model

We consider the system schematically presented in Fig. 1. In the region
(−∞, x1) ∪ (x2,∞) the normal diffusion occurs, which is described by the
equation

∂C(x, t)

∂t
= D

∂2C(x, t)

∂x2
. (1)

normal

diffusion

normal

diffusion
subdiffusion

x0 x1 x2
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g
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Fig. 1. The system under considerations, the membrane surfaces are located at
x1 and x2, D is the normal diffusion coefficient, γ and Dγ are the subdiffusion
parameters.

In the region (x1, x2), occupied by the membrane, there is a subdiffusion
described by the following equation

∂C(x, t)

∂t
= Dγ

∂1−γ

∂t1−γ

∂2C(x, t)

∂x2
, (2)

where ∂1−γ/∂t1−γ denotes the fractional Riemann–Liouville time deriva-
tive, γ is the subdiffusion parameter (γ < 1) and Dγ denotes subdiffusion
coefficient. These parameters occur in the relation defining subdiffusion
〈

∆x2
〉

= 2Dγtγ/Γ (1 + γ), where
〈

∆x2
〉

is the mean square displacement of
the particle. We assume that the fluxes and concentrations are continuous
at the membrane surfaces

J1(x1, t) = JMγ(x1, t) , C1(x1, t) = CM (x1, t) , (3)

JMγ(x2, t) = J2(x2, t) , CM (x2, t) = C2(x2, t) , (4)
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where indexes 1, M and 2 corresponds to the regions x < x1, x1 < x < x2

and x > x2, respectively and J1,2 = −D
∂C1,2

∂x are the normal diffusion fluxes

and JMγ = −Dγ
∂1−γ

∂t1−γ
∂CM

∂x is the subdiffusion one. The probability density
function of finding the particle at the point x and at the time t under the
condition that it started from x0, which is known as the Green function
G(x, t;x0), is given by the solution of Eqs. (1) and (2) with the boundary
conditions (3), (4) and G(±∞, t;x0) = 0, and with the initial condition

G(x, 0;x0) = δ(x − x0) . (5)

Knowing the Greens function, one finds the concentration of transported
substances C(x, t) using the integral formula

C(x, t) =

∫

G(x, t;x0)C(x0, t)dx0 .

3. Results

We are interested in finding the probability density function of FPT
F (x2, t;x0) for the process where a particle reaches the point x2 for the
first time starting from the point x0 localized in the region (−∞, x1). This
function fulfills the equation

F (x2, t;x0) = −dP (x2, t;x0)

dt
, (6)

where P (x2, t;x0) denotes the probability of finding a random walker in the
region (−∞, x2) at the time t under the condition that the particle did not
reach the point x2 at earlier moments. This probability reads

P (x2, t;x0) =

x1
∫

−∞

G1abs(x, t;x0)dx +

x2
∫

x1

G2abs(x, t;x0)dx , (7)

where G1abs (for x < x1) and G2abs (for x1 < x < x2) denote the Green’s
functions for the system with fully absorbing wall located at x2. These
functions fulfill the boundary conditions (3), G1abs(−∞, t;x0) = 0 and

G2abs(x2, t;x0) = 0 . (8)

In terms of the Laplace transform L[f(t)] ≡ f̂(s) ≡
∞
∫

0

e−stf(t)dt the Green’s

functions read



1440 T. Kosztołowicz, K.D. Lewandowska

Ĝ1abs(x, s;x0) =
1

2
√

Ds

[

exp

(

−s1/2|x − x0|√
D

)

− exp

(

−s1/2(2x1 − x − x0)√
D

)]

+
1 − exp

(

−2sγ/2d/
√

Dγ

)

√

Dγs1−γ/2
[

1 + k + (1 − k) exp
(

−2sγ/2d/
√

Dγ

)]

× exp

(

−s1/2(2x1 − x − x0)√
D

)

, (9)

Ĝ2abs(x, s;x0) =
exp

(

−s1/2(x1 − x0)/
√

D
)

√

Dγs1−γ/2
[

1 + k + (1 − k) exp
(

−2sγ/2d/
√

Dγ

)]

×
[

exp

(

−sγ/2(x − x1)
√

Dγ

)

−exp

(

−sγ/2(2x2 − x1 − x)
√

Dγ

)]

,

(10)

where k =
√

D/Dγs(γ−1)/2 and d = x2 − x1. The Laplace transform of
Eq. (6) is

F̂ (x2, s;x0) = 1 − sP̂ (x2, s;x0) . (11)

Combining Eqs. (7) and (9)–(11) we get

F̂ (x2, s;x0) = exp

(

−s1/2(x1 − x0)√
D

)

2 exp
(

−2sγ/2d/
√

Dγ

)

1 + k + (1 − k) exp
(

−2sγ/2d/
√

Dγ

) .

(12)
We find the function F for long times, which corresponds to the limit

of small s in Eq. (12). Expanding F̂ (x2, s;x0) into the power series with
respect to s, taking into account the leading terms and using the following
formula [12] (we assume that γ > 1/2)

L−1
(

sνe−asρ) ≡ fν,ρ(t; a) =
1

t1+ν

∞
∑

n=0

1

n!Γ (−nρ − ν)

(

− a

tρ

)n
, (13)

where a > 0, 0 < ρ ≤ 1/2 and the parameter ν is not limited, we get

F (x2, t;x0) =
u

2
√

πt3
exp

(

−u2

4t

)

+
d√
D

fγ/2,1/2 (t, u)
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−
√

Dd2

Dγ
fγ−1/2,1/2 (t, u) −

√
Dd2

D
3/2
γ

f3γ/2−1/2,1/2 (t, u)

+
Dd2

D2
γ

f2γ−1,1/2 (t, u) +
2
√

Dd3

Dγ
f2γ−1/2,1/2 (t, u)

−2Dd3

D
5/2
γ

f5γ/2−1/2,1/2 (t, u) +
Dd4

D3
γ

f3γ−1,1/2 (t, u) , (14)

where u = (x1 − x0)/
√

D. The term ‘leading terms’ means that adding any
term of neglected ones to the r.h.s. of Eq. (14), the plots of the function
(14) do not noticeable differ from these in Figs. 2–5. We note that putting

γ = 1, Dγ = D in Eq. (12) and using the formula L−1[exp(−a
√

s/D)] =

(1/2
√

πDt3) exp(−a/4Dt), a > 0, we get the well-known FPT probability
density for the normal diffusion

F (x, t;x0) =
1

2
√

πDt3
exp

(

−(x − x0)
2

4Dt

)

. (15)

The probability that the particle, which starts form x0, passes the point
x2 at least one time in the time interval (0, t), is defined by the integral

formula S(x2, t;x0) =
∫ t
0 F (x2, t

′;x0)dt′ and its Laplace transform reads

Ŝ(x2, s;x0) = s−1F̂ (x2, s;x0) . (16)

From Eqs. (12), (13), (14) and (16), after simple calculation, we obtain

S(x2, t;x0) = erfc

(

u

2
√

t

)

+
d√
D

fγ/2−1,1/2 (t, u)

−
√

Dd2

Dγ
fγ−3/2,1/2 (t, u) −

√
Dd2

D
3/2
γ

f3γ/2−3/2,1/2 (t, u)

+
Dd2

D2
γ

f2γ−2,1/2 (t, u) +
2
√

Dd3

Dγ
f2γ−3/2,1/2 (t, u)

−2Dd3

D
5/2
γ

f5γ/2−3/2,1/2 (t, u) +
Dd4

D3
γ

f3γ−2,1/2 (t, u) . (17)

The plots of F (x2, t;x0) are given in Fig. 2 (in the linear scale) and in
Figs. 3 and 4 (in the log–log scale); in all cases we take D = Dγ = 1, x0 = 1,
x1 = 5, and x2 = 6 (all quantities are given in arbitrary units), the parameter
γ is presented in the legends of the plots. In Figs. 2 and 3 we compare
the plots of F calculated for different values of the subdiffusion membrane
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Fig. 2. The first passage time density F (x2, t; x0) for different values of γ given in
the legend, here D = Dγ = 1. The values of the other parameters are mentioned
in the text.
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Fig. 3. The double-logarithmic plot of the functions presented in Fig. 2.

parameter γ. For each plot we observe two time domains where F ∼ t−β with
different values of β (this function can be represented by a linear function
in the log–log plot with slope −β, see Fig. 4). The domains are separated
by the time tS . The more detailed analysis of the linear approximations
of F is presented in Fig. 4. In the relatively small time domain, which is
approximately defined by the inequality 0.3< log10 t<0.9, the slope of linear
approximation is equal −0.54, whereas in the time domain log10 t>1.1 the
slope is equal −1.38. More precisely, the linear approximations are expressed
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by the functions log10 F (x2, t, x0) = −0.54 log10 t − 1.12 in the first time
interval and by log10 F (x2, t, x0) = −1.38 log10 t − 0.23 in the second one.
These intervals are separated by the point tS which we define as the time
of crossing the linear approximations in log–log plot (for the case presented
in Fig. 4 we get log10 tS ≈ 1). The plots of the probability S(x2, t;x0) for
different γ are presented in Fig. 5.
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Fig. 4. The double-logarithmic plot of the function F (x2, t; x0) for γ = 0.8. The
slope of the dashed line is −0.54 and the dotted one is −1.38.
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Fig. 5. The probability S(x2, t; x0) calculated for different values of the parameter
γ given in the legend.



1444 T. Kosztołowicz, K.D. Lewandowska

4. Final remarks

Based on the Laplace transform of the probability density of the first
passage time through the subdiffusive membrane (Eq. (12)), we derive the
long-time approximation of this function (Eq. (14)). We find that there exist
two time domains for sufficiently long times (which are separated from each
other by the point tS), where F can be approximated by the power functions
of time with different exponents F ∼ t−ν for t < tS and F ∼ t−θ for t > tS,
where θ > ν. We note that the FPT in the homogeneous unbounded system
with subdiffusion parameter γ has not such a property, as for long times
there is F ∼ t−(1+γ/2) [10]. However, in some subdiffusive systems the
functions characterizing transport have the form of the power function 1/tβ

for long times, where β takes different values in different time domains.
A typical example is the time dependence of the transient photocurrent
I(t) in amorphous materials, where the transition from I(t) ∼ t−(1−γ) to
I(t) ∼ t−(1+γ) for larger times was experimentally observed [13]. In such
a system similar behavior of FPT density is also expected. Let us note
that the results presented in this paper reveal the following features: the
power approximation obtained for the first time interval (for t < tS) are
closed to the function t−(1−γ/2), whereas for t > tS the function can be
approximated by t−(1+γ/2). Let us also note that the function F cannot be
approximated by the function characteristic for the normal diffusion (15).
Thus, we conclude, that the FPT is determined by the properties of the
subdiffusive membrane. This suggestion is confirmed by Fig. 5, where the
probability S of passing through the membrane at least one time in the
time interval (0, t) strongly depends on the subdiffusion parameter of the
membrane. However, the medium where normal diffusion occurs influences
the function F in such a manner that it creates the relatively small time
domain (for t < tS), where the function F can be approximated by the
power function with the exponent approximately equal to −(1 − γ/2).

The authors wish to express their thanks to Stanisław Mrówczyński for
fruitful discussion and critical comments on the manuscript.
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